検索結果
検索のヒント
検索のヒント
■キーワードの変更・再検索
記号を含むキーワードや略称は適切に検索できない場合があります。 略称は正式名称の一部など、異なるキーワードで再検索してみてください。
■ひらがな検索がおすすめ!
ひらがなで入力するとより検索結果に表示されやすくなります。
おすすめ例
まどうし
つまずきやすい例
魔導士
「魔導師」や「魔道士」など、異なる漢字で検索すると結果に表示されない場合があります。
■並び順の変更
人気順や新着順で並び替えると、お探しの作品がより前に表示される場合があります。
■絞り込み検索もおすすめ!
発売状況の「新刊(1ヶ月以内)」にチェックを入れて検索してみてください。
-
-
-
4.0さらば勘と経験!データドリブンで急成長を実現したノウハウを公開。 ★変えたことはたった一つ。データドリブン経営に舵をきり、売上右肩上がりの急成長。「一休.com」では具体的に何が行われていたのか?本邦初公開! ★「思い込み」で意思決定する前に、徹底的にデータと向き合ったと自信を持って言えますか? データに素直に従った方が正しくありませんか? ★データドリブンはビジネスの話。データ分析はあくまで手段で、分析結果を役立てて業績向上につなげることが最重要。 ★「Consumer is Boss(顧客がボスである)」はビジネスにおける普遍の法則。ただ、顧客データがあふれる現在においては「DATA is BOSS(データがボスである)」に変わってませんか? 数字やデータの扱いが苦手でも、本書を通してエンジニアやデータサイエンティストに、やりたいことを適切に伝えるエッセンスを習得できるため、データドリブン経営への第一歩が踏み出せる! 対象読者 ・データドリブン経営を実行したい経営層 ・従来型の経験に頼りがちな文系の経営・マネジメント層 ・データに基づいた意思決定に関心が高い、次世代を担うビジネスパーソン ・ビジネス部門の思考を理解したい、エンジニア・データサイエンティスト ●目次概要 はじめに 「DATA is BOSS」の意味 序章 まず知ってほしい「データドリブンは、ビジネスの話」 第1章 データを制するものがビジネスを制す 第2章 「掛け声だけ」で終わっている日本型データドリブン 第3章 データドリブン経営の本質 第4章 データドリブン経営の実装 第5章 データドリブン施策の具体例 おわりに AIの進化が何をもたらすか 読者特典 顧客行動の見える化レポート10選 ■著者:榊󠄀淳 株式会社一休 代表取締役社長。慶應義塾大学大学院理工学研究科修了後、第一勧業銀行(現みずほ銀行)にて金融工学を駆使したトレーディング業務に従事。2003年に米国スタンフォード大学院のサイエンティフィック・コンピューティング学科修士課程を修了後、約10年間コンサルタントとして活躍。2013年、株式会社一休へ入社し、2016年には代表取締役社長に就任。2023年からはLINEヤフー株式会社 執行役員 コマースカンパニー トラベル統括本部長も務める。ほかにも、「国際医療ボランティア団体」特定非営利活動法人ジャパンハート 理事や株式会社じげん 社外取締役を務める。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.7●Google銀行、分散型金融、マネーのデータ活用…… ●今さら聞けない「データエコノミー」の本質が平易にわかる! ●読めば、経済の「いま」と「未来」が見えてくる決定版! いま、経済の仕組みが激変している。契機となったのが、データが経済的価値を生む「データ資本主義」の誕生だ。中でも特に注目すべきは、「マネーのデータ」である、と野口悠紀雄氏は語る。マネーのデータは、従来のビッグデータよりはるかに強力で、すでにこの「マネーという最強のデータを巡る争奪戦」が、世界中の国家・企業・銀行間で始まっている。しかし、この覇権争いに加わるどころか、その本質すら、多くの日本の企業・銀行は理解できておらず、それが日本経済の衰退をもたらした根本的原因であると言う。そこで本書では、「マネーデータを巡る新たな経済の本質」を、「データエコノミー入門」と題し、平易にわかりやすく解説。予備知識なしでも読める「データ経済」入門書の決定版!
-
3.0本書は、デジタル時代におけるデータ活用の課題に正面から取り組み、その解決策として「データエンジニア」の役割を再定義し、実践的な指針を示すものである。 近年、情報のデジタル化とAIの進展により、データ活用は企業の競争力を左右する重要な要素となっている。「分析の専門家はいるのに期待した効果が出ない」「部門間の連携がうまくいかない」「データ活用の具体的な進め方がわからない」――。こうした課題を抱える組織に、著者らは多様なデータ分析業務の経験から、その解決のカギが「データエンジニア」にあると提言。 第1部(1・2章)では、組織づくりの視点からデータ活用の本質に迫る。第1章では、データ活用とコミュニケーションの基本概念を整理したうえで、「経営部門」「オペレーション部門」「情報システム部門」の三部門からなる「三機能モデル」を提示し、機能の分化が進む組織において「データエンジニアリング」が必要となる背景を説明。第2章では、この三機能モデルを踏まえ「データエンジニアリング組織」の具体的な役割と行動指針を提示し、企業のデータ活用における課題解決への貢献について詳しく解説している。 第2部(3~6章)は実務編として、データエンジニアの日々のコミュニケーションに焦点を当てている。各部門との信頼関係の築き方、効果的なコミュニケーション手法、日々の業務の進め方まで、事例とともに解説。とくに、データエンジニアが組織の要として各部門間の橋渡し役を担い、部門間の利害を調整しながら組織全体のデータ活用を推進していく過程を詳説している。 DX時代の到来により、データエンジニアの需要は今後データサイエンティストを上回ると著者らは予測。本書は、データドリブンな組織づくりを目指すすべての人に実践的な道筋を示す一冊である。
-
-正しい“データ解析”は、データの背後にある現象を適正に認識することに他なりません。データは、所詮現象の“仮りの姿にすぎません。”データが与えられたら、各種数値に変換することよりもその“意味合い”を解釈することです。本書は生のデータを素材にして解析法の基本原理を解説したビジネスマンの渇望の書。●目次●データ解析の基礎概念(データの縮約化/データの代表値/データの散布度/データの標準化)/データ記述の基本手筋(データの性格/データのグラフ化/クラス分けされたデータの統計処理/多次元データの記述)/データ解析の分析技法(関連性分析/時系列分析/判別分析) 1977年発行。
-
-このわかりやすさ、もう手放せない!・「仮名化/匿名化」「差分プライバシー」「秘密計算」の3つの主要技術を扱う。・統計学・データ工学・暗号理論の観点から丁寧に解説。・データ解析実務者も必読。※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
-AIというテクノロジーによって、人々がごく一部のエリートと多数の「無用者階級」に分断され、かつてない階層社会が到来すると警鐘を鳴らすのが、『サピエンス全史』『ホモ・デウス』著者のユヴァル・ノア・ハラリ氏だ。 日本でもすでに企業の採用活動や金融機関でAIスコアリングが使われ始めており、男女の出会いの場でもAIが活用されるようになってきた。AIの予測評価によって社会的に排除され続ける人が多数生じる「バーチャルスラム」化。世界が抱える諸問題に大局的な見地を示す知識人の警告に耳を傾けたい。 本誌は『週刊東洋経済』2018年12月1日号掲載の28ページ分を電子化したものです。
-
5.0データ×AI領域のキャリア設計を徹底解説! 自分に合った道筋と戦略がわかる ビッグデータや人工知能の活用が本格化されつつある現代、 データ×AIの領域で活躍できる人材が、様々な業界で求められています。 本書は、そんなデータ×AI人材への就職・転職を目指す方に向けて、 職種やプロジェクトごとの具体的な仕事内容、 求められるスキルなどを、網羅的に解説した書籍です。 【本書で扱う職種】 ・データサイエンティスト ・データエンジニア ・機械学習エンジニア ・データアナリスト ・BIエンジニア 【本書で扱うプロジェクト】 ・機械学習システム構築プロジェクト ・データ分析プロジェクト ・データ可視化・BI構築プロジェクト 本書を読めば、ファーストキャリアを獲得するために取るべきアクション、 自分の市場価値を高めてキャリアアップするための戦略がわかります。 これからデータ×AI領域で活躍したい方、 どのようなキャリアを描いていけばいいのか知りたい方にお薦めの一冊です。 【目次】 ■第1部 データ×AI業界の全体像 第1章 データ×AIによる社会の変革 第2章 データ×AI活用に関する基礎知識 ■第2部 データ×AIプロジェクトの全体像と各職種の果たす役割 第3章 データ×AIプロジェクトの種類と概要 第4章 機械学習システム構築プロジェクト 第5章 データ分析プロジェクト 第6章 データ可視化・BI構築プロジェクト ■第3部 データ×AI人材になるために必要なこと 第7章 データ×AI人材になるためのロードマップ 第8章 データ×AI人材としての転職を決めるポートフォリオ(概要編) 第9章 データ×AI人材としての転職を決めるポートフォリオ(作成編) 第10章 10年後を見据えたキャリア設計 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0データの海から本質をつかみ、洞察を得る データ可視化は膨大なデータから意思決定に役立つ洞察を導き出すための必要不可欠なスキルです。 同時に、専門外の方へ知識を伝えたり説得するためのコミュニケーション術としても活用できます。 本書は、情報デザイン、コンピュータサイエンス、データサイエンス、統計学、記号学、インタラクションデザイン、ストーリーテリングなどさまざまな分野に分散しているデータ可視化の知見を統合し、ビジネスの最前線で役立つ内容に整理しています。 データ可視化の実践と普及に10年以上携わってきた著者が、本当に必要な基礎的な知識から実務でのワークフローや可視化の実践法、最適なチャートの選び方までをやさしく解説します。 ツール不要でプログラミング言語に依存しない記述なので、本質的な理解につながる内容です。 とくに次のような方にはおすすめの一冊です。 ・データ分析の実務者 ・UI・UXデザイナーやエンジニア ・プロダクトマネージャー、プロジェクトマネージャー ・マーケティングや事業戦略の担当者 ・企業の広報・コミュニケーションの担当者 【読者特典】手軽に使えるデータ可視化・データ処理ツール47選付き! 【目次概要】 〈基礎編〉 第1章 なぜデータを可視化するのか 第2章 データ可視化とは何か 第3章 どんな分野で用いられているか 第4章 チャートの文法とは何か 第5章 可視化表現の三層モデルとは何か 第6章 色はどのように選ぶか 第7章 コミュニケーションとしての可視化 〈実務編〉 第8章 ワークフローを理解する 第9章 ゴールを設定する 第10章 タスクを抽象化する 第11章 データの実務知識をおさえる 第12章 データを収集し処理する 第13章 チャートの選び方を知る 第14章 数値(How Many)を可視化する 第15章 言葉(What)を可視化する 第16章 時間(When)を可視化する 第17章 場所(Where)を可視化する 第18章 関係(To Whom)を可視化する 第19章 インタラクティブに操作する 第20章 レイアウトする 第21章 制作ガイドラインとしての価値観と原理原則 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 誰もが頭を悩ます仮説構築を学び,データマイニングを習得する! データマイニングで重要な仮説の設定について,その枠組みを解説した書物は世の中にあまりない。そこで本書では誰もが一番悩むデータマイニングのための仮説構築の手法を重点的にまとめた。さらに,データマイニングに必要な,統計スキル・ITスキル・企画スキル・コミュニケーションスキルという4つのスキルを養成するために,2種類のPBLに基づく課題を設定することで,より実践的な学習を目指した。
-
