学術・語学作品一覧
-
-高校数学Iの学習書。数学Iの中の「集合、データ分析」(10.集合、11.論理と集合、12.データ分析)を基本事項23項目で解説し、それぞれ例題を用いて解説。 基本事項23項目は次の内容です。 10 集合 10-1 集合 10-2 集合の共通部分と和集合 10-3 補集合 10-4 ド・モルガンの法則 10-5 ド・モルガンの法則の拡張 10-6 集合の要素の個数 10-7 集合 個数の最大と最小 11 論理と集合 11-1 命題の真偽 11-2 条件と結論の真偽 11-3 仮定と結論の真偽 11-4 命題の逆 11-5 必要条件と十分条件 11-6 条件の否定 11-7 「すべての~」・「ある~」の否定 11-8 逆・裏・対偶 11-9 対偶を利用する証明 11-10 背理法 11-11 四則演算 12 データの分析 12-1 度数分布とヒストグラム 12-2 代表値 10-3 四分位数と箱ひげ図 10-4 標準偏差 10-5 相関係数
-
-高校数学Iの学習書。数学Iの中の「2次関数」(4.2次関数とグラフ、5.2次関数の値の変化、6.2次不等式)を基本事項25項目で解説し、それぞれ例題を用いて解説。 基本事項25項目は次の内容です。 4 2次関数とグラフ 4-1 関数の値 4-2 関数の定義域 4-3 関数のグラフ 4-4 関数の最大値と最小値 4-5 身の回りにある関数 4-6 2次関数のグラフ 4-7 2次関数のグラフと平行移動 4-8 平方完成の利用 4-9 平行移動の応用 4-10 グラフと係数の記号 4-11 2次関数の対象移動 5 2次関数の値の変化 5-1 2次関数の最大と最小 5-2 2次関数の値域の最大最小 5-3 最大と最小の応用 5-4 最大値・最小値からの関数の決定 5-5 軸や頂点からの関数の決定 5-6 放物線上の3点からの関数の決定 5-7 3元1次方程式の解法 5-8 身の回りにある関数の決定 5-9 絶対値の入った関数とグラフ 5-10 2次関数のグラフと軸との共有点と個数 5-11 2次関数と直線の共有点と個数 6 2次不等式 6-1 2次不等式の解法 6-2 2次式での定符号の条件(1) すべての実数 6-3 最大と最小の応用 6-4 2次式と2次式の連立不等式 6-5 2次不等式の解と係数 6-6 複数お2次方程式が解を持つための係数の範囲 6-7 文字係数の不等式 6-8 不等式の整数解 6-9 2次方程式の解の存在範囲
-
-高校数学Aの演習問題集。数学Aの「場合の数と確率」(1.集合、2.場合の数、3.確率)と「整数の性質」(4.整数の性質)の基本事項56項目ごとに問題出題。理解度の自己判断で次ステップを選択可能。 基本事項56項目は次の内容です。 1 集合 1-1 集合 1-2 集合の共通部分と和集合 1-3 補集合 1-4 ド・モルガンの法則 1-5 ド・モルガンの法則の拡張 1-6 集合の要素の個数 1-7 集合 個数の最大と最小 2 場合の数 2-1 樹形図の利用 2-2 和の法則 2-3 積の法則 2-4 約数の個数と総和 2-5 順列 2-6 0を含む数字の順列 2-7 隣接順列 2-8 同じものを含む順列 2-9 円順列 2-10 数珠順列 2-11 重複を許す順列 2-12 同じものを含む数珠順列 2-13 組合せ 2-14 図形に関する組合せ 2-15 組分け 2-16 最短経路 2-17 重複を許す組合せ 2-18 パスカルの三角形 2-19 二項定理 2-20 多項定理 3 確率 3-1 同様に確からしいときの確率 3-2 積事象の利用 3-3 和事象の利用 3-4 確率の加法定理 3-5 和事象の確率 3-6 余事象と確率 3-7 独立な試行の確率 3-8 反復試行の確率 3-9 反復試行の確率の最大値 3-10 くじ引きの確率 3-11 独立でない試行と確率 3-12 期待値 3-13 期待値の利用 3-14 統計的確率 4 整数の性質 4-1 倍数と約数 4-2 素数 4-3 素因数分解 4-4 約数の個数 4-5 約数の総和 4-6 最小公倍数と最大公約数 4-7 互いに素 4-8 整数の範囲での倍数と約数 4-9 整数の除法 4-10 余りによる整数の分類 4-11 ユークリッドの互除法 4-12 最大公約数の性質 4-13 二元一次不定方程式の整数解 4-14 整数の性質の活用 十進法、n進法 4-15 整数の性質の活用 分数と小数
-
-高校数学Aの学習書。数学Aの中の「図形の性質」(5.三角形の性質、6.円の性質、7.作図、 8.空間での直線や平面の位置関係、9.多面体)を基本事項53項目で解説し、それぞれ例題を用いて解説。 基本事項53項目は次の内容です。 5 三角形の性質 5-1 三角形の辺と角の大小 5-2 三角形の3辺の大小関係 5-3 平行線と線分比 5-4 線分の内分点と外分点 5-5 線分の比と三角形の二等分線 5-6 面積と比 5-7 メネラウスの定理 5-8 チェバの定理 5-9 三角形の外心 5-10 三角形の内心 5-11 三角形の重心 5-12 三角形の傍心 5-13 三角形の垂心 6 円の性質 6-1 円の性質 6-2 円周角の定理の逆の利用 6-3 内接四角形 6-4 四角形が円に内接するための条件 6-5 トレミーの定理 6-6 シムソンの定理 6-7 円の接続 6-8 接弦定理 6-9 方べきの定理 6-10 2つの円の位置関係 6-11 2つの円の共通接線 7 作図 7-1 垂直二等分線の作図 7-2 垂線の作図 7-3 角の二等分線の作図 7-4 角度の作図 7-5 平方根の作図 8 空間での直線や平面の位置関係 8-1 2直線の位置関係 8-2 2直線の位置関係 8-3 直線と平面の位置関係 9 多面体 9-1 正多面体
-
-高校数学Aの学習書。数学AIの中の「場合の数と確率」(1.集合、2.場合の数、3.確率)を基本事項41項目で解説し、「整数の性質」(4.整数の性質)を基本事項15項目で解説し、それぞれ例題を用いて解説。 基本事項56項目は次の内容です。 1 集合 1-1 集合 1-2 集合の共通部分と和集合 1-3 補集合 1-4 ド・モルガンの法則 1-5 ド・モルガンの法則の拡張 1-6 集合の要素の個数 1-7 集合 個数の最大と最小 2 場合の数 2-1 樹形図の利用 2-2 和の法則 2-3 積の法則 2-4 約数の個数と総和 2-5 順列 2-6 0を含む数字の順列 2-7 隣接順列 2-8 同じものを含む順列 2-9 円順列 2-10 数珠順列 2-11 重複を許す順列 2-12 同じものを含む数珠順列 2-13 組合せ 2-14 図形に関する組合せ 2-15 組分け 2-16 最短経路 2-17 重複を許す組合せ 2-18 パスカルの三角形 2-19 二項定理 2-20 多項定理 3 確率 3-1 同様に確からしいときの確率 3-2 積事象の利用 3-3 和事象の利用 3-4 確率の加法定理 3-5 和事象の確率 3-6 余事象と確率 3-7 独立な試行の確率 3-8 反復試行の確率 3-9 反復試行の確率の最大値 3-10 くじ引きの確率 3-11 独立でない試行と確率 3-12 期待値 3-13 期待値の利用 3-14 統計的確率 4 整数の性質 4-1 倍数と約数 4-2 素数 4-3 素因数分解 4-4 約数の個数 4-5 約数の総和 4-6 最小公倍数と最大公約数 4-7 互いに素 4-8 整数の範囲での倍数と約数 4-9 整数の除法 4-10 余りによる整数の分類 4-11 ユークリッドの互除法 4-12 最大公約数の性質 4-13 二元一次不定方程式の整数解 4-14 整数の性質の活用 十進法、n進法 4-15 整数の性質の活用 分数と小数
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 数学オリンピックを受ける人は年々増えており,現在約4,000人います。 本書は,予選突破すべくたくさんの問題を解いてコツをつかみたいという人のための対策問題集です。 予選の問題はパズル的な問題が多く,数をこなして考え方や解き方に慣れることが重要になってきます。 1990年から2014年までの過去問の中から絶対におさえておきたい100問を厳選し,さらに著者によるオリジナルの問題12問の合計112問で構成し,予選突破ができる力をつけることを目標にします。
-
-大学入試問題は、こんなに簡単だった! 例題を挙げながら、解法のエッセンスをわかりやすく解説。公式の活用法、出題者の意図を把握することで、効率よく勉強することが可能!まさに目からウロコの一冊! 1950年 大阪府堺市生まれ。 1972年 関西大学工学部電子工学科卒[森田・大東(超高周波研究室)] この時期に、森田・大東先生から数学(物理数学)の『面白さ』を教えてもらう。 1975年 大阪府立大学大学院工学研究科修士課程了[笠井・米田・田中・福永研究室(情報系)] この時期に、福永先生からファンデル・ヴェルデンの『現代代数学』のテキストで院生4、5名のためだけに講義をしていただく。また、このときグラフ理論の書物を読んで、研究に活かす。 専攻:グラフ理論、情報理論 現在:清風高等学校数学科教員 日本数学協会会員 初等数学の会会員 著書: 『数学解法への道』塩崎、鶴崎、川西、西尾 共著(プレアデス出版) 『グラフ理論序説改訂版』仁平、西尾 共著(プレアデス出版) 第1章 不定方程式と整数解 第2章 使えると得する3文字の対称式 第3章 解と係数の関係を3次方程式で考える 第4章 相加・相乗平均の用い方 第5章 コーシー・シュワルツの不等式 第6章 いろいろな角度の3角比を求める 第7章 正弦定理・余弦定理の復習をしよう 第8章 条件つき確率 第9章 数列の応用問題 第10章 数学的帰納法を使いこなす 第11章 微分法の応用問題 第12章 積分で解く重要問題 第13章 最大・最小問題を考える(1)〈相加・相乗平均の関係を用いる〉 第14章 最大・最小問題を考える(2)〈2次関数を用いる〉 第15章 最大・最小問題を考える(3)〈判別式を用いる〉 第16章 最大・最小問題を考える(4)〈グラフを用いる〉 第17章 最大・最小問題を考える(5)〈微分を用いる〉 第18章 幾何の定理を使いこなそう(1) 第19章 幾何の定理を使いこなそう(2) 第20章 ベクトルで表された領域 第21章 平面と直線の重要問題 第22章 空間図形の問題を解く
-
3.5※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※購入いただく際はご注意ください。こちらの電子書籍版には権利の都合上、234ページにあるエッシャーの図の掲載はございません。 ジェネラティブアートなどプログラミングで創る芸術作品が注目を集める昨今です。 本書では実際にジェネラティブアート作品を作成しながら,その発想の元となる,さまざまな数学の知識と視覚表現について学んでいきます。 本書を読めば,数学の知識を巧みに駆使した視覚表現の多様さに驚き,魅了されることでしょう。 数学の美術的側面をコンピューターを使って体感したい方,また,これまでアートに取り組んだことのないプログラマーの方にも,おすすめです。
-
-
-
4.0きみたちに数学のおもしろさを伝授しよう.興味深い数学の話題をよりすぐって贈る.かわった性質をもつ数“9”.たて,よこ,ななめ,加えるとみな同じ数になる魔法陣のつくり方.ふしぎなπの話.正五角形の作図.アキレスと亀の追いかけっこ.不可能とされる角の三等分.…どれもこれも,知っていると得することうけあい.※この電子書籍は「固定レイアウト型」で作成されており,タブレットなど大きなディスプレイを備えた端末で読むことに適しています.また,文字だけを拡大すること,文字列のハイライト,検索,辞書の参照,引用などの機能は使用できません.