-データ仮想化というアプローチが、今は十分に成熟し、広範な用途に利用されるようになっています。本書は現実的なケーススタディを数多く取り上げて、データ仮想化の活用方法を示します。どのような技術やテクノロジーでも、成功の指標になるのは採用の実態です。本書では、コンピュータ、金融、エネルギーなどのフォーチュン50ケースや、コムキャスト社、クアルコム社などの事例を通じて、各業界の多様な企業が、データ仮想化によってどのように大きなビジネス上の利点を獲得しているか、詳細に確認できます。本書は、データ仮想化に関心を持ち、また導入を検討している、IT分野の専門家だけを対象としたものではありません。データへのアクセスを効率化してビジネス意思決定に役立てようとする、経営幹部やビジネスユーザにも読んでいただける1冊です。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0データ活用が失敗する根本的な原因はたったの1つ! 「データ→情報→価値→効用」データを活用して価値を生み、売上・利益などの効用につなげる データを活用して我が社も儲けられないのか──。 こう上司から言われた時、どこから考え始めてよいのか分からないという声を多く聞きます。真面目な担当者ほど、「まずはデータの棚卸し」となりますが、それでは売り上げにつながりません。 こう語るのは、野村総合研究所の鈴木良介氏です。鈴木氏はビッグデータがブームとなった当初からデータ活用のコンサルティングを引き受け、この4年間で2000人もの企業担当者らとディスカッションをしてきたそうです。 鈴木氏はこうした膨大な経験を踏まえて、データを活用して売り上げ、利益といった効用を得るためのフレームワーク「DIVA(ディーバ)」を提唱します。DIVAはData=データ、Information=情報、Value=価値、Achievement=効用の4語の略です。 本書で紹介するDIVAというデータ活用を進めるための共通のフレームワークを持つことで、企業のビッグデータ活用ワーキンググループでの議論の空転を防ぎ、良質な仮説を生み出す前段階となる仮説の量産を支援します。 【主な内容】 第1章 DIVAは「データ、情報、価値、効用」の一連の流れを記述する 第2章 顧客の振る舞いを変える 第3章 従業員の振る舞いを変える 第4章 データと振る舞いの変化を直結する 第5章 仮説を量産するのは誰か? 第6章 「気が利く」と「気持ち悪い」の境界に挑む
-
-仕事に役立つデータ活用の新しいアプローチ、会社を動かす分析戦略の組み立て方、ビッグデータ技術を一流のデータサイエンティストたちが分かりやすく解き明かす。データ活用の専門誌「日経ビッグデータ」で人気の高かった連載を書籍向けに再構成したものと新規の書き下ろしで構成している。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データ活用で、これからの防災は変わる""ことを伝える本 地球温暖化に伴い、世界中で異常気象が起きています。日本は古くから地震や台風、豪雨などにより大きな被害を受けていますが、近年、集中豪雨など、これまでにない大規模災害が毎年のように発生しています。自然災害を防ぐことは難しいですが、データを有効活用し適切な対応をとることで、より効果的な防災・減災、より迅速な復旧につなげることが可能です。 本書では、自然災害に関するデータを、防災・減災と災害からの復興にどのように活用していくか、気象庁や防災科学技術研究所などへの取材や、これまでのデータ活用の実例を挙げながら、現状と課題、展望などについて紹介しています。 00 プロローグ 01 2035年9月X日、超大型台風の襲来 02 迅速で正確な気象予報を目指せ 03 洪水被害を減らせ 04 土砂災害被害を減らせ 05 地震被害を減らせ 06 地震被害を推定せよ 07 被害状況を迅速に知れ 08 望ましい避難を実現せよ 09 国や自治体の計画を知れ 10 自分たちで防災計画をつくれ
-
4.0データが価値を生み出す資源として脚光を浴び、ソフトウェアで手軽にデータ分析ができる時代を迎えました。一般の企業/組織では、機械学習や統計モデリングなどの数理的な理論の活用がはじまっています。 数理モデリングは、さまざまな現象の観測および考察を重ねて得られた発見を抽象的なナレッジに落とし込む手法です。「どんな目的を達成するために」、「どの程度のコストで」、「どんな問題を解くべきか」というような課題に対して、適切な手法でアプローチするための技術が数理モデリングであり、多くのエンジニア、ビジネスマンにとって、今後ますます重要視される知識と言えます。 本書は全7章で構成し、1章では「数理モデルの考え方」をごく単純な例を用いて解説します。続く章では、購買予測、離脱予測、意思決定、オンライン広告、ネットワーク科学、画像解析などの社会実装を通して数理モデリングがもたらす恩恵を解説していきます。数理科学に携わる気鋭のデータサイエンティスト陣による理論解説は、きっとあなたのビジネスを加速させるでしょう。
-
-いま何が起こっているのか—— 世界はこれからどうなる? 日本はこのままでいいのか? 激しく大きな情勢変化を 見誤らないために! 核保有国で、国連常任理事国でもあるロシアが仕掛けた前例のない戦争—— 対する、日本を含む欧米諸国の経済制裁は世界経済に返り血を浴びせる。 無力である国連に代わる、国際的安全保障の枠組みとは——。 日本経済はどうなるか、その処方箋は? 中国、北朝鮮の動向をどう捉えるか—— 前例のない、激動する世界の中で、衆目を集めるニュースだけを垂れ流すマスコミに惑わされることなく、適切な判断ができるよう、 根本となるデータや原理原則をもとに高橋洋一氏が分析し、読み解いていく。 真実と未来を見抜く力を、 本書で備えてください。 【目次】 第1章 ウクライナ問題、日本人が知っておくべきこと 第2章 日本にもインフレは襲ってくるのか——失ってはいけないマクロ経済の視点 第3章 日本は「借金で破綻する」は本当か 第4章 有事の時代に、グダグダ岸田政権で大丈夫か 第5章 賃金上昇のカギは? 年金は? 第6章 日本の周辺諸国は何を考えているか
-
4.3データ分析のお作法を学ぶ。それが、この本の目的です。 ……まことしやかな数字が、実際の所、どれほど当てになるものなのか。たまねぎの皮を1枚ずつ剥くようにして、喧伝された事実に隠されたもう一つの"事実"を見つけ出すにはどうしたらよいのか。そのためのスキルを学べます。 著者は、ITベンチャー勤務のマーケターにして、データサイエンティスト。データ分析のプロジェクトで数多くの失敗も味わいながら、「生傷で得た教訓」を糧に著しました。 新型コロナの感染拡大、戦後最長の好景気、貧困率にひきこもり……。ニュースを賑わせた事象を題材に、「データドリブンに真実へ迫ると、どのような実態が見えてくるか」を紐解き、そこで使ったスキルを解説します。 データ分析とはアートであり、すべてのビジネスパーソンに必要な能力です。 数字が読めても、それが何を表しているかが分からなければ「分析」とは言えません。数字だけでなく、起きていることの全体を解釈し、時に俯瞰し、データの裏にある何かを探っていく。データに目を配り、また必要があれば提示されたデータを疑う。それが"考える"ことです。データ分析は多様な知的スキルを組み合わせたアートでもあります。 そうした分析力はデータ分析の専門家だけでなく、あらゆる分野のビジネスパーソンにとって必要な能力です。本書がこのような能力を養うことに少しでも貢献できればこれ以上の喜びはありません。
-
4.3世界経済フォーラムが公表する男女平等度の指標で,日本はG7最下位,世界でも最低レベルが続く.根本原因を地域から探り,底上げできないか――.フォーラムと同手法で,47都道府県ごとに分析し,政治,経済,教育,行政の4分野で強みや課題を可視化した.データや現場取材から誰もが生きやすい社会へのヒントを示す.
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 DX化時代のデータ監査ツール「ActiveData For Excel」の機能を網羅的に解説した国内初の書籍! 本書は、「ActiveData For Excel」の基本的な操作方法から実務で役立つコマンドまでをわかりやすく図解した1冊です。ActiveData For Excelとは、膨大な会計データでも正確に・効率的に分析できるDX化時代のデータ監査ツールです。Excelのアドインツールとして使えるため、Excelを使い慣れている方にとっては、スムーズに導入できる点が大きな魅力です。 また、特に難しい設定を必要とせず、いくつかの簡単なステップでデータを分析できるので、誰でも気軽に使い始めることができます。 【本書の特長】 ●国内初! 豊富なデータ活用例と機能解説を掲載 ActiveData For Excel日本語版の共同制作元である監査法人だからわかる、実際の業務に即した具体的な活用例を多数掲載しています。ActiveData For Excelのほぼすべての機能解説を集約した書籍は、本書が国内初です。 ●データ分析の基本的なトピックを各章に分けて紹介! 本書を手掛けた監査法人で実際に利用されてきた手法を元に、クレンジング、集計、抽出などを各章に分けて紹介しており、自分の必要なトピックから学ぶことが可能です。たとえば、あるコマンドの使い方を忘れてしまった場合でも、簡単に参照できるようになっているので、効率よく学習を進められます。 ●各章に演習問題を掲載! 各章には、トピックに沿った演習問題とそのやり方が掲載されているので、 実際に手を動かしながら、実践的に学べます。 ●特典にサンプルデータつき! ActiveData For Excelの利便性が体感できるサンプルデータが特典としてつきます。 本書によってActiveData For Excelのスキルを身につけることで、監査業務がより効率的に進められるようになります。 データ分析の新しい世界に一歩踏み込んで、監査業務のスピードと精度を向上させましょう!
-
3.6
-
-
-
5.0
-
4.0150以上のグラフ・表を用いて楽観論を斬る! 政府総債務残高の対GDP比が、先進諸国で唯一200%を超えている日本財政。借金返済を先送りした結果、日本は膨大な債務に足を引っ張られ、それが経済成長にも悪影響を及ぼしている。こうした財政運営失敗のツケを、我々はそう遠くない将来に、通貨崩壊という形で支払うはめになるだろう。公的データによる150以上のグラフや表を用いて日本財政の問題点を分析。財政楽観論を完全否定し、通貨崩壊へと突き進む日本の未来に警鐘を鳴らす。 ○久米 宏氏、推薦!「『円の崩壊』は現実となるのか。私たちは薄氷の上を歩いている」○野口悠紀雄氏、推薦!「国債がもたらす問題を基本に遡って指摘し、警鐘を鳴らす!」
-
-福岡市は本当に地方最強か⁈ 福岡市の人口は、このままなにも対策を講じなければ、2035年には165万人で頭打ちになるといわれている。しかし、問題に気づき、今から対策を打てば2050年に180万人都市になることも夢ではない。 福岡市は、九州で最も子供が生まれない「超少子化」の町。 福岡市民一人当たりの所得は、30年間ほぼ横ばい。 貧困児童の割合が政令指令都市中、最悪……。 データが示す福岡市の「本当の姿」から目を背けず、福岡市のポテンシャルを最大限に活かすための5つの政策を紹介。 【目次】 [第1部]データが示す福岡市の不都合な真実 1.福岡市民の所得は30年間横ばい。実質的に減少 2.子供が生まれない福岡市 3.福岡市の経済は全九州を相手に卸売・小売業で稼ぐ内需型 4.低下し続けている福岡市の国際的地位 5.2070年まで激増する65歳以上 [第2部]福岡市民の所得を増やすための政策提案 1. 自社の消費のうち「毎年1%を地場産に切り替える5年計画」の策定 2. 福岡市版こども保険の創設 2050年に福岡市の人口を180万人に 3. 福岡市の国際的地位と都市としての魅力を高める対策とは 4. 何歳であっても働きたいシニアの仕事を作る 5.南海トラフ 首都直下型地震を利用する 【著者】 木下敏之 福岡大学 経済学部 教授。担当科目:九州経済論、起業戦略論。ラ・サール中学校・高等学校、東京大学法学部卒業を卒業後、1984年に農林水産省入省。1999年、佐賀市市長に全国の県庁所在地の市長の中で最年少の39歳で初当選。2期を務めた後、2012年より福岡大学経済学部産業経済学科教授に就任。
-
4.0約10年にわたり、日産自動車でデータ分析を駆使しながら数々のプロジェクトをリードしてきた経験を持つ著者による最新刊。今回は特に組織を率いる上司の目線に立って、データ分析で押さえるべき勘所をまとめています。 部下や取引先などからデータ分析の結果を受け取るマネジャーが注意すべき点を「13のチェックリスト」にまとめました。それらを1つずつ、具体例を挙げながら詳しく解説していきます。 例えば、店舗の月間売り上げの平均値だけを比較して改善案を持ってきた部下に対して、上司はまずどこを確認すべきなのでしょうか。分析に利用したデータの数や扱ったデータの範囲(期間)、外れ値の有無などによって、分析結果は大きく異なってくることを上司は知っておかなければなりません。平均値だけを見ていても、裏に隠れた情報は見通せないからです。上司はそこをしっかりと確認しなければ、誤った意思決定をしてしまう恐れがあります。 著者は「企業のデータ競争力を上げるも下げるも上司(マネジャー)次第だ」と指摘します。これからの時代は、データを活用できない上司がボトルネックになりかねません。 <目次> 序章 こんな職場が危ない 第1章 視点の範囲を押さえる 第2章 結果のインパクトを捉える 第3章 目的に合った答えを出す 第4章 サンプル数の違いを認識 第5章 データの範囲を認識 第6章 データのカテゴリーや定義を認識 第7章 外れ値の処理 第8章 比較のベース 第9章 判断・評価の基準 第10章 指標に潜む罠 第11章 結果や結論の表現 第12章 統計的な確からしさの必要性 第13章 結論の表現の明確さ
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本資料はMID-NET協力医療機関の協力の下、平成26年度、厚生労働科研「MID-NETを用いた医薬品等のベネフィット・リスク評価のための薬剤疫学研究等の実践的な分析手法及び教育に関する研究」(研究代表者、中島直樹)、平成 27 年度、AMED事業に移行した同研究課題、平成28年度~30年度、AMED医薬品等規制調和・評価研究事業「MID-NETを用いた医薬品等のベネフィット・リスク評価のためのデータ標準化の普及に関する研究」(研究代表者、中島直樹)で得られた研究成果をまとめたものである。 平成26年度に初版、27年度に2版を編集し、30年度に3版としてまとめ、さらに令和元年度には総合的な再編集を行った。 今後、MID-NET事業が拡大発展する際にも、MID-NET型システムが新規に構築される際にも、広く教育・研修に活用でき、短時間での知識習得を可能とすることが期待される。 なお、本資料はMID-NET開発時からの成果を網羅的に記載しているため、現在の状況と異なる部分がある点をご了承いただきたい。手順や運用方法などについても情報更新を行っており、問合せに応じて最新の情報を提供する。 (はじめにより) ■主な内容 ・MID-NET事業について(総論) ・MID-NET事業の導入・運営に必要となるもの ・MID-NET運用及び管理に関する手順 ・コーディングとマッピングの概要及び課題 ・SS-MIX2標準化ストレージと、その他のデータ源 ・データ出力と統合データソースへの取込み ・データ品質管理活動 ・医療情報の標準化に向けての課題とその手順 ・医薬品の有効性・安全性評価や薬剤疫学等の解析手法 ・MID-NET 協力機関における個人情報保護法及び医学系研究倫理指針への対応 ・「MID-NETを用いた医薬品等のベネフィット・リスク評価のための協力医療機関情報共有研修会の開催」と課題収集 ・リアルタイムバリデーション手法の構築 ・今後の発展と留意点 ・参考資料
-
-DX・生成AI・データ分析・カスタマーエクスペリエンス・VOC分析を1項目5分で理解できる! いまさら他人には聞けない、データドリブン経営のすべて DXブームのあと、生成AIの登場でますますテクノロジーと経営が融合せざるを得ない状況になっています。技術革新のスピードがますます速くなっているため、それをキャッチアップするだけでも大変な時代に突入しているといえます。 本書では、DX化に今一歩乗り遅れてしまった、または、導入したけどうまくいっていない経営者のかたに向けて、その情報をコンパクトにまとめています。 いまや、経営にかかわる、あらゆることがDXと関係しないものはないほどになっています。とくに、人材採用は、とりわけ深刻な社会問題となっています。本書にヒントが書かれています。
-
3.5グローバル経営に不可欠なデータ管理基盤の構築法を徹底解説 グローバル経営管理の観点で見たとき、国内外の拠点から日々収集されるビッグデータの価値を最も左右するのは、実は高速なデータ処理技術でもなければ統計分析スキルでもありません。「A商品1個当たりの粗利が少ない国はどこか」などの、横串を刺した集計・分析を行うには、まず「データのかすがい」が不可欠なのです。 これに相当するのが「マスターデータ」です。このためには「『商品1個』とは何を意味するのか」などの業務用語とデータの定義をグローバルでそろえていく取り組みが必要です。 国内トップレベルのコンサルティングファームが、味の素・アシックス・花王といった日本企業の先進事例を基に、マスターデータ管理(MDM)のノウハウを書き下ろしました。 ≪目次≫ 【第1章】 データ活用の「おや・まぁ・へぇ」 [1-1] 世の中に溢れ始めたデータ [1-2] データを有効に活用しきれない企業 ほか 【第2章】 IT基盤構築に取り組む先駆者 [2-1] マスターデータ管理のプロフェッショナルとは [2-2] 「マスターデータ管理は経営判断をサポートするもの」 …味の素 監査部 内部統制評価グループ 専任部長 西川 一哉氏 ほか 【第3章】 マスターデータ管理プロジェクトへの取り組み方 [3-1] プロジェクトの全体像 [3-2] フェーズ1 ~企画~ ほか 【第4章】 マスターデータ管理を実践した企業の10年後 [4-1] それから10年後 ほか
-
-本書の「検証結果」を自由に役立ててください! 1)検証という結果を通して、使えるルールかどうかを証明 本書は、玉石混交の情報の海で溺れている投資家に対して、「過去データによる検証結果」という道筋を示しています。 本書の中で紹介している売買ルールはすべて、検証を通して、利益が積み上がるかどうか、証明済みのものばかりです。検証という難しい作業を自分で行うことができない投資家でも、役立てることが可能です。 2)目的のひとつは「真似る」こと 本書では“利益率の高い売買ルール”をランキング形式で紹介しています。それを参考に、利益率の高い売買ルールをそのまま真似てもらうことがひとつのやり方です。 ただし、過去検証では成績が良かったとしても、今後もその結果を享受できるかどうかはわかりません。だからこそ、パラメータを変更してみるなど、自分なりに調整していくことが大事になります。 その意味では、過去検証で成績の悪い売買ルールであったとしても、条件を変えていけば使える売買ルーになる可能性も十分にある、ということを忘れてはいけません。 3)もうひとつの目的は「自分専用の手法を作る」こと 成績の良い売買ルールを真似ること自体は間違っていませんが、できることなら、もう一歩先に進んでほしいと考えているます。 学ぶの語源は「真似ぶ」という説もあるように、人の真似から入ること自体は悪いことではありません。 ですが、真似だけで満足していては、いずれ頭打ちになる怖れがあります。なぜなら、真似は、あくまでも真似にすぎないからです。自分に合った、自分だけのルールを作ることができるのであれば、それにこしたことはありません。 本書では、“そこ”を目指しました。過去検証で実績のある売買ルールを参考にして、「結果の出ているルールに共通している項目は何か」「どういう思想で売買ルールを構築すればよいのか」などを学び、自分専用の手法を、自分で作ってほしいと願っています。 良い売買ルールには、良いコンセプト(戦略)があります。それを見つけることが、検証の醍醐味だと思います。 ◆本書を読んでほしい人 ◎玉石混交の投資情報の海の中、何を参考にすれば良いのか、わからない人 ◎検証の大切さがわかってはいても、自分で実行するのは難しい人 ◎検証で証明された手法を使ってみたい人 ◎手法を作るときに、どういう考えを取り入れればよいのか、学びたい人 ◆本書の特長 ◎株式投資(FXではない)のテクニカル的手法の検証本 ◎計26の手法の独自データ(検証)を掲載 ◎検証結果から、利益率の高い売買ルールを真似することができる ◎検証結果をもとに、自分で利益率の高い売買ルールを作ることもできる
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ICTやIoT技術の発展によって社会にあふれる「ビッグデータ」を活用して、有用な「価値」を引き出す学問分野「データサイエンス」は、ビジネスから行政、医療、スポーツなど、あらゆる分野で注目されている。データサイエンスの基礎となるデータ処理(情報学)やデータ分析(統計学)手法の基本やあらまし、さまざまな分野での活用実例などを、図版や写真、イラストを使ってやさしく解説するシリーズ第10弾。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 あたらしい1年生シリーズ 「データサイエンス1年生」の登場! ヤギ博士、フタバちゃんと一緒に データサイエンスの世界に飛び込んでみよう! 【本書の概要】 Python1年生でもおなじみのヤギ博士とフタバちゃんと一緒にデータサイエンスの基本について体験できる書籍です。データサイエンスに必要な知識から始まり、基本的なデータの読み解き方や、データの傾向や特徴をつかむ方法について解説します。 【本書の開発環境】 Google Colaboratory 【対象読者】 ・Pythonの基本文法は知っている方(『Python1年生』を読み終えた方) ・データサイエンスについて知りたい初心者 ・Pythonを使ってデータサイエンスの手法を体験したい初心者 【本書のポイント】 ・対話形式で、イラストを交えながら、基礎知識を解説します。 ・データの読み解き方をサンプルを元に学習できます。 ・データの傾向や特徴のつかみ方を学習できます。 【目次】 第1章 「好奇心×データ」で世の中の謎を解き明かそう 第2章 データサイエンスの基本的な手順 第3章 データからわかることは?:探索的データ分析 第4章 本当にそうだろうか?:確証的データ分析 第5章 アイスクリームの売り上げ分析で体験 第6章 AIで変わるデータサイエンスの未来 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコンBASICマガジン』(電波新聞社)の時代からゲームを作り続けて、現在はコンテンツ制作や執筆活動を行い、関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。近著に『Python2年生 スクレイピングのしくみ 第2版』、『Python2年生 データ分析のしくみ 第2版』『ChatGPTプログラミング1年生 Python・アプリ開発で活用するしくみ』、『Python3年生 ディープラーニングのしくみ』、『Python2年生 デスクトップアプリ開発のしくみ』、『Python1年生 第2版』、『Python3年生 機械学習のしくみ』、『Java1年生』、『動かして学ぶ! Vue.js 開発入門』(いずれも翔泳社)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 OERAモデルでプロ野球の歴史から勝利の戦略を紐解く OERA(Offensive Earned-Run Average)とはメジャーリーグベースボールで公平かつ正確に打者の評価を行うためにCoverとKeilersが提案した打者貢献度指数です。OERAは1つの吸収状態をもつマルコフ連鎖を基にして, 打者の貢献度を数値化するシンプルなモデルです。打者貢献度を指数で測ることによりある打者が1試合すべての打席に入り続けたとき、何点くらい得点できるなど調べることができます。 本書は過去のプロ野球の歴史を振り返り、単に記録だけでなく実際にOERAで出した指標と比較してみます。その結果が指標通りであれば今後のペナントレースの優勝チームを予測することが出来ます。 はじめに 第1章 歴史から見たプロ野球 第2章 OERAモデルとは 第3章 攻撃 第4章 防御 第5章 データサイエンス野球 第6章 三原修・江夏豊・落合博満 第7章 戦略的意思決定を構成する7つのステップ 1 戦略の決定 2 情報の収集 3 視点の検証 4 原因とは何か 5 戦術の選定 6 職術の実行 7 成功か失敗の判断
-
3.5
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonでデータサイエンスの理論と実践を学ぶ データサイエンスは、「データを科学的に扱う」学問分野です。近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。 本書は、データサイエンスの基礎となる統計分析からパターン認識(機械学習)、時系列データ分析、深層学習などを、Pythonを使って実際に分析しながら学ぶものです. データの取り扱い、確率・統計の基礎といった基本的なところから、パターン認識、深層学習といった統計・機械学習手法、時々刻々と変化する時系列データの分析などの解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。 Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。 第2版にあたっては深層学習を大幅に拡充し、自然言語処理、生成系(AutoEncoder、GAN)などの近年重要視されるテーマを取り上げました。 1章 はじめに 2章 データの扱いと可視化 3章 確率の基礎 4章 統計の基礎 5章 回帰分析 6章 パターン認識 7章 時系列データ分析 8章 深層学習の基礎 9章 深層学習による画像処理 10章 深層学習による自然言語処理 11章 生成系深層学習 12章 深層強化学習 索引
-
-★AI時代の注目デジタルスキル資格 ★待望の公式テキスト登場 生成AIの登場によって、ビジネスパーソンの働き方は大きく変わります。カギを握るのは「AIを使いこなせるか、データから価値を見いだせるかどうか」です。AIをうまく使いこなせる、データから価値を見いだせるビジネスパーソンの生産性は、飛躍的に高くなります。 では、AIを使いこなす(データから価値を見いだす)には、何を学べばいいのでしょうか? 使いこなすには、その対象について理解を深めることが必要です。AIの基礎理論およびその土台となるデータサイエンスは数学の活用ですから、AI、データサイエンスに関連する数学および活用法を体系的に学ぶことが必要です。それこそが本書であり、その理解度を測る資格試験が「データサイエンス数学ストラテジスト」です。AIをつくるための資格ではなく、AIを使いこなす、データから価値を見いだすための資格ですから、理系でなくても大丈夫です。 「データサイエンス数学ストラテジスト」資格試験には中級と上級があり、本書は上級の「公式テキスト」になります。同資格の受験を考えている人にとって、待望の解説書です。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 デジタル時代に即した新資格試験 合格最短コースの公式問題集 ビジネスパーソンに求められる「基本スキル」が大きく変化しようとしています。その背景にあるのは「デジタル技術」の進化、その本質は「データ化」です。データ化とは、コンピューターで処理したり分析したりできることを意味します。 会社の業務がデータ化されるということは、業務が「データ処理」になり、業務上の判断は「データに基づいた分析」になります。そこで必要な知識は、学校教育の「数学」の分野に入るものです。例えば、データ分析の基本は確率統計で、線形代数や微分積分を駆使することで高度な分析が可能になります。これからのビジネスパーソンにとって、「数学」はより重要になるのです。 ジャンルによってはやや高度な知識が必要ですが、学校教育の数学のすべてが必要になるわけではありません。求められるのは、ビジネスパーソンに求められるスキルを、学校教育の数学と結び付けて効率よく無駄なく学習できるように体系立てることです。それこそが『データサイエンス数学ストラテジスト』資格制度です。この資格試験は世界のトレンドを先取りしているだけでなく、ビジネスパーソンにとって実用度が高く仕事で使える内容になっています。 資格試験には中級と上級があり、本書は上級の公式問題集です。掲載している問題数は80問で、それぞれの問題を解くための考え方を丁寧に解説しています。本書での学習が合格最短コースになります。