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 数学ができる人はいったいどうやって問題を解いているのか,できる人の頭の中はどうなっているのか?と不思議に思ったことはありませんか?解法パターンをできるだけたくさん覚えているというわけではなさそうです。本書では,できる人が問題と向き合うとき,まず何に着目してどう攻め方を決めて解いていくのかを,算数と数学のさまざまな入試問題を使ってみていきます。60問のトレーニングが終わるころには,歯が立たないと思った問題との向き合い方も身についていることでしょう。
-
-
-
4.3※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 物理の歴史は「自然という書物は数学の言葉で書かれている」という名言の繰り返しで成されてきました。この本では物理と物理の発展の歴史を追いながら、代表的な4つの物理理論「運動の法則」「物理法則」「一般相対性理論」「量子力学」の絞り、その物理とそれに関わる数学を解説していきます。難解なためほとんど読まれないニュートンの「プリンキピア」の流れに沿って解説された第一部は他書にはない魅力です。
-
4.01から100までの整数を全部足せ――後の大数学者ガウスが九歳の時に一瞬で解いたというこの問題も、ちょっとしたコツ=近道で、同じ答えにすぐたどり着ける。長い歴史の中で数学が発見した思考の節約術を用いて、時間をもっと豊かに使おう。パンデミック時代の新しい人生の楽しみ方も教える、ユニークな科学エッセイ。
-
4.2※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 現代数学に大きな影響を与えたガロア理論とは? 「僕」と4人の少女が軽やかに解き明かす、魅惑の数学物語。エヴァリスト・ガロアに捧ぐ。 累計15万部を突破した「数学ガール」シリーズの第5弾です。 今回のテーマは、ガロア理論。 19世紀初頭、若き天才ガロアによって打ち立てられたガロア理論は、 現代数学のみならず現代科学のあらゆる分野に絶大な影響を与えています。 本書は、方程式の解の公式から、定規とコンパスの作図問題、それらを取りまく群と体の解説を経て、 ガロア理論への理解に向かいます。 これまでの本と同様、「僕」と4人の少女たちが大活躍します。 シリーズの読者はもちろん、数学に関心をもつすべての読者に最良の一冊です。
-
4.3※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 数学って不完全だったの?」20世紀の数学と哲学に大きな衝撃と影響を与えた「ゲーデルの不完全性定理」とは? 「僕」と3人の少女が、「不完全性定理」の真実に迫る、魅惑の数学物語。 本書『数学ガール/ゲーデルの不完全性定理』では、不完全性定理の意味を理解するため、集合と論理を基礎からていねいに学びます。 本書で取り扱う題材は、「正直者は誰?」「0.999…は1に等しいか」といったクイズ的なものから、「数学的帰納法」「ペアノの公理」 「イプシロン・デルタ論法」「公理と定理」「数学における証明とは何か」「無限」といった深いテーマまで、多岐にわたります。 前著同様、僕と、三人の数学ガール(天才少女ミルカさん、元気少女テトラちゃん、妹キャラのユーリ)が大活躍します。 前著の読者はいうまでもなく、「ゲーデルの不完全性定理」に関心をもつ読者や、数学愛好家など、 すべての数学ファンにとって、最良の一冊です。
-
4.1
-
4.0※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、わかりにくく誤解されがちな「確率」を扱った数学物語です。「僕」と三人の数学ガールが「確率」に関する問題を対話しながら考えていくようすが描かれます。確率の基本から始まって、条件付き確率、集合と確率の関係などを一つ一つ学びます。単なる計算だけではなく、病気の検査における偽陽性・偽陰性の問題や、確率が誕生するきっかけとなった歴史的問題まで扱います。 確率は、保健や医療といった身近な分野から、製品の故障や機械学習といった科学技術の分野まで幅広く登場します。中高生はもちろんのこと、大学生から社会人まで幅広く楽しめる本書で、生涯を通じて役に立つ確率の基礎を固めましょう! ※本書は『数学ガールの秘密ノート/やさしい統計』(2016年刊行)の姉妹編です。
-
4.0※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 中学生・高校生向けのやさしい数学を楽しい会話で学ぶ『数学ガールの秘密ノート』シリーズの16作目です。「僕」と三人の数学ガール(ミルカさん、テトラちゃん、ユーリ)が楽しい数学トークを繰り広げます。 本作のテーマは「数の構成」です。 本書では、何も存在しないところから始まって「数というもの」を少しずつ作っていく様子が物語形式で描かれます。私たちが当たり前だと思っている「数」を自分の手で「作る」ことができるというのは驚くべき発想です! 学校では、1,2,3...という「自然数」、ゼロや負の数を含めた「整数」、分数や小数で表記される「有理数」、ルート2や円周率などを含む「実数」、方程式を通して「複素数」へと学習は進みます。 本書は数学ガールらしく、いろいろな「数」の性質を暗記してすませるのではなく、対話を行いながら、何もないところから「数」というものを一歩一歩構成していきます。読者は物語を追いながら「数とはいったい何か」を考えることを通じて数学の世界に導かれていくことになります。 中学生・高校生をはじめとして、数学を楽しみたいと思っている大学生から社会人にもお勧めできる一冊です! ※カバー画像が異なる場合があります。
-
5.0※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「僕」と三人の数学ガールたちとの数学トークを通して中高生レベルの数学を楽しく学ぶシリーズの第10作目です。 本書のテーマは、「行列」です。 行列の知識は、数学を活用していくために必須です。たとえば、機械学習やディープラーニングを理解するとき、コンピュータを使って数式処理や数値計算を行うとき、ゲーム開発、画像処理、コンピュータグラフィクス、アートなどの多彩な分野を学ぶときなどに、行列の知識は欠かせません。 行列はまた、高校で学ぶ多くの分野を関連づけて学べる題材でもあります。複素数、ベクトル、三角関数、図形の面積に関わる幾何学、交換法則や結合法則といった代数学の法則などに行列は関わっています。 本書では、行列に関する用語や計算方法から始まり、行列の多彩な側面に触れながら行列の基礎知識を学んでいきます。高校の新課程では行列が消えてしまったため、大学に入れば必ず学ぶ線形代数の前準備としても本書は大きく役立つでしょう。
-
4.1※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「僕」と三人の少女が、中学・高校レベルの数学をやさしく解き明かす。新たな発見に出会う新シリーズ、第一弾。 新シリーズ『数学ガールの秘密ノート』の第一作です。 「僕」と三人の少女(ミルカさん、テトラちゃん、ユーリ)が、家と学校で、楽しい数学トークを繰り広げます。中学・高校レベルの数学が中心ですが、 やさしい数学の中にも思いがけない発見があります。各章の最後に掲載した「問題」を解くことで、読者は自分の理解を確認し、実力を高めることができます。 この『数学ガールの秘密ノート』シリーズで数学の基礎を固め、『数学ガール』シリーズにチャレンジしましょう。
-
3.5※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本作は「数列」がテーマです。オセロゲームを使って数列を実際に体験したり、グラフを使って数列を見る方法を学びながら、数列の不思議な性質が明らかになっていきます。高校生グループはシグマを使って和を求める方法を学び、中学生チームは階差数列を使って数列を調べる方法を学びます。 どの章も、親しみやすい数学の題材から始まって、思いがけないほど深い数学の魅力に触れる内容となっています。中高校生はもちろん、数学に関心のあるすべての社会人にとっても最良の一冊です。
-
3.5※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 第1章「三角形を重ね合わせる」では、三角形の合同について考えます。たくさんの具体例を通して「三角形の合同」について知り、合同では頂点同士、辺同士、角同士の対応を考えるのが大切であることを学びます。また、数学の図形問題で出てくるたくさんの文字の扱い方についても触れます。 第2章「三角形の合同条件」では、三角形の合同条件について考えます。合同条件の意味と注意すべきことをひとつひとつ確かめ、証明を書くための準備を整えます。 第3章「証明を読む」では、二等辺三角形の問題を考えます。定義を確かめて問題に向かうことや、証明で大切な「仮定と結論」を確かめることを学びます。さらに、証明問題が解けないときにどのように考えを進めたらいいのか、その手がかりの探り方を見つけます。 第4章「証明を書く」では、正三角形の問題を考えます。証明を書きながら、自分の考えを言葉にすることや、自分の考えを数式で表現することを体験します。さらに、三角形の分類を通して、さまざまな図形を取り扱う考え方を学びます。 第5章「理由を求める問いかけ」では、三角形と平行線の新たな問題を考えます。まったく新しいパターンの問題に直面したときに考えの糸口をどのように見出すかを学んだり、証明をするときに起こりがちな論点先取について注意を向けます。平行線の錯角と同位角についての問題を解きながら、高度な問題に取り組む楽しさを味わいます。
-
3.9※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 中学生・高校生向けのやさしい数学を題材にしたシリーズ第二弾。倍数の見分け方・素数の求め方・素数が持つ不思議な性質・数当てクイズのような親しみやすい題材を通して、数学の楽しさを伝えます。中学生・高校生はもちろん、社会人にも最適。 やさしさの中に新しい発見がある! 「数学ガールの秘密ノート」シリーズ第二弾、ついに刊行。 本書は、中学生・高校生向けのやさしい数学を題材にした「数学ガールの秘密ノート」シリーズの第二弾です。 今回のテーマは「整数論」。倍数の見分け方、素数の求め方、素数が持つ不思議な性質、数当てクイズのような親しみやすい題材を通して、数学の楽しさを伝えます。それに加えて、センター試験に初めて登場した「数学的帰納法」を詳しく解説します。 各章末にはその章の理解を確認する問題を掲載し、巻末にはさらに発展して考えたい読者のために研究問題も付けました。中学生・高校生はもちろん、数学を楽しみたいと思っている社会人にもお勧めできる一冊です。
-