-
-★AI時代の注目デジタルスキル資格 ★待望の公式テキスト登場 生成AIの登場によって、ビジネスパーソンの働き方は大きく変わります。カギを握るのは「AIを使いこなせるか、データから価値を見いだせるかどうか」です。AIをうまく使いこなせる、データから価値を見いだせるビジネスパーソンの生産性は、飛躍的に高くなります。 では、AIを使いこなす(データから価値を見いだす)には、何を学べばいいのでしょうか? 使いこなすには、その対象について理解を深めることが必要です。AIの基礎理論およびその土台となるデータサイエンスは数学の活用ですから、AI、データサイエンスに関連する数学および活用法を体系的に学ぶことが必要です。それこそが本書であり、その理解度を測る資格試験が「データサイエンス数学ストラテジスト」です。AIをつくるための資格ではなく、AIを使いこなす、データから価値を見いだすための資格ですから、理系でなくても大丈夫です。 「データサイエンス数学ストラテジスト」資格試験には中級と上級があり、本書は中級の「公式テキスト」になります。同資格の受験を考えている人にとって、待望の解説書になります。
-
3.3※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 デジタル時代に即した新資格試験 合格最短コースの公式問題集 ビジネスパーソンに求められる「基本スキル」が大きく変化しようとしています。その背景にあるのは「デジタル技術」の進化、その本質は「データ化」です。データ化とは、コンピューターで処理したり分析したりできることを意味します。 会社の業務がデータ化されるということは、業務が「データ処理」になり、業務上の判断は「データに基づいた分析」になります。そのために必要な知識とは、学校教育でいえば「数学」の分野に入るものです。例えば、データを分析するには確率統計が基本で、線形代数や微分積分を駆使することで高度な分析が可能になります。これからのビジネスパーソンにとって、「数学」はより重要になるのです。 ジャンルによってはやや高度な知識が必要ですが、学校教育の数学のすべてが必要になるわけではありません。求められるのは、ビジネスパーソンに求められるスキルを、学校教育の数学と結び付け、効率よく、無駄なく学習できるように体系立てることです。それこそが『データサイエンス数学ストラテジスト』資格制度です。世の中のトレンドを先取りしているだけでなく、ビジネスパーソンにとって実用度の高い試験内容になっています。 資格試験には中級と上級があり、本書は中級の公式問題集です。掲載している問題数は60問で、それぞれの問題を解くための考え方を丁寧に解説しています。本書での学習が合格最短コースになります。
-
3.5世界は今、嘘とフェイクに満ちあふれている。ニュースも、ウェブ検索も、専門家の言うことも、鵜呑みにすれば騙されてしまう。本書は今もっとも注目を集めるデータサイエンティストが、データに注目して「嘘を見抜く技術」を解説! 世論調査の結果はなぜ各社異なるのか?アベノミクスによって景気は良くなったのか?「最近の若者は……」論の誤り。本当に地球は温暖化しているのか?……etc. 新時代の教養「データサイエンス」の入門書として、数学が苦手な人、統計学に挫折した人にもわかりやすい一冊! ※こちらの作品は過去に他出版社より配信していた内容と同様となります。重複購入にはお気を付けください
-
3.7複雑で難解になりがちな統計学に基づいたデータ分析の基礎知識を俯瞰的に理解してビジネスに活かせるようになるのが本書の狙いです。数多くのデータ分析プロジェクトの現場では、「ビジネス」ありきではなく「データ」ありきの曖昧な態度でデータ分析に取り組んでしまい、うまく行かなくなるケースが多々あります。 ビジネス領域におけるデータ分析は、企業戦略・戦術や業務プロセスでの意思決定を支援するためのものです。いかに画期的な分析結果が得られても、それがビジネス活動に影響を与えられなかったり、成果につながらなければ人材やシステム投資の無駄遣いです。 「データ」ありきではいけない。こうした著者の思いから、データサイエンティストになりたい人だけでなく、一般のビジネスパーソン、例えば、マーケティング部門や経営企画部門、営業部門、IT部門などに属する方にも読んでいただけるよう、「データ分析の基本」を具体的な事例を交えながら平易に説明しています。 【特徴】 ・日本屈指のデータサイエンティストによる書き下ろしです。 ・この1冊で、ビジネス活動に役立つデータサイエンスを一通り理解できます。 ・日々の生活で体験する身近な事例から先進的な企業事例までを具体的に紹介します。 ・統計学に基づいたデータ分析の基礎知識を平易に解説します。 ・巻末に「図解 統計の基本」を収録しています。
-
4.0
-
3.8
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【データをどうやって見ていますか?】 データサイエンスや人工知能への関心の高まりとともに、データを読み取る能力の重要性が高まっています。データサイエンティストでなくても、「最近行った販促活動は売上につながっているのか」「広告や報道、SNSに出てくるグラフの読み取り」「ネットの情報の真偽を確かめる」など、私達は仕事や日常で多くのデータを扱っています。 本書は、数学が苦手な人にも馴染みやすい身近な例からデータに関する基本を学び、数字に強くなり、データを正しく読み取る事ができるようになるための書籍です。 ■こんな方におすすめ ・データの見方を理解したい人 ・数学は苦手だけど数字に強くなりたい人 ■目次 第1章 データとは -データを基にして考える 第2章 データには種類がある -種類でわかる数値の意味 第3章 正確な数字と大まかな数字 -オーダーと有効数字 第4章 デジタル化すれば便利になる? -アナログとデジタル 第5章 平均値は真ん中の値? -データの特徴を数値で表す 第6章 データどうしの結びつきを考えよう -因果関係を疑う 第7章 ひっかけグラフにご用心 -グラフを読み解くポイント 第8章 データリテラシーを身につけるために -データ社会の処世術 ■著者プロフィール 阿部 圭一(あべ けいいち):名古屋大学大学院博士課程修了、工学博士、静岡大学、愛知工業大学を経て、現在はフリー。静岡大学名誉教授。専門は情報学、情報教育。著書に『よくわかるデジタル数学-離散数学へのアプローチ』(近代科学社、2020年)、『よくわかるデータリテラシー データサイエンスの基本』(近代科学社、2021年)など。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」準拠テキスト データ活用社会を生きる学生・社会人に必須の【データ分析・解析の基本的な考え方と手法】をわかりやすく解説! データサイエンスは、さまざまなデータを分析・解析し、そこから新しい知見や価値を生み出していく技術・手法です。統計学などの数学を基礎とし、必要に応じコンピュータを活用して、さまざまな分野の専門知識と融合しながら、データから新しい価値を生み出していくデータサイエンスは、いまや大学生・社会人にとって必須の教養といえます。 本書は、政府の「AI戦略2019」での議論を経て策定・公表された「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に準拠した内容です。具体的な事例と分析手法を扱いながら、社会のさまざまな場面で必要とされるデータサイエンスの考え方を、関連する数学とともに丁寧に解説します。また、大学におけるリテラシーレベルの授業に続く、半期の授業に対応した構成としました。 【著者一覧】 第1章 小澤誠一 神戸大学数理・データサイエンスセンター 第2章 大川剛直 神戸大学大学院システム情報学研究科情報科学専攻 第3章 藤井信忠 神戸大学大学院システム情報学研究科システム科学専攻 第4章 青木 敏 神戸大学大学院理学研究科数学専攻 第5章 光明 新 神戸大学数理・データサイエンスセンター 第6章 為井智也 神戸大学数理・データサイエンスセンター 第7章 大森敏明 神戸大学大学院工学研究科電気電子工学専攻 第8章 為井智也 神戸大学数理・データサイエンスセンター 第9章 寺田 努 神戸大学大学院工学研究科電気電子工学専攻 第10章 熊本悦子 神戸大学情報基盤センター 第11章 高島遼一 神戸大学都市安全研究センター 第12章 村尾 元 神戸大学大学院国際文化学研究科 第13章 白石善明 神戸大学大学院工学研究科電気電子工学専攻 第14章 小澤誠一 神戸大学数理・データサイエンスセンター 第15章 羽森茂之 神戸大学大学院経済学研究科 第1章 データサイエンスの考え方 1.1 データサイエンスとは 1.2 データサイエンスを学ぶ理由 1.3 データから価値を生み出すプロセス 第2章 アルゴリズムとデータ構造 2.1 はじめに 2.2 データサイエンスにおけるアルゴリズムとデータ構造 2.3 アルゴリズムの基礎 2.4 基本的なデータ構造 2.5 探索 2.6 ソーティング 第3章 システム最適化 3.1 最適化問題とは 3.2 線形計画問題 3.3 非線形計画問題 3.4 整数計画問題 第4章 統計的データ解析の考え方 4.1 標本調査 4.2 信頼区間と仮説検定 4.3 分布の近似と標準誤差 4.4 線形回帰モデル 4.5 非線形回帰モデル 第5章 教師なし学習 5.1 クラスタリング 5.2 高次元データの次元削減と可視化 第6章 教師あり学習 6.1 教師あり学習とは 6.2 学習モデルとトレーニング(パラメータ最適化) 6.3 データのセットの分割とテスト(モデルの評価) 6.4 実データへの適用例(回帰) 第7章 確率モデル・確率推論 7.1 はじめに 7.2 確率モデルとベイズの定理 7.3 確率推論 7.4 確率推論の応用 第8章 強化学習 8.1 強化学習とは 8.2 強化学習の理論 8.3 強化学習アルゴリズム 8.4 探索と利用のトレードオフと意思決定モデル 第9章 情報センシング 9.1 情報センシングとは 9.2 センサデータ処理 9.3 センシング応用 第10章 画像解析・深層学習 10.1 画像解析 10.2 デジタル画像の特徴とフィルタ処理 10.3 深層学習 第11章 時系列データ解析・音声解析 11.1 時系列データ解析 11.2 音声解析 第12章 テキスト解析 12.1 はじめに 12.2 テキストデータの収集 12.3 テキストクレンジング 12.4 トークン化 12.5 ベクトル化 12.6 探索的データ分析 12.7 テキスト分析 第13章 情報セキュリティ 13.1 情報資産と情報セキュリティ 13.2 情報セキュリティの基本:アクセス制御 13.3 情報セキュリティのCIA 第14章 プライバシー保護技術 14.1 データが価値を生む仕組みと提供リスク 14.2 匿名化によるプライバシー保護 14.3 差分プライバシーによるプライバシー保護 14.4 準同型暗号によるプライバシー保護 14.5 協調学習によるプライバシー保護 第15章 意思決定論 15.1 意思決定の基本的枠組み 15.2 相関関係と因果関係 参考文献 索引
-
-現実社会のデータを多く扱いながら、データサイエンスの概念と確率の基礎をしっかりていねいに解説。データリテラシーを涵養するためのまたとない入門書! データサイエンスを知るならまずこの本! 【データサイエンス入門シリーズ】第1期として、以下の3点を刊行! ・データサイエンスのための数学:椎名 洋・姫野哲人・保科架風(著)清水昌平(編)・データサイエンスの基礎:浜田悦生(著)狩野 裕(編)・最適化手法入門:寒野善博(著)駒木文保(編)/【「巻頭言」より抜粋】データサイエンス分野の遅れを取り戻すべく、日本でも文系・理系を問わず多くの学生がデータサイエンスを学ぶことが望まれます。文部科学省も「数理及びデータサイエンスに係る教育強化拠点」6 大学(北海道大学、東京大学、滋賀大学、京都大学、大阪大学、九州大学)を選定し、拠点校は「数理・データサイエンス教育強化拠点コンソーシアム」を設立して、全国の大学に向けたデータサイエンス教育の指針や教育コンテンツの作成をおこなっています。本シリーズは、コンソーシアムのカリキュラム分科会が作成したデータサイエンスに関するスキルセットに準拠した標準的な教科書シリーズを目指して編集されました。またコンソーシアムの教材分科会委員の先生方には各巻の原稿を読んでいただき、貴重なコメントをいただきました。データサイエンスは、従来からの統計学とデータサイエンスに必要な情報学の二つの分野を基礎としますが、データサイエンスの教育のためには、データという共通点からこれらの二つの分野を融合的に扱うことが必要です。この点で本シリーズは、これまでの統計学やコンピュータ科学の個々の教科書とは性格を異にしており、ビッグデータの時代にふさわしい内容を提供します。本シリーズが全国の大学で活用されることを期待いたします。 編集委員長 竹村彰通(滋賀大学データサイエンス学部学部長、教授) 【推薦の言葉】データサイエンスの教育の場や実践の場で利用されることを強く意識して、動機付け、題材選び、説明の仕方、例題選びが工夫されており、従来の教科書とは異なりデータサイエンス向けの入門書となっている。――北川源四郎(東京大学特任教授、元統計数理研究所所長) 国を挙げて先端IT人材の育成を迅速に進める必要があり、本シリーズはまさにこの目的に合致しています。本シリーズが、初学者にとって信頼できる案内人となることを期待します。――杉山将(理化学研究所革新知能統合研究センターセンター長、東京大学教授)
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データサイエンスの社会的需要が高まる中、データサイエンティストにはデータを的確に把握し正しく理解する能力が求められる。そのためにはデータ全体をさまざまな角度から丹念に調べる技術が必須となる。本書ではデータの形式や属性、型などの骨子を解説し、データを扱う上で抑えるべき基本を学ぶ。 また著者が開発したソフトウェア「TRAD」(無償)を利用してデータの属性や背景を読み解いた事例も紹介している。20年以上に渡り「サイエンスとしてのデータサイエンス」を追い求めてきた著者が贈る、データの時代に迷わないための必読書。
-
5.0データサイエンスの門をたたく前に必要となる数学を、一冊にまとめたテキスト。微分積分・線形代数・確率論の中から、入門者が学んでおきたい基礎を厳選、平明簡潔に整理した。まずはこの本で、しっかり基礎固め!【データサイエンス入門シリーズ】第1期として、以下の3点を刊行!・『データサイエンスのための数学』椎名 洋・姫野哲人・保科架風(著)清水昌平(編)・『データサイエンスの基礎』浜田悦生(著)狩野 裕(編)・『最適化手法入門』寒野善博(著)駒木文保(編)【「巻頭言」より抜粋】データサイエンス分野の遅れを取り戻すべく、日本でも文系・理系を問わず多くの学生がデータサイエンスを学ぶことが望まれます。文部科学省も「数理及びデータサイエンスに係る教育強化拠点」6 大学(北海道大学、東京大学、滋賀大学、京都大学、大阪大学、九州大学)を選定し、拠点校は「数理・データサイエンス教育強化拠点コンソーシアム」を設立して、全国の大学に向けたデータサイエンス教育の指針や教育コンテンツの作成をおこなっています。本シリーズは、コンソーシアムのカリキュラム分科会が作成したデータサイエンスに関するスキルセットに準拠した標準的な教科書シリーズを目指して編集されました。またコンソーシアムの教材分科会委員の先生方には各巻の原稿を読んでいただき、貴重なコメントをいただきました。データサイエンスは、従来からの統計学とデータサイエンスに必要な情報学の二つの分野を基礎としますが、データサイエンスの教育のためには、データという共通点からこれらの二つの分野を融合的に扱うことが必要です。この点で本シリーズは、これまでの統計学やコンピュータ科学の個々の教科書とは性格を異にしており、ビッグデータの時代にふさわしい内容を提供します。本シリーズが全国の大学で活用されることを期待いたします。――編集委員長 竹村彰通(滋賀大学データサイエンス学部学部長、教授) 【推薦の言葉】データサイエンスの教育の場や実践の場で利用されることを強く意識して、動機付け、題材選び、説明の仕方、例題選びが工夫されており、従来の教科書とは異なりデータサイエンス向けの入門書となっている。――北川源四郎(東京大学特任教授、元統計数理研究所所長)国を挙げて先端IT人材の育成を迅速に進める必要があり、本シリーズはまさにこの目的に合致しています。本シリーズが、初学者にとって信頼できる案内人となることを期待します。――杉山将(理化学研究所革新知能統合研究センターセンター長、東京大学教授)
-
3.7ツールとして不可欠な技術をコンパクトに! ・データベースの活用を目的とし、SQLの操作は「問い合わせ」を中心に、MySQLに準拠して解説! ・関係データベースの基本とその使い方、データの可視化、NoSQLまで網羅! ・実践的なデータ分析事例として、Wikipediaダンプデータの分析を紹介! 【サポートページ】 https://sites.google.com/view/dbfordatascience 【主な内容】 1章 はじめに 2章 関係データベースの基本 3章 SQLと正規化 4章 データの可視化と分析 5章 NoSQL 6章 実践的データ分析事例 【「巻頭言」より抜粋】 文部科学省は「数理及びデータサイエンスに係る教育強化拠点」6 大学(北海道大学、東京大学、滋賀大学、京都大学、大阪大学、九州大学)を選定し、拠点校は「数理・データサイエンス教育強化拠点コンソーシアム」を設立して、全国の大学に向けたデータサイエンス教育の指針や教育コンテンツの作成をおこなっています。 本シリーズは、コンソーシアムのカリキュラム分科会が作成したデータサイエンスに関するスキルセットに準拠した標準的な教科書シリーズを目指して編集されました。またコンソーシアムの教材分科会委員の先生方には各巻の原稿を読んでいただき、貴重なコメントをいただきました。 データサイエンスは、従来からの統計学とデータサイエンスに必要な情報学の二つの分野を基礎としますが、データサイエンスの教育のためには、データという共通点からこれらの二つの分野を融合的に扱うことが必要です。この点で本シリーズは、これまでの統計学やコンピュータ科学の個々の教科書とは性格を異にしており、ビッグデータの時代にふさわしい内容を提供します。本シリーズが全国の大学で活用されることを期待いたします。 ――編集委員長 竹村彰通(滋賀大学データサイエンス学部学部長、教授) 【推薦の言葉】 データサイエンスの教育の場や実践の場で利用されることを強く意識して、動機付け、題材選び、説明の仕方、例題選びが工夫されており、従来の教科書とは異なりデータサイエンス向けの入門書となっている。 ――北川源四郎(東京大学特任教授、元統計数理研究所所長) 国を挙げて先端IT人材の育成を迅速に進める必要があり、本シリーズはまさにこの目的に合致しています。本シリーズが、初学者にとって信頼できる案内人となることを期待します。 ――杉山将(理化学研究所革新知能統合研究センターセンター長、東京大学教授)
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 超高度情報化社会を迎え、IoT、ビッグデータ、データサイエンス、人工知能(AI)などが、ビジネスの場でもますます重要性を増してきている。本書では、データサイエンスの基礎的な内容、概念を具体的にビジネスにどう活用できるか、事例を豊富に示しながら解説。高度な数学知識がなくても理解できる、文系、理系を問わないデータサイエンスのビジネス活用入門書。
-
3.3技術の無駄遣い!? 日常の些細な出来事を データサイエンスを駆使して 「まじめに」分析 【本書の概要】 ITmedia NEWS で大人気の連載記事 『データサイエンスな日常』をもとにした書籍です。 「飲み会での孤立」「LINEの既読スルー」「満員電車での立ち振る舞い」。 日常生活で気になるテーマを著者の持つ独特の視点で分析。 読み物としてもデータ分析の学習本としても楽しめます。 【本書の対象読者】 ・データやテクノロジー、デバイスを用いたテック系の読み物に興味のある方 ・データ分析、アプリケーション開発に興味のある方 【本書の目次】 PROLOGUE それはコミュニケーションの問題ではなくデータサイエンスの問題 PART 1 家の孤独に立ち向かう CHAPTER1 LINEの既読スルーにランダムフォレストで立ち向かう CHAPTER2 多面的な自分と向き合うためのチャットボット CHAPTER3 電子デバイスを駆使して強制的に感情移入できる漫画を作る CHAPTER4 在宅ワークの孤独に対抗してプロジェクションマッピングで“バーチャル職場”を作り出す PARTT 2 街の孤独に立ち向かう CHAPTER5 「休日に会社の同僚と遭遇しないための動き方」を物理シミュレーションとゲーマーの英知で解き明かす CHAPTER6 飲み会で孤立しないためのセル・オートマトン CHAPTER7 飲み会の帰り道での孤立に、ARシミュレーションで立ち向かう CHAPTER8 「満員電車で快適に過ごすための動き方」を物理シミュレーションで解き明かす CHAPTER9 すべての孤独に悟りとデータサイエンスで立ち向かう ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.5Kaggleとは、コンペティションを主催するほかに、機械学習エンジニアの育成から就職支援まで携わる、データサイエンティスト支援の一大ポータルです。本書では、Kaggleの概要から、コンペティションへの参加方法、コードの実行方法、活用方法など、幅広く解説しています。 【序文より抜粋】 本書では、データ解析コンペティションを開催しているKaggleというサイトを紹介しますが、Kaggleのコンペティションは、単純にデータを受け取り、解析し、スコアが付けられるだけの流れ作業ではありません。 Kaggle上で行われるコンペティションは、それぞれが1つのドラマです。 データの特性に関する議論や有効なソリューションの公開が行われると思えば、仮順位の推移を巡る駆け引きもあり、そして時には主催者側の問題で右往左往する参加者の姿が見られたりと、コンペティションの開催から終了まで続くお祭り期間中には、さまざまな人間模様を見ることができます。 Kaggleのコンペティションを通じて、そうしたデータサイエンティストたちの活動の実態を紹介し、また、実際にKaggleに参加して、人間味あふれるデータサイエンティストたちと交流するにはどうすればよいかを紹介するために、本書を執筆しました。 そのため、本書では、単にKaggleの使い方を解説するだけではなく、実際のコンペティションで起こった事例を、できるだけ多く取り入れるようにしています。
-
-【内容紹介】 コロナ禍に発足した国家プロジェクトは 前代未聞の危機にどう挑んだのか。 知られざる真実が、いま明かされる! 新型コロナウイルスが全世界で甚大な被害をもたらしていた頃、 感染拡大防止と経済活動の両立を模索するために立ち上がった 国家プロジェクトの存在を知る人はどれほどいただろうか。 新型コロナウイルス感染拡大による国難を乗り越えるための 「AI・シミュレーションプロジェクト」はさまざまな成果を出している。 たとえば2020年年末に政府が打ち出した 「Stay with Your Community」キャンペーンや、 2021年のワクチン職域接種や大規模接種会場設置は、 シミュレーションの結果が政策立案に少なからず貢献したものである。 プロジェクトから生み出された研究成果などは、 内閣官房のHPやプロジェクトの特設ページで誰でも閲覧することができる。 ただ、それらはあくまでも「正史」であり、 実際には、きれいごとでは片づかない衝突も起きていた。 本書は、事務局を務めた三菱総合研究所の現場メンバーの視点から パンデミックの裏側で繰り広げられた激動の日々を追った記録である。 パンデミックやそれに類する危機がふたたび起きたら、 水面下で何が起きていたのかという記録がきっと役に立つ。 また、政策立案やシミュレーションに関わらない 一般のビジネスパーソンにとっても、 未曾有の事態に挑むマネジメントの記録は仕事のヒントになるだろう。 【著者紹介】 [著]新型コロナ対策とEBPM取材班 プレジデント社の編集者と三菱総合研究所の担当者によって構成された取材班。未曾有の事態の中で「EBPM(エビデンスに基づく政策立案)」に挑むべくスタートした「COVID-19 AI・シミュレーションプロジェクト」で得た知見やノウハウを、広く社会に還元したいという思いで本書の取材・執筆に当たる。本書の制作にあたっては当時の関係者に取材を重ね、その経緯を客観的に記録するよう努めた。 【目次抜粋】 はじめに 第1章 五里霧中の国家プロジェクト、始動 第2章 未知のウイルスを分析せよ 第3章 たった二人で100万人対象のモニタリング検査に挑め! 第4章 ワクチンは誰に打つのが正解か? 第5章 次のパンデミックは明日起こるかもしれない エピローグ それぞれの思い