4.1※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書のテーマは、高校生・大学生の必須科目となっている「積分」です。 高校で学ぶ積分は、微分と並んで現代の数学や科学の基礎となっている分野です。科学の世界で積分が使われるのはもちろんですが、私たちの日常生活でも「刻々と変化する量の合計を考える」というのは極めて基本的なアイディアでしょう。 微積分(微分と積分)といえば、三角関数に並んで数学の苦手意識を刺激するキーワードですが、その本質は決して難しくありません。本書では、速度と距離という日常的な例から始めて積分をじっくり学びます。 既刊『数学ガールの秘密ノート/微分を追いかけて』と合わせると、微積分の基礎を学ぶ最高の《微積分セット》となるでしょう。 ●各章の内容(あらすじ) 第1章「変化を見つめる掛け算」では、歩く速さという算数の問題を例にして、積分の基本となる「掛け算」について学びます。位置のグラフと速度のグラフを見比べながら、もっとも単純な積分の計算を体験します。 第2章「はさみうちで求めよう」では、積分の原理を理解するための「区分求積法」と「はさみうち」について学びます。 第3章「微分積分学の基本定理」では《積分は微分の逆演算》という表現の意味をていねいに調べます。 第4章「式の形を見抜く」では、具体的な積分の計算を行います。 第5章「円の面積を求めよう」では、私たちが小学校で学ぶ「円の面積」の公式がどのようにして作られているかを学びます。 本書で扱う内容は、やさしい題材から手応えのある題材までバリエーション豊かです。読者は、本書を通して積分の本質を深く理解するとともに、数学の面白さと可能性を知ることができるでしょう。
-
4.3※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 中学生・高校生レベルの数学を楽しい会話で学ぶシリーズ第七弾。 順列・組合せをはじめとする「場合の数」をテーマに、 「僕」と三人の数学ガール(ミルカさん、テトラちゃん、ユーリ)が数学トークを繰り広げます。 ---------------------- ●登場人物紹介 「僕」 高校二年生、語り手。 数学、特に数式が好き。 ユーリ 中学二年生、「僕」の従妹。 栗色のポニーテール。論理的な思考が好き。 テトラちゃん 高校一年生、いつも張り切っている《元気少女》。 ショートカットで、大きな目がチャームポイント。 ミルカさん 高校二年生、数学が得意な《饒舌才媛》。 長い黒髪にメタルフレームの眼鏡。 母 「僕」の母親。 瑞谷女史 「僕」の高校に勤務する司書の先生。 ----------------------
-
4.0※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 数学ガールの登場人物が、コンピュータを支えている数学的な原理について楽しみつつ学ぶ数学読み物です。抽象的な解説ではなく、具体的な実例を使って解説していますので、中学生から楽しんでいただける内容になっています。プログラミング教育の必要性が叫ばれる現代において、重要な一冊となるでしょう。 ●本書の構成 第1章「指折りビット」では、コンピュータ内部のデータ構造を支える「二進法」について学びます。位取り記数法、十進法と二進法の関係、二進法が作り出す0と1のパターンなどを観察しながら、私たちが日常で使っているものとは異なる数の表記法を発見的に楽しみます。 第2章「変幻ピクセル」では、コンピュータグラフィクスの基本である「ピクセル」について学びます。数が生み出すパターンによって画像を構成する原理を、小さなスキャナとプリンタによって具体的に体験します。また、コンピュータで用いられる「ビット演算」を画像処理と合わせてとらえます。ひとつひとつの手順をコンピュータに実行させるというプログラミングの基礎も学びます。 第3章「コンプリメントの技法」では、コンピュータで用いられる「ビット演算」と「2の補数表現」について学びます。ビット演算と数との関係を考え、計算について自由に発想を広げる経験をします。 第4章「フリップ・トリップ」では、フリップ・トリップという楽しいオリジナルゲームで遊びながら、繰り返しに隠れている数学的な構造を探求します。仲間同士で議論しながら、新しい問題に立ち向かうおもしろさを味わいましょう。 第5章「ブール代数」では、「順序構造」と「ブール代数」について学びます。たくさんのビットパターンをどのように整理するかを調べ、大学で学ぶ離散数学のイメージに触れて本書を終えます。
-
4.4※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 中高生レベルのやさしい数学を楽しい会話で学ぶ「数学ガールの秘密ノート」シリーズ第五弾。本書のテーマは、数学に悩む多くの人がつまずきがちな「微分」です。「変化をとらえる」という微分の考え方を、たくさんの実例を通してやさしく解説しています。 「僕」と三人の数学ガール(ユーリ、テトラちゃん、ミルカさん)のトークを通して、「中高生レベルの数学を楽しく学ぶ『数学ガールの秘密ノート』シリーズの第五作。本書のテーマは、多くの人が苦手意識をもつ微分。 中学生チーム(ユーリ)は、点の位置と速度のグラフを通じて、微分というものを直観的に考えます。位置と速度の関係、速度と加速度の関係を見比べながら、世の中の「変化する現象」を数学的にとらえる方法を身につけていきます。 高校生チーム(ミルカさんとテトラちゃん)は、ややこしい不等式を数直線で理解する方法、パスカルの三角形と微分との不思議な関係、それに数列の極限から指数関数の底に至るまでの議論を学びます。
-
4.0※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「ぼく」と三人の数学ガール(ユーリ、テトラちゃん、ミルカさん)のトークを通して、「中高生レベルの数学を楽しく学ぶ『数学ガールの秘密ノート』シリーズの最新作。本書のテーマは、多くの人が苦手意識をもつ複素数です。 抽象的で理解しにくい複素数の世界を、多数の図版を使ってやさしく解き明かしていきます。登場人物たちの楽しい対話を通して、読者は、複素数の性質を正しく深く理解することができるでしょう。 数学に関心を持ち始めた中学生、複素数に苦手意識を持っている高校生・大学生はもちろんのこと、より進んだ学びを求める方も楽しく読むことができる数学読み物です。
-
4.0
-
3.8※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ●本書の概要 第1章「無限のキャンバス」では、数学が苦手な女の子「ノナちゃん」が登場し、高校生の「僕」との対話が始まります。 第2章「直線の限りを尽くして」では、座標平面上に描かれた直線を題材にして「数学を理解すること」を学びます。 第3章「暗記と理解」では、数学を学ぶときの「暗記」について、「僕」と後輩のテトラちゃんが対話をします。勉強は覚えることなんだろうか、覚えないですむことはないんだろうか。絶対に覚えなくてはいけないことはなんだろうか。数学をめぐって多様な対話がなされます。 第4章「何がわからないか、わかりません」では、数学がわからなくて途方にくれたときの気持ちが話題になります。何もかもわからない。何がわからないかもわからない。そんなどうしようもない気持ちになったとき、どうやって数学を学んだらいいのでしょうか。そのためのちょっとしたヒントと発想法が語られます。 第5章「教える・学ぶ・考える」では、数学という科目に留まらず、考えるということの意味について語られます。考える上で大事なこと、学校で、あるいは学校を越えて生涯学んでいくために大切なことを探っていきます。
-
4.0※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 高校生チームは、サイン・コサインから始まって三角関数の加法定理と回転行列を、中学生チームは、サインカーブ、リサージュ図形、そして円周率を電卓で求める方法を学びます。三角形や円などの具体的な図形を通して、三角関数の不思議で興味深い性質が明らかになっていきます。本書全体を通して、三角関数の知識が増えることはもちろんのこと、数学への取り組み方や、仲間といっしょに問題に立ち向かう方法論についても体感することができるでしょう。中学生・高校生をはじめとして、数学を楽しみたいと思っている社会人にもお勧めできる一冊です。
-
4.3※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【シリーズ累計30万部突破!】 【2014年度日本数学会出版賞受賞!】 現代を生きるすべての人にとって必須の教養と言うべき「統計」をテーマに、 「僕」と三人の数学ガール(ミルカさん、テトラちゃん、ユーリ)が楽しい数学トークを繰り広げる、最高の統計入門書。 ▼本書の構成 あなたへ プロローグ 第1章 グラフのトリック 第2章 平らに均す平均 第3章 偏差値の驚き 第4章 コインを10回投げたとき 第5章 投げたコインの正体は エピローグ 解答 もっと考えたいあなたのために ---------------------- ●登場人物紹介 「僕」 高校二年生、語り手。 数学、特に数式が好き。 ユーリ 中学二年生、「僕」の従妹。 栗色のポニーテール。論理的な思考が好き。 テトラちゃん 高校一年生、いつも張り切っている《元気少女》。 ショートカットで、大きな目がチャームポイント。 ミルカさん 高校二年生、数学が得意な《饒舌才媛》。 長い黒髪にメタルフレームの眼鏡。 母 「僕」の母親。 瑞谷女史 「僕」の高校に勤務する司書の先生。 ----------------------
-
5.0※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「物理ノート」シリーズ第2弾! 今回のテーマは「波」です。 本作は数学ガールシリーズの登場人物が、中学・高校で学ぶ物理学に挑戦する「数学ガールの物理ノート」シリーズの第2弾です。 「数学ガールの物理ノート」シリーズは、「数学ガールの秘密ノート」シリーズと同様に、どの巻からでも読めるように書かれています。高校生の「僕」と三人の数学ガールたちのトークを通して、中高生レベルの物理学を楽しく、しっかりと学ぶことができます。 本書のテーマは、高校の物理で学ぶ「波(波動)」です。 水の表面に見られる波、空気の振動が伝わる音波、地震の振動が伝わる地震波など、「波」は私たちの生活に当たり前のように存在します。でも学習者にとって、その身近なはずの「波」をきちんと理解することは意外に難しいものです。特に、波を適切に表現するためには三角関数の知識が欠かせません。cosやsinに慣れ親しんでいないと、何をやっているのかまったくわからなくなるのです。 本書では、登場人物たちの対話を通して、波に関する知識を一つ一つていねいに学んでいきます。単に知識を暗記するだけではなく「なるほど、そういうことか」と納得しながら理解を深めていきます。 本書を通して、物理学で苦手とする人が多い「波」をつかんでいきましょう。中学・高校生はもちろんのこと、物理学を学び直したいという大学生から社会人までぴったりの一冊です。 ※カバー画像が異なる場合があります。
-
4.5※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本作は数学ガールシリーズの登場人物が、中学・高校で学ぶ物理学に挑戦する物語です。 高校生の「僕」と三人の数学ガールたちのトークを通して、中高生レベルの物理学を楽しく学ぶことができます。本書のテーマは、高校の物理で最初に学ぶ「ニュートン力学」です。 ボールを投げたりバネを引いたりする物理学は、具体的でわかりやすそうです。しかし「力」や「エネルギー」のような目に見えないものを扱うため、わかりそうでわからないもどかしさを多くの学習者が感じます。また、物理学で登場する数式も、学習者の理解を妨げがちです。数式を使う理由や、数式で表していることをよく理解しないと「いったい何をしているんだろう」というもやもやが残ってしまいます。 本書では、登場人物たちの会話を通して、物理でひっかかる部分を丹念に解きほぐしていきます。また「どうしてそんなふうに考えるのか」や「どうしてその式が成り立つのか」という素朴な疑問にもきちんと答えていきます。 本書を通して、物理学の第一歩となるニュートン力学を、楽しみつつしっかりと理解していきましょう。中学・高校生はもちろんのこと、改めて物理学を基礎から学び直したい大学生や社会人までぴったりの一冊です。 ●新シリーズ「数学ガールの物理ノート」について 「数学ガールの物理ノート」は、中学~高校向けの物理学を対話形式で楽しく学ぶ新しいシリーズです。今回の「ニュートン力学」に引き続き、電磁気・波動・熱など、中学・高校で学ぶ物理学の内容を含む巻を予定しています。
-
4.3※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「僕」たちが追い求めた、整数の《ほんとうの姿》とは? 長い黒髪の天才少女ミルカさん、元気少女テトラちゃん、「僕」が今回も大活躍。新たに女子中学生ユーリが登場し、数学と青春の物語が膨らみます。彼らの淡い恋の行方は? オイラー生誕300年記念として2007年6月に刊行された、数学読み物『数学ガール』の続編です。今回のメインテーマは、「フェルマーの最終定理」。《この証明を書くには、この余白は狭すぎる》という思わせぶりなフェルマーのメモが、数学者たちに最大の謎を投げかけたのは17世紀のこと。誰にでも理解できるのに、350年以上ものあいだ、誰にも解けなかった、この数学史上最大の問題が「フェルマーの最終定理」です。20世紀の最後にワイルズが成し遂げたその証明では、現代までのすべての数学の成果が投入されなければなりませんでした。 本書『数学ガール/フェルマーの最終定理』では、ワイルズが行った証明の意義を理解するため、初等整数論から楕円曲線までの広範囲な題材を軽やかなステップで駆け抜けます。 本書で取り扱う題材は、「ピタゴラスの定理」「素因数分解」「最大公約数」「最小公倍数」「互いに素」といった基本的なものから、「背理法」「公理と定理」「複素平面」「剰余」「群・環・体」「楕円曲線」まで、多岐にわたります。 重層的に入り組んだ物語構造は、どんな理解度の読者でも退屈することはありません。
-
4.0※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 《ポアンカレ予想》は、20世紀の初頭にフランスの数学者アンリ・ポアンカレが提示した位相幾何学の問題であり、2000年にクレイ数学研究所が発表した7つの数学の難問(賞金100万ドルのミレニアム問題)の一つです。百年間、誰も証明できなかったこの問題が、21世紀の初めにロシアのグリーシャ・ペレルマンによって証明されました。 本書は、ポアンカレ予想をテーマに、トポロジー(位相幾何学)、基本群、非ユークリッド幾何学、微分方程式、多様体、フーリエ展開などの数学的題材を解き明かしていきます。大学受験を迎えた「僕」の苦悩と数学ガールたちとの交流も軽やかに描かれます。 『数学ガール/ガロア理論』の刊行から6年。「数学ガール」ファンはもちろん、すべての数学愛好家に捧げる一冊です。
-
4.2※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 確率とコンピュータの深くて不思議な関係とは? 「僕」と四人の少女が、乱択アルゴリズムの世界に挑む魅惑の数学物語。 累計10万部を突破し、数学書としては異例のベストセラーとなった「数学ガール」シリーズの第四弾です。 今回のテーマは、乱択アルゴリズムです。私たちは、乱数や確率を用いることで、未来への確定的な予測を行ったり、 複雑な解析をシンプルにすることができます。 本書では、こうしたランダムの力が生み出す世界を、純粋数学的な側面とプログラム的な側面の両方から解説し、 乱択アルゴリズムの理解を目指します。 コンピュータの得意な新入生リサが登場し、彼らの淡い恋に新たな進展も見られます。 シリーズの読者はもちろん、数学に関心のある読者に最良の一冊です。
-
4.3※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 高校三年生の冬、「僕」たちの青春は、リーマン予想とともにクライマックスへ――。「僕」と、ミルカさん、テトラちゃん、ユーリ、リサ。五人の仲間を中心に、数学と青春の物語が展開していきます。素数に隠された秘密、それぞれが進んでいく未来、そして「僕」の淡い恋の行方は? 本書は大人気シリーズ『数学ガール』の第7弾にして、最終巻にあたります。本書で「僕」たちが挑む「リーマン予想」は、1859年にドイツの数学者ベルンハルト・リーマンが提示した「ゼータ関数の非自明な零点はすべて実部が1/2である」という予想で、160年以上たった現在も証明されていない、現代数学において最も有名な未解決問題です。 本書『数学ガール/リーマン予想』では、ゼータ関数をめぐる知的な冒険の旅へと、あなたをいざないます。オイラーが見出したゼータ関数が、リーマンによって複素関数へと拡張されて広がった数学の風景は、私たちを魅了し続けています。リーマンが1859年の論文で提示した驚くべき予想を読み解くために、数学ガールたちは素数、複素関数、リーマン面、ガンマ関数、複素積分、解析的整数論といった概念に向き合いながら、学びを進めていきます。そして、最終章ではリーマン予想が書かれた論文に全員で挑みます! ぜひ、数学ガールたちと「僕」が紡いできた物語の結末を見届けてください。シリーズを愛してくれた読者に、そして「数学って面白い」と感じているすべての人に捧げたい挑戦と発見に満ちた一冊です。 ※登場人物や数学的概念などは本作内でていねいに説明していますので、前提知識なしで読み始めることができます。 ※カバー画像が異なる場合があります。
-
3.8数学基礎論──それは20世紀とともに始まった、新しい数学の分野である。その黎明期には、カントルやラッセルによって相次いで見出された集合論のパラドックス、そして、ゲーデルの不完全性定理など、数学の根幹を揺るがす発見が続いた。しかし数学基礎論は、決して数学の息の根を止めてしまったのではない。「ミレニアム懸賞問題」として知られるP=NP問題(P≠NP予想)やファジー論理、さらには人工知能との関わりなど、数学の最先端を切り開く分野でもあるのだ。日本を代表する数学基礎論の大家がその歴史、および現代的なトピックについて平易に解説した入門書。
-
-
-
-さっと読めるミニ書籍です(文章量15,000文字以上 20,000文字未満(20分で読めるシリーズ)=紙の書籍の30ページ程度) 【書籍説明】 算数・数学が苦手。数式を見ただけで「うわっ」となる……。 こんな人、多くいますね。かくいう私もそうでした。 小中学生のうちは得意なつもりでしたが、高校数学になって急にむずかしく感じるようになりました。たえまない計算、次々とあらわれる不思議な考え方。これがずっと続くのかと思うとイヤになり、高校2年でまようことなく文系を選択しました。 ところが大学を卒業して教育関係の仕事につくと、数学を担当することになりました。生徒たちとともに悪戦苦闘すること数年、急に視界がひらけた感覚を味わいました。 ああ、数学って、こういう仕組みでできているんだ。こうすれば数学ができるようになるんだ……。この理解をもとに生徒を指導すると、どの子もおどろくほど算数・数学が得意になっていきました。 この本では、そうして得た「算数・数学を得意にするコツ」を、あますところなく紹介します。 算数・数学は苦手とする子がいちばん多い教科です。 それにはちゃんとした理由があります。その理由を理解して、とりのぞいていけば、どんな子でも算数・数学を得意にすることができます。 幼児から、小学生、中学生、高校生まで、わが子が算数・数学に悩むすべての保護者さんに読んでいただき、このコツを実践してほしいと願います。 【目次】 第1章 なぜ数学が苦手になるのか? 第2章 高い計算力と論理的思考力は学校だけでは身につかない 第3章 高い計算力と論理的思考力を養うはたらきかけ 第4章 もし算数・数学につまずいてしまったら 第5章 中学以降は予習中心の家庭学習を
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「でない」、「かつ」、「または」それに、これらから派生する「ならば」などは、特別な知識ではなく、ごく普通の人がごく普通に思考するうえで、極めて大事な言葉です。日常会話レベルでは、その意味の解釈が個人によって多少曖昧でもトラブルは発生しないかもしれません。また、曖昧性のために日常会話がかえって円滑に進むこともあります。しかし、様々な人が混在している複雑な社会では、「でない」「かつ」「または」「ならば」などの基本用語について最低限の共通認識は必要です。基本をしっかり押さえていればこそ、安心して曖昧さを受け入れることができます。本書では、表とベン図を使って、読者が論理学と集合の基礎知識を身につけられるように解説していきます。
-
-※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は中学、高校の数学教師、および将来その職につくことを目的に勉強をしている人を対象としています。特徴は、各項「背景」「課題」「解説」「演習」の4つからなり、ときにそれに「余談」が加わり、よりその項の理解を深めます。数学教育での問題解決は、数学教育を活性化する重要な手法で、教師にもありきたりでない問題解決の経験を持つことが強く求められます。本書は教職にある人、それを志す人に理解してほしい問題解決の諸側面を経験してもらうことをねらいとした、教師にある人や、それを志す人のための問題集です。 本書は、『教職数学シリーズ 実践編10 教師のための問題集』として1990年初版発行後、以来、長年にわたり読者の方々にご愛読いただいてまいりました。このたび、多くの読者からのご要望を受け、新たに『数学教師のための問題集』と改題し単行本として再発行することといたしました。
-
3.9
-