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ★誰でも無理なく学べるテキストの決定版!★ ・全学必修のデータサイエンス教育の「さきがけ」となった講義がついに書籍化。 ・文部科学省「数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベルプラス)」に採択された「信頼」と「実績」。 【主な内容】 第1部 社会におけるデータサイエンス 1章 社会におけるデータサイエンスの位置づけと活用事例 1.1 データサイエンス概論 1.2 言語教育にデータはどのように活用されるのか 1.3 データサイエンスと社会科学 1.4 ヒューマンコンピュータインタラクション 1.5 臨床医学・社会医学とデータサイエンス:ヘルスサービスリサーチの視点から 1.6 生物科学研究におけるデータサイエンス:発生生物学研究を例に 1.7 サッカーの上達にデータを活かす 1.8 データサイエンスとWeb 1.9 マテリアルズ・インフォマティクス 1.10 ロボティクスとAI 1.11 都市計画とデータサイエンス 1.12 ビジネスとデータサイエンス 第2部 データサイエンス入門 2章 データの種類と収集 3章 データの前処理 4章 データの管理 5章 高度なデータ活用とビッグデータ 6章 1つの質的データの解析 7章 2つ以上の質的データの解析 8章 1つの量的データの解析 9章 2つ以上の量的データの解析 10章 時系列データの解析 11章 データの可視化 12章 実際のデータ分析 13章 人工知能と機械学習 14章 データ倫理とAI倫理 【著者一覧】 名畑目 真吾/内藤 久裕/落合 陽一/田宮 菜奈子/ 堀江 健生/中山 雅雄/岡 瑞起/岩﨑 悠真/ 袖山 慶太郎/境野 翔/藤井 さやか/岡田 幸彦 川口 一画/滝沢 穂高/遠藤 結城/平田 祥人/ 三谷 純/天笠 俊之/五十嵐 康彦/今倉 暁/ 青砥 隆仁/福地 一斗/三末 和男/津川 翔/馬場 雪乃 ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「データサイエンス100本ノック構造化データ加工編」はSQL、Python、Rの3言語で、ID-POSデータを使い、データサイエンスの基礎教養となる構造化データの加工に重点を置いた、さまざまな分野のスキルセットを身につけるための実践的なトレーニング環境です。トータル22の区分、100個の設問(ノック)に対して、3言語での実装例と解説を提供します。
-
3.0“ビッグデータの分析官"として注目を浴びる、いま最もセクシーな職業、データサイエンティスト。 「21世紀で最も魅力的な職業」として注目を浴び、「データを分析して業務を変革し、社内にイノベーションを起こす人材」と定義されていますが、これだけではなかなか実体をつかみにくいかもしれません。そこで本書は、データサイエンティストの実態に迫ります。 この新たな人材像とこれからのデータ活用を提示する本書は、データサイエンスのスキルに関心があるビジネスパーソンはもちろん、「経験・努力・勘・根性」に基づくオペレーションの品質を高めたい経営層や管理職に役立つ情報が満載です。 『データ・サイエンティストに学ぶ「分析力」』(日経BP社)の著者で、世界で最も 有名なデータサイエンティストでもあるディミトリ・マークス氏に単独インタビュー。さらにJALや楽天、花王、東芝、大阪ガスなど日本の著名企業で働くデータサイエンティスト10人の仕事ぶりを紹介。 また、データを経営強化にどう生かすかについては、スターバックスやプロクター・アンド・ギャンブル(P&G)、アメリカン・エキスプレス、キリンビール、日東電工、日清食品、ファンケルなど国内外約20社の実態に迫ります。 日産自動車やホンダ、ファミリーマート、ニトリ、ホンダなど国内大手10社の経営トップ/経営幹部からは、データサイエンティスト/データ分析に期待する声を集めました。
-
-
-
4.0“データサイエンティスト”のすそ野が広がる あらゆる社員がデータを仕事に生かせる「全員分析経営」の事例を総まくり! 「IoT」や「インダストリー4.0」など、ITをベースにした事業変革に 取り組む企業が増えています。 変革の担い手となるのが、データから隠された事実を掘り起こし、 未来を予見する「データサイエンティスト」。 そのポテンシャルに期待は高まる一方です。 日経情報ストラテジーのデータサイエンティスト・ムック第3弾となる本号は、 「全員分析経営」がテーマです。 ITの進化で大量のデータに容易にアクセスできる環境が整い、 使いやすい分析ツールも登場。 こうした環境を追い風に、分析人材のすそ野が広がり、 誰もが日々の意思決定や業務遂行にデータを活用することが可能になりつつあります。 本誌の好評記事のなかからビジネスの最前線におけるデータ分析、 データ活用事例を厳選し編集しました。 <目次> 【Part1】 顧客が分かる!ニーズが読める!データ分析の威力を知る 【Part2】 「IoT」で競う製造業 ビッグデータ分析で不具合を撲滅 【Part3】 分析力が要の「お財布争奪戦」 魅了する売り場にデータ生かす流通業 【Part4】 データサイエンティスト、仕事を語る 「分析力+α」で会社を変える 【Part5】 複雑な分析結果を理解してもらうには?目指せ!「伝え方」の達人 【Part6】数字を恐れず、味方にする データの「読み書き」で強い組織に
-
3.4
-
3.6本書は、“既に手元にある魅力的なデータ(Sexy Little Numbers)”を、これまでとは違った角度から分析し、思い込みをこわして新しいビジネス戦略を描き成功させたデータ・サイエンティストの手法を、実例と多数の図表を交えて紹介する。 データを分析し、誰に、何を、どのメディアを通して、いくらの予算をかけて消費者にアプローチするか、マーケティング戦略を決めたらどう実行に移し、その結果を測定して最適化を図っていくか、という「データ・アナリティクス(分析)」の一連のプロセスがわかる。 「測定した結果が何の意味をもつのか」をシンプルな形で示すことに徹底的にこだわる。
-
3.8AI時代の新職種、データサイエンティストの入門書。 データサイエンティストとは、ビッグデータと呼ばれる大量データを活用し、ビジネスを変革したり、社会問題を解決できる人のことで、近年最も注目されている職業の一つです。 本書は、データサイエンス関連業務の実態を整理し、データサイエンティストに要求される能力を(1)データサイエンス力、(2)データエンジニアリング力、(3)ビジネス力の3つの切り口で詳しく解説し、その能力を活かした仕事の内容を紹介しています。 また、実際の事例をもとにした6つのケースを収録。データサイエンティストは日々どのような仕事をしているのか、どういった事業インパクトを与えているのか、実務で苦労している点は何か、といったデータサイエンティストの「働き方」「人となり」がわかります。 データサイエンティストになりたいと考えている学生のみなさんはもちろん、興味を持っている社会人の方、データサイエンティストの採用を考えている企業の担当者の方にも役立つ内容になっています。
-
-日経情報ストラテジー編集部が2013年から2014年初めにかけて総力を挙げて取材した、データ経営、データサイエンティスト関連の報道記事を編集・改訂して、この1冊に凝縮しました。データ活用事例をお探しの方には必携の1冊。 花王のデータサイエンティスト集団の働きぶりや、取り組みの工夫点。データ分析官として働く様々な企業の女性社員の活躍ぶり。花王とセコム、ゼンリンの経営トップが語る、データ活用を牽引するリーダーの心構え。著名データサイエンティストの素顔。データ分析で成果を上げているソフトバンクやチュチュアンナ、米P&G、米GEなどの事例を紹介していきます。 分析結果の効果的なプレゼン技法や、変革にデータ分析を生かすためのポイント、データ分析ツールの賢い選び方、ニューデータの獲得の方法などの解説記事も掲載。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonによる機械学習モデル構築のための特徴量 抽出・作成実践レシピ Pythonを活用した70以上の実践的な"レシピ"により表形式データに対する特徴量エンジニアリングのほぼすべてのトピックをカバー。テキストからの特徴量の抽出の付録として日本語モデルでの実例も取り上げます。 Packt Publishing: Python Feature Engineering Cookbook, Second Edition の翻訳書。 1章 欠損値を補完する 2章 カテゴリ変数をエンコーディングする 3章 数値変数を変換する 4章 変数を離散化する 5章 外れ値を扱う 6章 日付と時刻の変数から特徴量を抽出する 7章 特徴量をスケーリングする 8章 新しい特徴量を作成する 9章 Featuretoolsを用いてリレーショナルデータから特徴量を抽出する 10章 tsfreshを使って時系列データから特徴量を作成する 11章 テキスト変数から特徴量を抽出する 付録 日本語を扱う Soledad Galli : 世界的な学術機関や有名な企業で10年以上の経験を持つデータサイエンティスト、インストラクター、ソフトウェア開発者。保険金請求や信用リスクの評価、詐欺の防止を目的とした機械学習モデルを開発し実運用に成功している。複数のオンラインコースで機械学習を教えており、オープンソースのPythonライブラリFeature-engineを開発・保守している。2018年にData Science Leaders Awardを受賞、2019年にデータサイエンスと分析におけるLinkedIn Voices (LinkedInインフルエンサー) の1人に認定されている。 松田晃一 : 博士(工学、東京大学)。石川県羽咋市生まれ。『宇宙船ビーグル号の冒険』を読み、絵描きではなく、コンピュータの道へ。海(海水浴)と温泉を好む。著書に『Python ライブラリの使い方~ GUI から機械学習プログラミングまで』、『p5.js プログラミングガイド改訂版』(カットシステム)、『学生のためのPython』(東京電機大学出版局)、『WebGL Programming Guide』(Addison-Welsley Professional)など、訳書に『APIデザイン・パターン』、『プログラミングのための数学』(マイナビ出版)、『生成 Deep Learning』、『詳解OpenCV3』(オライリー・ジャパン)、『デザインのためのデザイン』(ピアソン桐原)などがある。 ※この商品は固定レイアウト型の電子書籍です。 ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 ※お使いの端末で無料サンプルをお試しいただいた上でのご購入をお願いいたします。
-
4.2近年ビジネスにおいて、現状を分析し、意思決定を行ったり、説得力のある提案をするためのツールとして、膨大なデータを介したデータ分析の必要性がますます高まっています。膨大なデータを蓄積し続けてはいるものの、それらを有効活用している企業は非常に少なく、分析ニーズも高まるばかりです。本書は、データ分析の初心者や企業担当者を対象に、データ分析の実際を解説するものです。 「人は成功からは学べない、失敗からこそ多くを学ぶのだ」という認識から、SBTが手掛けた事例を元に、データ分析を行う際に起こりやすい失敗事例とその克服法を解説します。これにより、読者は、リアリティのある、真に役立つデータ分析の実例を学ぶことができます。 著者は、豊富なデータ分析の経験を持つSBT社データサイエンス部のスタッフであり、ダイナミックかつ具体的な事例を紹介します。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 注目を浴びる新しいサービスや製品を支えるデータ分析。その舞台裏を、40社の事例と図解で分かりやすくひもときます。 例えば、2015年夏に長崎のハウステンボス内にオープンした「変なホテル」。ロボットによる接客を支えているのは顧客一人ひとりの顔を見分ける生体識別。カメラとコンピュータでいかに人の顔を認識しています。 夏が来ると気がかりになるのが熱中症対策。大林組は、建設現場の作業員の不調の前兆を捉えようと、「肌着センサー」でキャッチした心拍や体温のデータ分析に取り組んでいます。バスやタクシーのドライバーの「眠気」を感知して、居眠り運転防止に役立てようとする動きもあります。 「うちの子の成績が上がらない」――。こんな悩みもデータ分析で解決するのがリクルートマーケティングパートナーズ。オンライン学習教材を使う生徒の勉強法を分析し、より理解が進むやり方に迫りつつあります。 2020年の東京五輪ではホテル不足が懸念されています。その解消に一役買うと期待を集めるのが、個人の家を貸し借りする「シェアリングエコノミー」。Airbnb(エアビーアンドビー)は、分析によって「借りたい」と「貸したい」を最適にマッチングし、急成長しています。 IoT(モノのインターネット)やAI(人工知能)の活用が進み、データがビジネスと密接不可分になっていくのは確実です。データがビジネスや社会をどう変えていくのか。本ムックから読み取ってください。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「データサイエンティスト」は世界的に注目されているが、実際にこの職種に就こう、育てよう、また組織としてこの職種を活用していこうと考えた時に、どのよう進めていけばよいのか、新しいがゆえに指標が少ない。本書は著者らの統計数理研究所・IBMコンサルタント部門で培った知見を元に、この仕事を目指す人、育成する人に必要な情報、組織としての活用を分かりやすい事例と整理された内容で理解しやすいよう解説する。
-