4.0ヨビノリ たくみ 氏 絶賛! 「解答を見て何度も鳥肌がたちました。SNSには野生の天才が多すぎる…!」 Twitterフォロワー9万人超(2021年7月時点)の「数学を愛する会」から、誰でも「数学が面白い!」と思える「数学読み物」が登場! 【数学大喜利とは?】 大喜利とは、出題された「お題」に対して、さまざまな面白い「答え」を考える、お笑いの演目のひとつです。 「数学を愛する会」は、「数学好き」に、SNSで「お題」を出します。そうすると、数学を使った面白い解答がどんどん出てきて、「大喜利状態」になります。 「数学の問題には答えが1つしかない」という“常識”をくつがえす、「無数に解答がある数学の面白さ」を伝える“名問”を集めました! 個性豊かな数学の世界をお楽しみください! 【お題例】 ケーキを三等分せよ 普通なら「120度ずつ分ける」となるでしょう。しかし、本書では次のような答えを紹介します。 【解答例】 六芒星で切る 十二芒星で切る 移動させて切る 四等分線を意識して切る カージオイドで切る 同心円で切る ピザの定理を使う 無限に四等分する 【本書の内容】 問1 ケーキを三等分せよ 問2 時計の文字盤をデザインせよ 問3 地球の直径を求めよ 問4 規則性に反するものを見つけよ 問5 ハートのグラフを描け 問6 答えが1になる問題を考えよ 問7 角を三等分せよ 問8 大定理でくだらないことを証明せよ 問9 円周率を求めよ 問10 起こる確率が無理数である事象を考えよ 問11 ほとんど整数の数をいえ 問12 「病的な数学」の例をあげよ 問13 1=2を示せ 問14 不思議な図形の例をあげよ 問15 満室の無限ホテルの部屋を空けよ 問16 とにかく大きい数をあげよ
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、初版1998年から続く安心のロングセラーです。 三訂版までの刷り部数はシリーズ累計34万部になりました。 本書の問題は、数学IIIと数学Cの基礎的な問題246題(コア・エクササイズ)、それにプラスアルファの特別問題10題(スペシャル・エクササイズ)の合計256題です。 コア・エクササイズの246題をしっかり固めれば、試験の小問集合の対策ができます。つまり、短期間に基礎固めができる本になっています。 【著者の木部先生から一言】数学は、得点しにくい教科であると思われるかもしれませんが、 本当は簡単にしかも確実に得点できる教科なのです。なぜなら、試験に出題される内容は決まっているからです。 この本は、試験に最も出やすい内容を精選して配列してあります。皆さんを高校数学の最速コースにご案内しましょう。
-
3.7「週末のバーベキューが雨で台なしになる確率は?」「買い物のレジ待ちで早く進む列を見分けるには?」「パーティーを抜けるベストなタイミングは?」――こうした身近な問いをもとに、数式をほとんど使わずに、数学者や統計学者の考え方の勘どころを伝授する実用的数学入門。「構造」「ランダムさ」「情報」の3つのパートごとに解説する。著者は、コロナ危機時に正確な情報発信で話題となった英ブリストル大学数学科の情報理論教授。「3つのパートで採り上げる数学のツールキットを身につければ、世界の変化の根底にある構造的原理を理解し、その伝えられ方を支配するランダムさと不確かさを認識し、正しい情報と嘘の情報を区別できるようになるだろう。(略)10年後にどんなニュースが世間を席巻しているかを予測するのはほぼ不可能だが、このツールキットを身につければ、どんなニュースが来てもそれを合理的な形で分析して、シグナルとノイズを峻別する力を高めることができる」(「はじめに」より)
-
4.0数学に強くなる秘訣! それは……。数学に強くなる方法! それはどんなに小さなことでも、わからないことはどんどん質問することです。わからないことをためておくと、いつのまにか、塵もつもれば山となる。結局、わからない、むずかしい、ということになってしまいます。わからないことを聞くことは恥ずかしいことではありません。さあ、あなたもどんどん質問をして、数学に強くなってください。※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
-円周率、√2、微分・積分、時間、無限……人類はこうして「問題」を解いてきた! 大家による究極の歴史ガイド。 数学がイデアの世界の産物だった古代ギリシアから、現実世界に埋め込まれたルネサンスを経、「時間」を取り込んだニュートンとライプニッツの微積分、そして「無限」を導入し両者の統合を果たした解析学へ――。数学が2000年以上にわたって切り拓いてきた歴史の道程を、「問題」と格闘する精神の軌跡として簡潔明瞭に描く、啓蒙の大家による入門書の決定版!(解説:上野健爾) [目次] はじめに 序章 聞いてみたいこと 第1章 深い森へ 1 円周率 2 ピタゴラスの定理 3 平行線の公理 4 ツェノンの逆理 第2章 近世に向けての旅立ち――文明の流れのなかで 1 中世から近世へ 2 火薬と大砲――運動に向けての視線 3 コンパス 4 活版印刷 5 時計 第3章 ヨーロッパ数学の出発 1 デカルトの“方法” 2 ニュートンの『プリンキピア』 3 微分・積分の創造――ニュートンの流率 4 ライプニッツの無限小量 第4章 数学の展開 1 開かれた社会へ 2 バーゼル問題の解と『無限解析』 3 オイラー――無限のなかの算術 4 無限小量への批判 第5章 関数概念の登場 1 変化するもの 2 関数、グラフ、極限 3 微分――関数への作用 4 積分――関数のひろがり 5 微分と積分――数学の2つの方向 第6章 解析学の展開 1 テイラー展開と因果律 2 複素数 3 正則性 4 波立つ変化 おわりに 数学の歩みをふり返って (解説 数学の世界の爽やかな拡がり 上野健爾)
-
5.0ニュートンやライプニッツによって創造された微分積分学。それは近代西欧数学の象徴であり、今日の科学技術社会の基礎である。その学問はいったいどのような思想的・社会的前提の下に成立したのか? 古代ギリシャの公理論・解析的発見法、アルキメデスの無限小幾何学、アラビアのアルジャブル、ヴィエトとデカルトの記号代数学、無限小代数解析の形成をたどり、さらに近代西欧社会と東アジアにおけるその受容までの悠久の歴史を包括的に論じ数学的知識の本質に迫る。東京大学大学院数理科学研究科の講義のハイライトを、一般読者向けに簡明にまとめ直して成った、数学史の重厚さを垣間見せる力作。
-
5.0
-
4.0古代エジプト、メソポタミアに数学はあったのでしょうか。数学者はいたのでしょうか。そこから話は始まります。アラビア、インド、ヨーロッパ、そして中国、日本での数学はどうでしょうか。それぞれの時代、それぞれの地域で数学がどのようにとらえられ、数学者がどんな活躍をし、数学自体がどのように発展してきたのか、一冊を通して数学の歴史を俯瞰します。数学者の足跡を訪ねた著者の旅のコラムも充実です。古代エジプト、メソポタミアに始まりアラビア、インド、ヨーロッパ、そして中国、日本まで、それぞれの時代にそれぞれの数学者たちがどんなことを考えて、どのように数学が発展してきたのかを名門高校の数学の先生が語る。それぞれの時代、地域で数学がどのようにとらえられ、数学者がどんな活躍をし、数学自体がどのように発展してきたのかを一冊で語る。
-
4.0数学者として将来活躍する少年少女を見抜くことはできるか.答えが一つの数学の試験採点は容易か.どのようなコースをたどって数学者になるのか.数学者のピークはいつごろで,どのくらいの年齢までアクティブに研究できるのか.世間のイメージとも他分野の理系研究者の感覚とも異なる数学者の実像と思考法がうかがえるエッセイ.
-
4.0峻厳な山のように私たちを寄せつけようとしない現代の数学。数学とは一体どんな学問なのだろうか。数学者とはどんな人たちなのだろうか。研究の最前線にいる幾何学者が、日々の研究や教育、フィールズ賞をめぐる思惑、現代数学の動向などについて軽妙に語りながら、私たちには伺い知ることのない数学者の世界をいきいきと画き出す。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 死刑は本当に合憲?憲法改正はどこまで可能?護憲/改憲の議論以前に、そもそも日本国憲法はきちんと読まれているのだろうか?長らく平和運動の先頭に立ち、広島市長や平和市長会議会長を務めた著者が、理性を重視する一数学者の視点から、憲法条文のテキストそのものを文字通りに解釈する試み。「数学書として憲法を読む」と、公務員や国民の義務、象徴天皇の本当の姿が見えてくる。
-
3.8
-
4.0
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 数学における「正しさ」とは何だろうか。公式や証明は絶対的に正しいもので、揺るぎない「神の知」だと思っている人も少なくないだろう。しかし数学を創ったのが人間である以上、究極的には仮説的で暫定的であることを免れない。ならば「正しさ」「美しさ」は、数学という営みにおいてどんな意味を持つのか。数学の「真の正しさ」「美しさ」に正面から対峙した稀有の書に、「数学とは何なのか」を論じる「後奏曲」を加筆した増補決定版!
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 苦手だった数学の「楽しさ」に行きつける本! 「算数は得意だったけど、数学になってからわからなくなった」 「最初は何とかなっていたけれど、途中から数学が理解できなくなって、文系に進んだ」 このような話は、よく耳にします。これは、数学は算数の延長線上にはなく、「なぜそうなるのか」を理解する必要がある、ということに気付けなかったためなのです。数学は、一度理解してしまえばスイスイ進み、とても楽しい学問なのですが、途中でつまずいてしまったために苦手意識を持ち、「楽しさ」まで行きつけなかった人が多くいます。本書は、そのような人達のために高校数学まで立ち返り、図鑑並みにイラスト・図解を用いることで数学に対する敷居を徹底的に下げ、飽きずに最後まで学習できるよう解説しています。 第1章 集合と論理(数I) 1.1 集合の基礎 1.2 必要条件と十分条件 1.3 対 偶 1.4 背理法 第2章 場合の数と確率(数A) 2.1 場合の数 2.2 確率の基礎 2.3 和事象の確率と確率の加法定理 2.4 反復試行の確率 2.5 条件付き確率 第3章 関数(数I、数II) 3.1 関数の基礎 3.2 2次関数 3.3 三角関数 3.4 指数関数 3.5 対数関数 第4章 微分・積分(数II、数III) 4.1 極 限 4.2 微分法 4.3 いろいろな関数の微分 4.4 積分法 4.5 積分法の応用 第5章 数列(数B) 5.1 等差数列とその和 5.2 等比数列とその和 5.3 Σ記号 5.4 漸化式 5.5 数学的帰納法 第6章 ベクトル(数B)&行列(旧数C) 6.1 ベクトルの基礎 6.2 ベクトルの加法と減法 6.3 ベクトルの内積と外積 6.4 位置ベクトル 6.5 ベクトル方程式 6.6 行列の基礎と演算 6.7 行列と方程式 6.8 1次変換 補章 複素数平面(数III) 補.1 複素数平面の基礎 補.2 複素数の極形式 問題に挑戦!