3.3ビッグデータ分析をきっかけとして「機械学習」に注目が集まり,ビジネス利用への検討がはじまっています。しかし,実際に「機械学習」を理解しているエンジニアや分析担当者は少なく,うまく活用できていないのが現実です。「機械学習」を利用するにはアルゴリズムの理解,プログラミング技術,ビジネス知識などが必要になってきます。本書では,第1部で機械学習のアルゴリズムやビジネスへの応用方法,流行の深層学習などに触れ,第2部ではPythonを用いた機械学習,画像認識,推薦エンジンなど,サンプルコードをもとに手を動かして試すことができます。機械学習分野で先頭を走る著者陣が,面白く,わかりやすい解説でお届けします。
-
4.01巻2,178円 (税込)データサイエンティストはここ数年で生まれた職種です。どんなスキルを身に付ければ良いかはいろいろなところで語られ,現役のデータサイエンティストのスキルもバラバラなのが現実です。さまざまな技術がある中で,本書ではデータ分析者をはじめる前に最低限知っておきたい知識を取り上げます。シェルは知らなくても良いでしょうか?基本的なSQLは書けなくても良いでしょうか?データフォーマットの知識は不要でしょうか?機械学習の基礎知識は不要でしょうか?初学者にとっては避けて通れない知識,現役データサイエンティストにとっては知らないと恥ずかしい知識を登竜門編として1冊にまとめています。
-
4.01巻2,178円 (税込)ビッグデータ、機械学習、人工知能など、データ分析に関連するキーワードを聞かない日はありません。データサイエンティストブームからはや数年、多くの日本の組織がデータ分析に取り組み、成功と失敗を繰り返してきました。いまや、データ分析からビジネス価値を見出した組織とデータ分析が根付かなかった組織との差が明らかに広がりはじめています。 本書は、データ分析がうまく機能している組織から執筆者を迎え、実務担当者の振る舞いからマネージャ/経営者層が持つべきデータ分析プロジェクトの進め方などのノウハウをお届けします。データ分析組織を本気で起ち上げたい方、データ分析が実現する幸せな未来を目指す方は必読の内容です。
-
4.2※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書で言う「データ視覚化」(ビジュアライゼーション)とは、単に手元にあるデータをグラフにすることではありません。いくらデータを視覚化しても、その中から人間が重要な情報を読み取れないのなら、データ視覚化をする意味がないからです。あくまで、そのデータが指し示す意味を明確にすること、そしてより多くの人たち(オーディエンス)に興味を持って見てももらえることがデータ視覚化の目的です。 本書では、日本人女性唯一のTableau ZEN MASTERである筆者が長年にわたって培ってきたデータ視覚化のノウハウ、ベストプラクティス、アンチパターン等を整理分類してエッセンスを抽出し、具体的な事例をあげながら、できるかぎり丁寧に解説しました。また、セミナーなどの現場でよくされる質問に対する答えをまとめたものでもあるので、ある意味、“FAQ”でもあります。
-
3.8統計や数字に強くなる! 現代人必修の「データを使いこなす力」を、GoogleやSmartNewsなどで教えるエキスパートが分かりやすく解説。 真実を見抜き、正確に伝えるための「データ思考」入門。 ◇◇◇◇◇◇◇◇ 「データ可視化」は現代人必修! 「この本では、データ可視化を効果的に行うために必要な「データ思考」とでも呼ぶべき思考法を丁寧に解説していきます。この本を読むことで、データを正しく読めるようになるのはもちろん、実際に皆さんがデータを使いこなし、効果的に情報を伝えるための「データ可視化のための考え方」を身につけることができます。数字や統計に苦手意識がある方でも、ほんとうの意味で「データに強く」なれるでしょう。」(「はじめに」より) 【本書の内容】 ・人はデータを「読む」ことはできない ・コロナの感染状況を最も的確に表現したグラフ ・ナイチンゲールが作った「データ可視化」の名作 ・みんな騙される「詐欺グラフ」の見分け方 ・年収が上がるほど血圧が高くなる? ・分かりやすいグラフに不可欠な「データの絞り方」 ・「データの軸」を見定めよ ・甲子園投手の「過剰投球」を一目で理解させるには ・「台風の進路予想図」の大いなる誤解 ……ほか 【本書の構成】 第1章 データ可視化という強力な武器 第2章 データを読み解く 第3章 データを編集する(理論編) 第4章 データを編集する(実践編) 第5章 データをデザインする 第6章 多様なデータの見せ方 第7章 データ可視化をどのように改良するか 第8章 炎上や誤解を避ける 第9章 データ可視化と報道
-
3.8システム構築の複雑さから開発者を解放する データ指向プログラミング実応用ストーリー 本書は Yehonathan Sharvit, "Data-Oriented Programming", Manning Publications 2022 の邦訳版です。 【本書の内容】 本書は、Java、C#、C++、Ruby、Pythonなどの高級プログラミング言語で2年以上の経験を持つ、フロントエンド、バックエンド、フルスタック開発者向けの本です。 本書で取り上げている業務システム開発におけるアイデアや手法は、オブジェクト指向プログラミングの開発者にとっては、慣れ親しんだ環境や世界観をいったん捨て去るように指示されるかもしれません。 一方、関数型プログラミングの開発者にとっては、本書は(多少ですが)学びやすく、ちょっとした発見とサプライズがあるはずです。 いずれにしても「情報システム開発の複雑さ」を軽減し、見通しが良く仕様変更にも柔軟に対応したい開発者に、新しい視座とパラダイムを提供します。 【目次】 Part1 柔軟性 第1章 オブジェクト指向プログラミングの複雑さ― 気まぐれな起業家 第2章 コードとデータの分離― まったく新しい世界 第3章 基本的なデータ操作― 瞑想とプログラミング 第4章 状態管理― タイムトラベル 第5章 基本的な並行性制御― 家庭内での対立 第6章 単体テスト― コーヒーショップでプログラミング Part2 スケーラビリティ 第7章 基本的なデータ検証― おごそかな贈り物 第8章 高度な並行性制御― さようなら、デッドロック 第9章 永続的なデータ構造― 巨人の肩の上に立つ 第10章 データベースの操作― 雲は雲 第11章 Webサービス― 忠実な配達人 Part3 保守性 第12章 高度なデータ検証― 手作りの贈り物 第13章 ポリモーフィズム― 田舎で動物とたわむれる 第14章 高度なデータ操作― 考え抜かれたものは明確に表現される 第15章 デバッグ― 博物館でイノベーション 付録A データ指向プログラミングの原則 付録B 静的型付け言語での汎用的なデータアクセス 付録C データ指向プログラミング:プログラミングパラダイムの一環をなす 付録D Lodash リファレンス ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ビッグデータ時代の必然的な概念として,「データ市場」が注目されている.これは,皆が安心できる条件で必要に応じてデータを共有し,また状況に応じて結合したり分析したりして使うことで新たなビジネスを生み出すという,いわばデータの取引市場である. 本書は,データ市場構築の手法をIMDJ (Innovators Marketplace on Data Jackets)を中心に幾つか挙げて,その具体的な活用方法を産業界の視点から提案する.IMDJは,すでに経済産業省,国土交通省のワークショップでもビジネスモデル構築技術として採用されている.ビックデータに関係する読者には,まさに必携の書である. (293文字)
-
4.0■データを制する者が世界を制するのか?ビッグデータを使う能力次第で価値が決まる。GAFAも決して安泰ではない――。まったく新たな科学的方法論に基づくビッグデータ主導の経済・社会の構図、問題点を明らかにします。 ■ビッグデータが動かす経済社会、「データ資本主義」が台頭してきました。ビッグデータは経済取引、経済構造を変革しつつあるが、新しい問題も引き起こしつつあります。ごく一握りの企業によって市場が支配され、監視社会がもたらされる可能性もあります。本書は、情報経済論の第一人者が、従来の歴史をまったく塗り替えつつあるビッグデータ経済の姿と、それを貫く論理、その問題点、可能性をわかりやすく解き明かします。 ■本書では、ビッグデータの概要、AIによるパタン認識、ビッグデータ・ビジネスを支えるプロファイリングとその応用、ビッグデータが提示する新しい科学的方法論、データサイエンスの役割、プラットフォーム企業の支配力、ビッグデータの将来、監視社会の可能性をテーマとして取り上げ、それぞれの背景、現状について平易に解説するとともに、データ資本主義が今後、どのような可能性を秘めているのかについて展望します。 ■著者はビッグデータ・ビジネスの本質を深く掘り下げます。ビッグデータの中でも最も注目されるのがプロファイリングとその技術にかかわるものであることを浮き彫りにします。この点でGAFAの中でもビッグデータを本当に収益源としているのはグーグル、フェイスブックの2社だけであり、今後、GAFA、BATといわれる巨大プラットフォーム企業の命運は分かれる可能性がある、巨大IT企業を従来の独禁法の概念でしばることはできない、情報銀行などで本当に意味のあるビッグデータを集められるのか、などと問題提起します。そして、プロファイリングをもとにした監視社会の出現という点で中国について最も警戒すべきだが、その可能性は中国に限らないことなど、注目に値する論点を明らかにします。
-
4.0※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 パワークエリはあらゆるデータの取得・整形を自動化するMicrosoftの機能です。 多くのビジネスパーソンが行っているデータ分析前の準備のルーチンワークを パワークエリによって効率化する方法をやさしく解説します。 ■本書のポイント ・ハンズオンで確実に身に付く サンプルデータを用いて操作しながらパワークエリの使い方がしっかり身に付きます。 ・はじめてでもよくわかる パワークエリの基本操作から丁寧に解説しているため初心者でも安心して読み進められます。 ・実務ですぐに役立つ 実務で扱うデータや目的に近い例を扱うため現場で活用するポイントやコツがわかります。 ・1冊でしっかりわかる 基本操作から知っておくと便利に使える機能まで解説しています。 ■本書の対象読者 ・日常業務でデータを扱う機会の多い人 ・マクロなどの知識がない人 ・Power BIを使う人 ※カバー画像が異なる場合があります。
-
-データスチュワードシップは、データを信頼できる、高品質なものにし続ける取り組みです。ビッグデータそしてAI(人工知能)の時代になり、あらゆる組織にデータスチュワードシップが求められています。 『データマネジメント知識体系ガイド第二版(DMBOKガイド)』は第3章で担い手であるデータスチュワードの重要性を指摘しています。そこに発言を引用されているDavid Plotkin氏はこのテーマの第一人者であり、著書“Data Stewardship”はロングセラーになっています。 本書は“Data Stewardship”の第二版の邦訳であり、日本で初のデータスチュワードシップ書籍になります。データスチュワードシップの導入と運用に関する明確かつ簡潔、そして実践的なアドバイスとガイドラインを提供します。ガイドラインを見れば組織の構造、ビジネス機能、データ所有権に基づき、どう進めていけばよいかが分かります。Plotkin氏が様々な企業の現場で実践してきたノウハウが多くの成果物の例とともに紹介されています。 第二版で次の点が強化されました。 グローバルビジネス:国際企業向けの体制をより詳しく解説。国の違いを考慮したビジネス用語の構成など。 プライバシー規制:国内外のプライバシー規制の実施に関与するデータスチュワードシップを解説。 ビッグデータとデータレイク:非構造データも含めたデータガバナンスの在り方を提示。 プロジェクトマネジメント(PM):データガバナンスのPM方法論への統合を提唱。WBSにデータガバナンスのタスクを追加。 データドメイン:ビジネス/組織機能からデータドメインへの移行を提案。推奨されるデータドメイン詳細を提示。データドメインの長所と短所も説明。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております】 散在するデータ資産をノンプログラミングで連携・統合 本書は、クラウドやDB、ファイル、ネットワーク、アプリケーション、システムなど、さまざまなデータソースをノンプログラミングでつなぐ、データ連携ソフト「DataSpider」の公式解説書です。基本的な操作や機能、DataSpider によるデータ連携アプリケーションの構築などについて、構築・運用時のテクニックやノウハウを交えて学習できます。DataSpiderが初めての方にはやさしく学べる入門書として、すでに使いこなしている方には実践で役立つテクニック集として、もっと深く知りたい方には内部仕様説明書として、ご活用いただける構成になっています。 ※本電子書籍は同名出版物を底本とし作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-【米Amazonでのトップセラーが待望の日本語化。