-
3.51、2、3、…という数が実在するわけではない。私たちはある具象物に対して、1、2、3、…というラベルを付けることで、全体の量や相互の関係を類推することができるのです。さらに具象物を構成する点や線を数値化することで未知なるものの形や性質を議論できます。そこにリアリティが出現する。これが数学であることを語ります。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 行列ができる人気講師の特別講義!この1冊で単位を取れる…ベクトル! 本書は大学・専門学校で学ぶ共通基礎科目線形代数の独習書として、つまずきやすいポイントを実際の講義を聴いているような語りかけ口調により、ていねいに解説しています。また、例題・練習問題の解説はきちんと理解できるように途中式を省略せず、解答までの道筋をていねいに示しました。 講義の復習や定期試験対策にピッタリの1冊です。 【目次】 1章 ベクトルI 1-1 多次元量 1-2 幾何ベクトル 1-3 有向線分 1-4 ベクトルの基本的演算 1-5 1次独立(線形独立) 1-6 表現の一意性 1-7 位置ベクトル 1-8 共線条件・分点公式 2章 ベクトルII 2-1 座標系 2-2 座標と成分・正射影ベクトル 2-3 基本ベクトル 2-4 ベクトルのノルム 2-5 スカラー積(内積) 2-6 スカラー積(内積)の幾何的定義 2-7 法線ベクトル 2-8 ベクトル積(外積) 3章 空間図形の方程式 3-1 直線 3-2 点と平面の距離 3-3 平面と平面の交角 4章 行列I 4-4 多次元量の多重化 4-2 行列 4-3 転置行列 4-4 正方行列 4-5 行列の加法・減法・実数倍 5章 行列II 5-1 係数行列 5-2 逆行列 5-3 正則行列 5-4 基本変形 6章 行列III 6-1 行列の階数 7章 行列式I 7-1 行列式 7-2 基底ベクトル 7-3 クラメールの公式 7-4 サラス展開 8章 行列式II 8-1 スカラー3 重積 8-2 小行列式・余因子 8-3 余因子展開 8-4 余因子行列 8-5 余因子行列・逆行列 8-6 n次の行列式 9章 線形変換I 9-1 線形変換 9-2 対応と表現行列 9-3 回転移動 9-4 対称移動 10章 線形変換II 10-1 合成変換 10-2 逆変換 10-3 固有値・固有ベクトル 10-4 固有方程式 10-5 対角化 11章 行列IV 11-1 対角行列のべき乗 11-2 正方行列のべき乗 11-3 多項式を成分とする行列 11-4 ケーリー・ハミルトンの定理 11-5 固有値の重複度 11-6 三角化 12章 線形空間 12-1 線形空間 12-2 線形部分空間 12-3 線形写像 12-4 核 13章 線形独立 13-1 線形独立 13-2 次元 13-3 基底 14章 内積空間 14-1 内積空間 14-2 正規直交基底 14-3 グラム・シュミットの正規直交化法 補章 練習問題の解答 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ε-δ論法のことは嫌いでも微分積分は嫌いにならないでくださいっ! 本書は大学・専門学校で学ぶ共通基礎科目微分・積分学の独習書として、つまずきやすいポイントを実際の講義を聴いているような語りかけ口調により、ていねいに解説しています。また、例題・練習問題の解説はきちんと理解できるように途中式を省略せず、解答までの道筋をていねいに示しました。 講義の復習や定期試験対策にピッタリの1冊です。 【目次】 1章 ベクトルI 1-1 多次元量 1-2 幾何ベクトル 1-3 有向線分 1-4 ベクトルの基本的演算 1-5 1次独立(線形独立) 1-6 表現の一意性 1-7 位置ベクトル 1-8 共線条件・分点公式 2章 ベクトルII 2-1 座標系 2-2 座標と成分・正射影ベクトル 2-3 基本ベクトル 2-4 ベクトルのノルム 2-5 スカラー積(内積) 2-6 スカラー積(内積)の幾何的定義 2-7 法線ベクトル 2-8 ベクトル積(外積) 3章 空間図形の方程式 3-1 直線 3-2 点と平面の距離 3-3 平面と平面の交角 4章 行列I 4-4 多次元量の多重化 4-2 行列 4-3 転置行列 4-4 正方行列 4-5 行列の加法・減法・実数倍 5章 行列II 5-1 係数行列 5-2 逆行列 5-3 正則行列 5-4 基本変形 6章 行列III 6-1 行列の階数 7章 行列式I 7-1 行列式 7-2 基底ベクトル 7-3 クラメールの公式 7-4 サラス展開 8章 行列式II 8-1 スカラー3 重積 8-2 小行列式・余因子 8-3 余因子展開 8-4 余因子行列 8-5 余因子行列・逆行列 8-6 n次の行列式 9章 線形変換I 9-1 線形変換 9-2 対応と表現行列 9-3 回転移動 9-4 対称移動 10章 線形変換II 10-1 合成変換 10-2 逆変換 10-3 固有値・固有ベクトル 10-4 固有方程式 10-5 対角化 11章 行列IV 11-1 対角行列のべき乗 11-2 正方行列のべき乗 11-3 多項式を成分とする行列 11-4 ケーリー・ハミルトンの定理 11-5 固有値の重複度 11-6 三角化 12章 線形空間 12-1 線形空間 12-2 線形部分空間 12-3 線形写像 12-4 核 13章 線形独立 13-1 線形独立 12-2 次元 12-3 基底 14章 内積空間 14-1 内積空間 14-2 正規直交基底 14-3 グラム・シュミットの正規直交化法 補章 練習問題の解答 索引
-
-さっと読めるミニ書籍です(文章量10,000文字以上 11,000文字未満(10分で読めるシリーズ)) 【書籍説明】 「ねー、数学ってほんとにいるの??」こう聞かれた子育て経験のある方、こう思った人は多いのではないでしょうか。 そんな時、「数学は社会人になって役に立つんだよ。」とか「数学は入試で使うよ。」とか答えていないでしょうか。 なんなら、「数学は全く役に立たない」という人もいますよね。 もしくは、「数学はロボットを作るのに役立ったり、大学に行ったらたくさん使うことになるんだよ。」この回答はより正確ではあります。 ですが、それは本当に正しいのでしょうか?私は、第一章等で述べる理由などに基づき、それらは違うと思うのです。 では、数学に求められていること、すなわち数学の目的とはズバリ何なのか、私がずばり考える数学の主たる目的は「論理性を鍛えること」なのですが、これからその説明をしてみましょう。 この本では数学の意義について考察します。 語彙やそもそも数学の勉強経験等あるとより伝わりやすいと思いますが、興味を持った人々のなるべく多くに伝わる様に努力していきます。 最初の方は数学の意義とは関係ないように見える内容が続きますが、章のタイトルを確認いただけるとわかるように、帰着するのでお待ちいただけるとありがたいです。(笑) 普通の本は、結論が最初に出てきてその後に筆者の説明が入るという形式が一般的ですが。 この本では、「自分で正しい解を導く」ことを目標としています。 理由は、勿論その方がこの本に対する理解が深まると考えているからですが。 現実、答えというのは天から降ってくることはなく、自分で発見しなければいけません。 なので、この本では、「あえて結論がわからない」という状態を意図的に用いようと思います。(全ては出来ませんが) 是非読者の皆様も、私みたいな人の考えにそのまま納得するのではなく、「ほんとにそうなのか?」という視点を持った上でこの本を読んでみてください。 それ故、読むのに少々時間がかかるかもしれませんが、ご了承ください。
-
-※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 大学の非理工系を対象にした、1、2年向け教科書を目的に編まれたものである。主題としては、線形代数の大要とその解析幾何への応用、微分積分学の思想とその応用としての微分方程式である。高等学校との重複をできるだけ避けた内容とした。 姉妹書に、命題や集合、確率、ゲームの理論などを題材にした『教養の数学』がある。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、東京大学→JAXA→「数学に強い塾」として全国3校掲載の1つに選ばれた人気数学塾塾長による、一生役立つ思考力がマスターできる本です。灘、開成、東大、京大…絶対に飽きさせない「傑出した名問」を収録。1問解くごとに「問題点の検証・定量化」と「数を使って説明する力」が、自然とぐんぐんついてしまう。解いていくほど、数学学習の醍醐味と、問題解決の達成感を味わえる!読むだけで、数学センスが変わる!
-
-※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 算数から数学へと進むにつれ、なぜか高まっていく苦手意識。そこで本書では、苦手意識を取り払い、楽しみながら数学を解く力「数学的センス」を身につける方法を解説します。本書を読めば、算数も数学も同じくらい好きになることまちがいなし!
-
5.0
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 画像関連技術の確立に数学・統計学が果たしてきた役割と技術を紹介する。 Part1では、応用事例を理解するために最低限必要な数学(直交関数展開、フーリエ解析、線形代数)や統計学について準備する。 Part2では、画像データの記憶装置のデータマネージメント技術、信号再生技術に加え、電子透かし技術、画像復元などの画像表現・処理、そして医療分野における画像形成技術を、数学を応用する視点で解説。
-
-※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 脳の直観力、処理力、暗記力、集中力は18歳ごろをピークに落ちていくといわれますが、さまざまな算数・数学の問題を解くことで、その落ちるスピードを遅らせたり、むしろ向上したりすることが知られています。そこで本書では、クイズのような問題を解きながら、脳力を鍛えましょう! ジャンルは「角度」「面積&長さ」「展開図」「体積」「数列」「虫食い算と魔方陣」「統計クイズ」の7分野。自分の好きな分野の問題から挑戦してみましょう。
-
-※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 数学は、生命世界の神秘を解明する上でどのような役割を果たしてきたか。 イアン・スチュアートが最新の研究成果を通して明らかにする、21世紀数学のフロンティア。数学を使った生物学の革命は始まっている!! 数学の生物学への応用。それは、現在、もっとも活発な科学分野の一つであり、きわめて短期間で大きな成果を上げてきまし た。 本書は、数学が、生命の神秘を理解する上で、どのように使われ、どのような貢献を果たしてきたかを 最新の研究成果を通して明らかにしています。 そして、生命科学こそ、21世紀数学の可能性を切り開く推進力となることを示します。 イアン・スチュアートの明快でユーモラスな文章が、スリリングで驚異に満ちた生命科学の世界へ読者を誘います。 数学と生物学に関心をもつすべての読者に最良の一冊です。 ※カバー画像が異なる場合があります。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 アートで数学がより身近になる,数学デッサン教室へようこそ。 見るだけで楽しい数学の“かたち”が,自分で描けるようになったらもっと楽しい! 数学デッサンとは,文字通り“数学”をモチーフに“デッサンを描く”こと ―― デッサンを描くことを通して,かたちをじっくり観察することにより,数学で扱うかたちの不思議さや,絵を描くことのおもしろさを体験していただきたいと思っています。(本文より)
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【作品を見て、文章を読んで、心ゆくまで“数学デッサン”を鑑賞!】 数学で扱うかたちをモチーフにデッサンを描く“数学デッサン”を、手にとって鑑賞しやすい1冊にまとめました。それぞれの作品には著者のエッセイが添えられ、作品を見て、文章を読んで、心ゆくまで数学デッサンが鑑賞できます。数学とアートが重なるとどういう感じになるのだろうと興味を持たれた方や、前著『数学デッサン教室』を読んでもっと作品を見てみたいと思われた方などに、広くおすすめです。 ■こんな方におすすめ ・数学とアートの重なり合いに興味のある方 ■目次 ■第1部 多面体 正多面体 半正多面体 星形多面体 5つの正四面体による複合多面体 一様多面体 空間充填多面体 双曲空間と正多面体 正二十面体の変化形 マゾッキオ ■第2部 曲線と曲面 回転面 トーラス アステロイドトーラス バラ曲線 アルキメデスの螺旋でできるかたち 対数螺旋でできるかたち ペルコ対 セパタクローのボールと絡み目 メビウスの帯とクラインの壺 ■第3部 心躍るかたち メンガーのスポンジ 立体版のコッホ雪片 ローレンツアトラクタ カタランの極小曲面 ルーローの四面体 ソディの6球連鎖 クエン曲面 ■著者プロフィール 瑞慶山 香佳(ずけやま よしか):美術作家。数学で扱うかたちを鉛筆や色鉛筆で描く“数学デッサン”や、数学をモチーフにした作品を制作。著書『数学デッサン教室 描いて楽しむ数学のかたち』(技術評論社)。
-
3.7
-
3.0先が不透明な時代、数学で未来を見通せないか!数学で先を読むためにはどういう条件が必要だろうか。身近な自然現象から、社会や経済の動き、ギャンブルまで、未来を予測する数学にはどのようなものがあるのか、データをどう読むのか、確率や統計の見方・考え方、を見ていく。数学で先を予測できることにはどんなことがあって、数学では先を予測できないことはなんなのか、探っていく。一般に「ギャンブル必勝法」と言われる「倍賭け法」「マルチンゲール法」などを実際にコンピュータを使って検証していく。さらにはノーベル経済学賞を受賞し、一時期、金融工学としてもてはやされた「ブラック・ショールズの方程式」とはどんなもので、そこにはどのような「落とし穴」があったのか、考えていく。「数学で未来を予測できるのか?」という難問に逃げることなく、正面から数学者が答えようとしたのが本書である。
-
4.0「近ごろ数学がいろいろの所に顔を出すようになって、数学ぎらいの人々を困らせたり、うんざりさせているようだ。この本はそういう人々のために書いたいくつかの文章を集めたものである。どの文章も数学とはそれほど恐いものでも、また人間ばなれしたものでもなく、ただの人間たちが、何千年も昔から、寄ってたかってつくりあげた、きわめて人間くさい学問なのだ、という立場から書かれている。」(あとがきより) 数学の歴史や、数学のなかのいくつかの典型的な概念について、また、子どもも親もセンセイも悩ませる「集合」についてなど、平易でありながら本質的な数学論が語られる一冊。 『数学は変貌する』を改題、「数学と人間」「現代社会と数学の役割」「文科のための数学」の三篇を増補し、〈弔辞〉大岡信、〈追悼エッセイ〉森毅「異説遠山啓伝」を収録。 【目次より】 プロローグ 数学とはなにか 数学は変貌する――古代から現代まで 古代の数学 中世の数学 近代の数学 現代の数学 連続と不連続 数学の方法 分析―総合の方法 等質化の方法 操作的方法 「集合」おそるるにたらず 数学と人間 現代社会と数学の役割 文科のための数学 あとがき 弔辞(大岡信) 異説遠山啓伝(森毅)
-
3.8※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 数学が苦手? それは「錯覚」です。 ――カオス理論の権威が説く、「本当は誰もが好きになれる数学の世界」! 【数学の「本質」を知れば、新しい世界が見えてくる】 多くの人は、数学という学問を誤解しています。 難しい、とっつきにくい、役に立たない…… 数学に対するこうしたイメージは、すべて「錯覚」です。 人々の「素朴な思い」から生まれた学問なので、 段階を踏んでいけば、誰にでも理解できるはずなのです。 本書では、「測定」「計算」「論理」という基本から 数学が持つ本質的な構造と役割を問い直していきます。 “数学の階段”を登っていくと、あなたの想像を超える広い世界が見えてくるでしょう。 数学が嫌いな人は、数学がちょっと好きになるはずです。 もともと数学が好きな人は、 これまでとは違う視点から、新しい数学の魅力を感じてもらえるはずです。 ◆本書の内容 プロローグ 「数学嫌い」は錯覚である ~「数学とはどんな学問か」を考える前に ステップ1 「数学のはじまり」を知ってみる ~数学は人間の想念そのものである ステップ2 「数学の本質」に触れてみる ~数学はもっとも誠実な学問である ステップ3 「数学の最初のつまずき」を解消する ~苦手意識はここから始まる? ステップ4 「数学のおもしろさ」を感じてみる ~“意味”が分かれば見える世界が変わってくる エピローグ 数学とはどんな学問か? ~数学の“階段”を登ると見えてくるもの 私にとって心安らげる場である数学が、多くの人々に「とっつきにくい」と思われていると聞くと、 寂しいような、ちょっと不思議な気持ちになります。 なぜなら、数学は誰にでも理解できる、誰にでも好きになれる学問だと思っているからです。 数学は、誰に対しても平等で、誠実な存在なのです。 ―――「はじめに」より
-
-平安時代絶世の美女といわれていた小野小町。彼女に求婚した男は多数いたが、最も熱心だったのが深草少将。小町から「百夜続けて通ったら結婚しよう」と言われた彼は、九九夜熱心に通ったものの、あと一夜というときに急死してしまったという。後に老いて友人のいなくなった彼女は、「1 2 3 4 5 6 7 8 9」の数列の間に「+、-、×、÷」を入れ、「99」や「100」を作って少将を思い出すことに熱中したという※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
3.9※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【数学の全体像をつかむ!】 代数学。幾何学。微積分学。統計学。 4つの数学の基礎を理解して、 数学の俯瞰図を頭の中に作り上げる。 「指数関数的増加って何?」「再生産数?」 「偏差値とか標準偏差ってどういうこと?」 解けなくていい。 覚えなくてもいい。 計算、解法、一切不要。 仕事に出てくる数学知識を厳選! 金融の世界で数学を駆使する専門家に、 私大文系卒編集者がわかるまで聞き返してできました。 読めば数学思考がインストールできる、 大人のための数学入門書です。 ◆読めばわかる4つの数学◆ 【1】仮説を明確にする代数学 〇代数学の極意は「仮説思考」 〇指数関数で新型コロナ急拡大がわかる 〇AI深層学習を生んだ線形代数学 【2】イメージをカタチ化、カタチを数値化する幾何学 〇あらゆるカタチは三角形の集まり 〇三角関数は究極の思考節約術 〇地震も音楽も三角関数で数値化できる 〇フーリエ変換で複雑な波も単純化 【3】複雑なものを単純化する微積分学 〇単純になるまで微細に刻み計算する技術 〇飛行機・ロケット・ドローンを実現した微積分 〇微分方程式で感染拡大をシミュレーション 【4】大きな視点で全体を俯瞰する統計学 〇平均所得額は典型的な所得水準じゃない 〇標準偏差と分散の不思議な関係 〇自動運転を生んだベイズ統計学 4つの数学が何をしているのかわかるだけで数学思考のインストール完了!
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 2022年4月からの新学習指導要領対応商品(2022年4月以降に入学した高校生が対象です) 本書は、初版1998年から続く安心のロングセラーです。 三訂版までの刷り部数はシリーズ累計34万部になりました。 本書の問題は、数学IIと数学Bと数学Cのベクトルの基礎的な問題251題(コア・エクササイズ)、それにプラスアルファの標準問題86題(スタンダード・エクササイズ)の合計337題です。 コア・エクササイズの251題をしっかり固めれば、定期試験や模擬試験の小問集合の対策ができます。つまり、短期間に基礎固めができる本になっています。 【著者の木部先生から一言】数学は、得点しにくい教科であると思われるかもしれませんが、本当は簡単にしかも確実に得点できる教科なのです。なぜなら、試験に出題される内容は決まっているからです。この本は、試験に最も出やすい内容を精選して配列してあります。皆さんを高校数学の最速コースにご案内しましょう。
-
3.9国際数学オリンピックに挑戦する子どもたちを教える英才セミナー講師が、上位入賞する子たちを観察して知った特徴、それは……。 「小学校1、2年生頃までは公文式の教材をやっていた」 「中学受験は熱心にやり、進学校に合格している」 「ピアノか囲碁将棋が趣味で、数学の勉強をやるときは熱中型である」 「ただしあまりきちんとした子は少なく、教材管理はできないし、字が汚い」 「工夫する力と洞察力にすぐれ、幾何が得意な子はイメージする力もとりわけすぐれている」 「物事を比喩的にとらえる感覚を持ったものが多い」 では、そこから数学の能力を伸ばす方法を抽出すると? 算数や数学が好きな子に育てたい親御さん必読の名著が携書になりました。 話題を呼んだ「数感を伸ばす練習問題10」も、もちろん収録。
-
-高校数学2の学習書。数学2の中の「いろいろな関数」(4.三角関数、5.指数関数、6.対数関数)を基本事項36項目で解説し、それぞれ例題を用いて解説。基本事項36項目は次の内容です。 4 三角関数 4-1 一般角(動径) 4-2 弧度法 4-3 一般角の三角関数 4-4 三角関数の相互関係 4-5 三角関数の性質 4-6 三角関数のグラフ 4-7 奇関数・偶関数 4-8 いろいろな三角関数のグラフ 4-9 加法定理 4-10 2直線のなす角 4-11 2倍角、3倍角、半角の公式 4-12 三角関数を含む方程式 4-13 三角関数を含む不等式 4-14 和と積の公式 4-15 三角関数の合成 5 指数関数 5-1 0や負の整数の指数 5-2 指数法則 5-3 累乗根 5-4 有理数の指数 5-5 指数式の計算(対称式の利用) 5-6 指数関数のグラフ 5-7 指数方程式 5-8 指数不等式 5-9 指数方程式の最大・最小 5-10 指数方程式の解の条件 6 対数関数 6-1 対数の定義 6-2 対数の性質 6-3 底の変換公式 6-4 対数関数の大小関係 6-5 対数関数のグラフ 6-6 対数関数のグラフの移動 6-7 対数方程式 6-8 対数方程式の解の存在条件 6-9 対数不等式の解法 6-10 対数関数の最大・最小 6-11 常用対数
-
-高校数学2の学習書。数学2の中の「いろいろな式」(1.式と証明、2.複素数と方程式)を基本事項33項目で解説し、それぞれ例題を用いて解説。基本事項33項目は次の内容です。 1 式と証明 1-1 3乗の展開公式 1-2 3乗の展開公式を利用した因数分解 1-3 パスカルの三角形 1-4 二項定理 1-5 多項定理 1-6 多項式の除法(割り算) 1-7 多項式の決定(除法の逆算) 1-8 多項式の未定係数の決定 1-9 分数式の乗法・除法 1-10 分数式の加法・減法 1-11 分数式の未定係数の決定 1-12 2つの文字に関する恒等式 1-13 多項式の値の計算 1-14 恒等式の証明 1-15 条件式がある恒等式の証明 1-16 条件式がある恒等式 1-17 条件が比例式の等式の証明 1-18 条件が比例式の比例式の値 1-19 比例式の値 1-20 式による整数の性質の証明 1-21 実数の大小関係 1-22 実数の平方 1-23 平方の大小関係 1-24 絶対値を含む不等式の証明 1-25 相加・相乗平均 1-26 相加・相乗平均を利用した最大・最小 2 複素数と方程式 2-1 複素数 2-2 複素数の四則計算 2-3 負の平方根 2-4 複素数の解を持つ2次方程式 2-5 判別式 2-6 解と係数の関係 2-7 2次方程式の決定 2-8 2次方程式の実数解の符号 2-9 剰余の定理 2-10 因数定理 2-11 高次方程式の解法 2-12 高次方程式と虚数解
-
-高校数学2の学習書。数学2の中の3.図形と方程式を基本事項35項目で解説し、それぞれ例題を用いて解説。基本事項35項目は次の内容です。 3 図形と方程式 3-1 数直線上の点 3-2 線分の内分点 3-3 線分の外分点 3-4 座標平面上の点(対称点) 3-5 2点間の距離 3-6 内分点・外分点の座標 3-7 三角形の重心 3-8 直線の方程式と表す図形 3-9 図形への利用(直線の方程式の表し方) 3-10 共線・共点 3-11 直線の平行と垂直 3-12 図形への利用(垂心・外心) 3-13 直線について対称な点 3-14 点と直線の距離 3-15 座標と三角形の面積 3-16 円の方程式(中心と半径) 3-17 円の方程式(直径の両端から求める) 3-18 円の方程式(中心ともう一点から求める) 3-19 円の方程式(直線上に中心があり軸に接する) 3-20 円の方程式(3点から求める) 3-21 円と直線の位置関係 3-22 弦の長さ 3-23 接線の方程式(円周上の点での接線) 3-24 接線の方程式(円の外の点を通る接線) 3-25 2つの円の交点を共有する円 3-26 2つの円が共有点をもつ条件 3-27 条件を満たす点の軌跡(アポロニウスの円) 3-28 媒介変数を利用した軌跡の求め方 3-29 三角形の重心の軌跡 3-30 放物線の弦の中点の軌跡 3-31 2直線の交点の軌跡 3-32 直線と領域 3-33 放物線と領域 3-34 円と領域 3-35 領域と最大・最小
-
-高校数学2の学習書。数学2の中の7.微分、8.積分を基本事項21項目で解説し、それぞれ例題を用いて解説。基本事項21項目は次の内容です。 7 微分 7-1 平均変化率 7-2 微分係数 7-3 導関数 7-4 微分係数による剰余式の表現 7-5 接線の方程式 7-6 直線と曲線の接点 7-7 2曲線の接点 7-8 関数の増減、極値 7-9 関数の極値とグラフ 7-10 最大値・最小値 7-11 方程式の実数解 7-12 不等式への応用 8 積分 8-1 不定積分 8-2 導関数から関数の決定 8-3 定積分 8-4 奇関数・偶関数の定積分 8-5 定積分と関数の決定 8-6 不等式への応用 8-7 面積の計算 8-8 面積の最大・最小 8-9 定積分の導関数
-
-高校数学2の演習問題集。数学2の「三角関数」(4.三角関数)、「指数関数」(5.指数関数)、「対数関数」(6.対数関数)の基本事項36項目ごとに問題出題。理解度の自己判断で次ステップを選択可能。 基本事項36項目は次の内容です。4 三角関数 4. 1 一般角(動径) 4. 2 弧度法 4. 3 一般角の三角関数 4. 4 三角関数の相互関係 4. 5 三角関数の性質 4. 6 三角関数のグラフ 4. 7 奇関数・偶関数 4. 8 いろいろな三角関数のグラフ 4. 9 加法定理 4.10 2直線のなす角 4.11 2倍角、3倍角、半角の公式 4.12 三角関数を含む方程式 4.13 三角関数を含む不等式 4.14 和と積の公式 4.15 三角関数の合成 5 指数関数 5. 1 0や負の整数の指数 5. 2 指数法則 5. 3 累乗根 5. 4 有理数の指数 5. 5 指数式の計算(対称式の利用) 5. 6 指数関数のグラフ) 5. 7 指数方程式 5. 8 指数不等式 5. 9 指数方程式の最大・最小 5.10 指数方程式の解の条件 6 対数関数 6. 1 対数の定義 6. 2 対数の性質 6. 3 底の変換公式 6. 4 対数関数の大小関係 6. 5 対数関数のグラフ 6. 6 対数関数のグラフの移動 6. 7 対数方程式の解法 6. 8 対数方程式の解の存在条件 6. 9 対数不等式の解法 6.10 対数関数の最大・最小 6.11 常用対数
-
-高校数学2の演習問題集。数学2の「式と証明」(1.式と証明)と「複素数と方程式」(2.整数の性質)の基本事項38項目ごとに問題出題。理解度の自己判断で次ステップを選択可能。 基本事項38項目は次の内容です。 1 式と証明 1.1 3乗の展開公式 1.2 3乗の展開公式を利用した因数分解 1.3 パスカルの三角形 1.4 二項定理 1.5 多項定理 1.6 多項式の除法(割り算) 1.7 多項式の決定(除法の逆算) 1.8 多項式の未定係数の決定 1.9 分数式の乗法・除法 1.10 分数式の加法・減法 1.11 分数式の未定係数の決定 1.12 2つの文字に関する恒等式 1.13 多項式の値の計算 1.14 恒等式の証明 1.15 条件式のある恒等式の証明 1.16 条件式がある恒等式 1.17 条件が比例式の等式の証明 1.18 条件が比例式の比例式の値 1.19 比例式の値 1.20 式による整数の性質の証明 1.21 実数の大小関係 1.22 実数の平方 1.23 平方の大小関係 1.24 絶対値を含む不等式の証明 1.25 相加・相乗平均 1.26 相加・相乗平均を利用した最大・最小 2 複素数と方程式 2.1 複素数 2.2 複素数の四則計算 2.3 負の平方根 2.4 複素数の解を持つ2次方程式 2.5 判別式 2.6 解と係数の関係 2.7 2次方程式の決定 2.8 2次方程式の実数解の符号 2.9 剰余の定理 2.10 因数定理 2.11 高次方程式の解法 2.12 高次方程式と虚数解
-
-高校数学2の演習問題集。数学2の「図形と方程式」(3.図形と方程式)の基本事項35項目ごとに問題出題。理解度の自己判断で次ステップを選択可能。 基本事項35目は次の内容です。 3 図形と方程式 3. 1 数直線上の点 3. 2 線分の内分点 3. 3 線分の外分点 3. 4 座標平面上の点(対称点) 3. 5 2点間の距離 3. 6 内分点・外分点の座標 3. 7 三角形の重心 3. 8 直線の方程式と表す図形 3. 9 図形への利用 (直線の方程式の表し方) 3.10 共線・共点 3.11 直線の平行と垂直 3.12 図形への利用(垂心・外心) 3.13 直線について対称な点 3.14 点と直線の距離 3.15 座標と三角形の面積 3.16 円の方程式(中心と半径) 3.17 円の方程式(直径の両端から求める) 3.18 円の方程式(中心ともう一点から求める) 3.19 円の方程式(直線上に中心があり軸に接する) 3.20 円の方程式(3点から求める) 3.21 円と直線の位置関係 3.22 弦の長さ 3.23 接線の方程式(円周上の点での接線) 3.24 接線の方程式(円の外の点を通る接線) 3.25 2つの円の交点を共有する円 3.26 2つの円が共有点をもつ条件 3.27 条件を満たす点の軌跡(アポロニウスの円) 3.28 媒介変数を利用した軌跡の求め方 3.29 三角形の重心の軌跡 3.30 放物線の弦の中点の軌跡 3.31 2直線の交点の軌跡 3.32 直線と領域 3.33 放物線と領域 3.34 円と領域 3.35 領域と最大・最小
-
-高校数学2の演習問題集。数学2の「微分」(7.微分)、「積分」(8.積分)の基本事項21項目ごとに問題出題。理解度の自己判断で次ステップを選択可能。 基本事項21項目は次の内容です。 7 微分 7. 1 平均変化率 7. 2 微分係数 7. 3 導関数 7. 4 微分係数による剰余式の表現 7. 5 接線の方程式 7. 6 直線と曲線の接点 7. 7 2曲線の接点 7. 8 関数の増減、極値 7. 9 関数の極値とグラフ 7.10 最大値・最小値 7.11 方程式の実数解 7.12 不等式への応用 8 積分 8. 1 不定積分 8. 2 導関数から関数の決定 8. 3 定積分 8. 4 奇関数・偶関数の定積分 8. 5 定積分と関数の決定 8. 6 不等式への応用 8. 7 面積の計算 8. 8 面積の最大・最小 8 .9 定積分の導関数
-
4.2「リーマン仮説」「ポアンカレ予想」「ホッジ予想」「バーチ、スウィンナートン=ダイアー予想」「P対NP問題」「ヤン・ミルズ理論」「ナヴィエ-ストークス方程式」2000年5月、クレイ数学研究所はそれぞれ100万ドルの賞金を懸けて、21世紀に解決を期待する7つの未解決問題を発表した。この「ミレニアム賞問題」を、高校生でもチャレンジできるように解説した、数学ファン待望の本。※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 数学はなぜそれを必要とし、生み出したのか。知っているようで知らなかった、奥深き知的営み――「証明」の世界へ飛び込もう!【おもな内容】はじめに第1章 証明とはなんだろうか第2章 証明のさまざまな技術第3章 命題と論理記号第4章 算数の中の証明をもう一度第5章 証明の花形――初等幾何学の証明第6章 無限に挑戦する――解析学の証明第7章 式は語る――代数学の証明終わりに――数学にとって証明とはなにか
-
-イアン・スチュアートの有名な問題「無限の客室数をもつホテル、ヒルベルト・ホテル」──無限の客室数をもつホテルが満室になることがあるのか、あるとしてそれをどのように確認するのか、を皮切りに数学における「無限の神話」をあぶり出す。無限の視点から見ると、例えば、πを2で割り切れるのか、円錐を底面に平行な面で切ると2つの切り口は等しいのか等しくないのか、コンピューターに無限は扱えるのか等々、私たちが普段何の疑いも持たなかった数や図形が、それまでとは違ったものに見えてくる。そこには、著者のシステム・エンジニアならではの鋭い視点がある。巻末に数クイズ100問付き。
-
3.8物理学の基盤的領域では30年以上も、既存の理論を超えようとして失敗し続けてきたと著者は言う。実験で検証されないまま理論が乱立する時代が、すでに長きに渡っている。それら理論の正当性の拠り所とされてきたのは、数学的な「美しさ」や「自然さ」だが、なぜ多くの物理学者がこうした基準を信奉するのか? 革新的な理論の美が、前世紀に成功をもたらした美の延長上にあると考える根拠はどこにあるのか? そして、超対称性、余剰次元の物理、暗黒物質の粒子、多宇宙……等々も、その信念がはらむ錯覚の産物だとしたら?研究者たち自身の語りを通じて浮かび上がるのは、究極のフロンティアに進撃を続けるイメージとは異なり、空振り続きの実験結果に戸惑い、理論の足場の不確かさと苦闘する物理学の姿である。「誰もバラ色の人生なんて約束しませんでしたよ。これはリスクのある仕事なのです」(ニマ・アルカニ=ハメド)、「気がかりになりはじめましたよ、確かに。たやすいことだろうなんて思ったことは一度もありませんが」(フランク・ウィルチェック)著者の提案する処方箋は、前提となっている部分を見つめ直すこと、あくまで観測事実に導かれること、それに、狭く閉じた産業の体になりつつあるこの分野の風通しをよくすることだ。しかし、争点はいまだその手前にある。物理学は「数学の美しさのなかで道を見失って」いるのだろうか? 本書が探針を投じる。
表示されていない作品があります
セーフサーチが「中・強」になっているため、一部の作品が表示されていません。お探しの作品がない場合は、セーフサーチをOFFに変更してください。