Excelでデータサイエンスの本質を学ぶ!】 データサイエンスは、データをただ眺めたり、単純に集計するだけでは見えてこない、価値のある共通点や傾向などをデータから探し出す技術です。勘やひらめきではなく、データに基づくマーケティング活動が重視される現代のビジネスにおいて、意思決定の基盤にもなりつつあります。 本書は、今後ますます重要性が増していくデータサイエンスに初めて触れる方のための入門書です。最大の特徴は、ビジネスパーソンにとって最も身近なツールである「Excel」を使ってデータサイエンスの手法を学ぶ点です。 本書では、Excelファイルのサンプルデータをダウンロードして、手元のパソコンで解説に沿って一歩ずつ分析を進めていきます。分析のプロセスを可視化できるため、高度なデータサイエンスの手法とその本質を初心者でも順を追って理解できます。解説しているデータサイエンスの手法はクラスター分析・教師なし機械学習・線形プログラミング・教師あり機械学習・アンサンブルモデル・予測モデリング・外れ値検出といった実践的なものです。 また、最終章ではExcelで行ったデータ分析をR言語で再度行うことで、より実務的な環境への橋渡しも行います。 本当の意味で「データを扱う技術」を身に付けたい方に、まず手にとっていただきたい一冊です。 〈こんな方にお勧めです!〉 ・データサイエンスの根本的な考え方を身につけたい方 ・データサイエンスにどのような手法があるか知りたい方 ・自分のデータ分析が十分なものか不安を感じている方 ・プログラミングやコードの知識を備えていない方 〈本書で行うデータ分析〉 ・ワインの顧客別売上データから、顧客の嗜好を4つのクラスターに分類する ・自社製品に関するツイートを機械学習で見つけ出す ・コストと味を一定に保つオレンジジュースの最適な混合比率を算出する ・商品購買履歴からもうすぐ赤ちゃんが生まれる家庭を見つけ出す ・過去36ヶ月の売上データから今後12ヶ月の売上を予測する ・最低限のことしかやらない不良従業員を探し出す
-
3.6「1年間の売り上げが10億円の会社のひと月あたりの売り上げはいくらでしょうか」データセンスを身につけるとこの質問に1秒で答えられるようになります。実際に計算するには10億を12(ヵ月)で割らなければなりません。これに1秒で答えるには「83」というキー数字を知っておく必要があります。質問の答えは「約8300万円」です。「12で割る」ということは、「0.083をかける」ことと同じなのです。データセンスとは、ビジネスシーンや日常の中で目にする数字の意味をパッと把握する感覚のことをいいます。本書は具体的な演習も多く、社会人なら誰もが必要としているその感覚を身につけ、磨くことのできる一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インプレス「データセンター完全ガイド」は、2000年12月創刊の国内唯一のデータセンター専門メディアです(季刊誌+Webサイト)。 企業のIT担当者やデータセンター事業者、ITベンダーのインフラ事業部門担当者など、データセンターやクラウドサービスの選定・利用に携わる読者に向けて、有用な情報をタイムリーに発信しています。 2017年春号の特集は、「2017年、データセンター/クラウド基盤はこう選ぶ!」です。用語解説からデータセンター選定の極意まで――春号恒例の「完全保存版」です。 ITインフラの選定・運用に携わる担当者に向けて、データセンターおよびインフラ系クラウドサービスに関する基礎知識、選定・利用時の考慮点について、最新のトレンドを紹介しつつ解説しています。特に“新任のデータセンター担当者”にとってこの特集が、自社に最適なITインフラを選ぶ際の指標となり、選定後も各種業務をこなしていくうえでの指針・ヒントとなれば幸いです。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インプレス「データセンター完全ガイド」は、2000年12月創刊の国内唯一のデータセンター専門メディアです(季刊誌+Webサイト)。 企業のIT担当者やデータセンター事業者、ITベンダーのインフラ事業部門担当者など、データセンターやクラウドサービスの選定・利用に携わる読者に向けて、有用な情報をタイムリーに発信しています。 2017年冬号の特集は、「デジタルビジネスを駆動するデータセンター」です。 独創的なアイデアを持つ新興企業が、老舗・大手を押しのけて市場やビジネスのルールを塗り替える――。いわゆる破壊的創造(Disruptive Innovation)の動きが各業界で見受けられ、いずれも、先端・先進ICTを高度に駆使したデジタルビジネスを手がける企業によるものです。これは、変化のスピードが以前とは異なる市場で企業が競争優位を維持していくうえで、デジタルビジネスは避けて通れないテーマで、企業に選ばれる側のデータセンター/クラウドサービス事業者にとっても重要な課題となります。本特集では、「デジタルビジネスに資するデータセンター」の実現で重要な役割を持つデータセンター/クラウド基盤分野の技術を取り上げ、ITインフラを選ぶ側と提供する側、双方にとっての指針を示します。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インプレス「データセンター完全ガイド」は、2000年12月創刊の国内唯一のデータセンター専門メディアです(季刊誌+Webサイト)。 企業のIT担当者やデータセンター事業者、ITベンダーのインフラ事業部門担当者など、データセンターやクラウドサービスの選定・利用に携わる読者に向けて、有用な情報をタイムリーに発信しています。 2016年秋号の特集は、「『Software Defined』インフラ刷新に今、着手すべき理由」です。 企業のITインフラに「Software Defined=ソフトウェアでの制御を可能にする抽象化」を適用する――普及を遂げたサーバー仮想化と、先行市場となったSDN(Software Defined Networking)によって得られるメリットが広く周知されていきました。現在、この取り組みのゴールと呼べる「データセンター全体のソフトウェア化=SDDC(Software Defined Data Center)の姿が現実味を帯びてきています。 本特集では、Software Definedのコンセプトと意義を再確認した後、サーバー仮想化、SDN/NFV(Network FunctionsVirtualization)、SDS(Software Defined Storage)といった各レイヤでの進展、ITインフラ運用者にとっての着目点、現時点での課題を明らかにします。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インプレス「データセンター完全ガイド」は、2000年12月創刊の国内唯一のデータセンター専門メディアです(季刊誌+Webサイト)。 企業のIT担当者やデータセンター事業者、ITベンダーのインフラ事業部門担当者など、データセンターやクラウドサービスの選定・利用に携わる読者に向けて、有用な情報をタイムリーに発信しています。 2016年春号の特集では、毎年恒例の「データセンター/クラウドサービス選定の決め手2016」をお届けします。 今日の企業のビジネスを文字どおり支えるITインフラ。そこに求められる役割や機能は実にさまざまです。選定に際しては、低コスト運用や省エネルギー性、システム障害時の事業継続性など経営層からの要請に加えて、高い処理性能や拡張性、機器・機能構成の柔軟性といったビジネスの競争力向上やそれを支える基盤としての観点も重要になってきます。 本特集では、ITインフラの選定・運用に携わる担当者に向けて、データセンターおよびインフラ系クラウドサービスに関する基礎知識、選定・利用時の考慮点について、最新のトレンドを紹介しつつ解説いたします。 特に“新任のデータセンター担当者”にとってこの特集が、自社に最適なデータセンター/クラウドサービスを選ぶ際の指標となり、選定後も各種業務をこなしていくうえでの指針・ヒントとなれば幸いです。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、インプレスによる専門媒体『クラウド&データセンター完全ガイド』による監修のもと、データセンターの市場動向、サービス動向、ユーザー企業の利用動向をまとめた調査報告書である。近年、ユーザー企業においてIT資産のクラウド環境への移行が進み、クラウド向けハイパースケールDCの新設/増設が相次いでいる。一方、ユーザーがクラウドに移行する中で、老朽化が進むデータセンターや、PUE値が悪く非効率なデータセンターなどを閉鎖するといった事業を縮小している事業者も見られるようになっている。このような中、本年は初めて地域別の市場動向に注目。全国を7地域にわけて、ラック価格、新設・閉鎖状況、市場ニーズ等をそれぞれ分析。データセンター事業者がデータセンター新設・営業戦略を立案する上で有用なデータと分析を提供するとともに、大規模化/高効率化/ネットワーク強化、DC施設も所有から利用へなど、調査から見えてきたDCの生き残り策を分析する。また、間接蒸発式空調やリチウム電池式UPSなど最新技術や相次いで発生した大規模災害でのデータセンターの状況など、様々な最新動向をお伝えする。ユーザー企業のDC&クラウド利用の現状・意向調査、DC事業者の現状・意向調査、データセンター採用検討企業担当者への調査の3つのアンケート調査を掲載。加えて、「データセンターサービス分析」では、市場で提供されているデータセンターサービスの調査結果を掲載している。巻末付録として、都道府県別のデータセンター拠点一覧とデータセンターサービス一覧を掲載している。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、インプレスによる専門媒体『クラウド&データセンター完全ガイド』による監修のもと、データセンターの市場動向、サービス動向、ユーザー企業の利用動向をまとめた調査報告書です。2007年に第1回目を発行し、11年目を迎えた。2007年以前から同媒体が蓄積してきた資料、データ、知見をもとに、過去から現在までのデータセンター産業の変遷から将来に向けた動きまで網羅することを目的としています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、インプレスによる専門媒体『データセンター完全ガイド』による監修のもと、データセンターの市場動向、サービス動向、ユーザー企業の利用動向をまとめた調査報告書である。2007年に第1回目を発行し、10年目を迎えた。2007年以前から同媒体が蓄積してきた資料、データ、知見をもとに、過去から現在までのデータセンター産業の変遷から将来に向けた動きまで網羅することを目的としている。ユーザー企業においてIT資産のクラウド環境への移行が進み、国内データセンター事業者などはクラウド対応への対応を強化する動きが進む。従来のデータセンター(ハウジング/コロケーション)だけでなく、クラウドサービスの提供と利用についても注目し、今後のデータセンター事業者が進むべき方向性を分析記事と豊富な調査データから読み取ることができる事業者必携の報告書である。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 『クラウド&データセンター完全ガイド』監修のもと、業界動向、サービス動向、ユーザー動向をまとめた報告書。2007年から毎年発行している。近年のデータセンターを取り巻く状況は2つの側面があり、クラウド利用が拡大することによる既存データセンターの縮小・撤退と、そのクラウドを下から支えるハイパースケールデータセンター新設である。新設のデータセンターが大規模化していった結果、すでに建設費は中小の事業者では賄いきれないほど高額となった。そのため、電力系含めた通信キャリアやREIT(不動産投資信託)系などの経営体力があるデータセンター事業者しか新設に手を出せない状況になりつつある。いま現在もGAFAをはじめとする世界大手クラウド向けと目される超大規模な施設が東京・大阪圏で相次いで建設されている。一方、地方の中核都市では、電力系事業者によって従来型のハウジングデータセンターが新設されている。地元の中小事業者にとっては脅威に映る半面、老朽化した自社データセンターを刷新・新設するか、それら最新データセンターの一角をDC in DCするか、方針転換を含めて検討するタイミングである。 本書では、近年の国内データセンター新設トレンド、クラウド利用の伸び、地域ごとの動向などを分析し、新設の最適地も併せて紹介することで、データセンター事業者の次の一手を考えるうえでの最良の材料を提供している。 本年度版よりデータセンターカオスマップ、国内全商用データセンター日本地図・地域別地図も収録。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、インプレスの専門媒体『クラウド&データセンター完全ガイド』による監修のもと、データセンターの市場動向、事業者動向、ユーザー企業の利用動向をまとめた調査報告書である。 第1章では、データセンターの新設を中心に加速する環境の変化を解説している。ハイパースケール型、リテール型それぞれの動向、地域別の動向など詳細に分析し、最近の差別化トレンドである接続性・ネットワークの強化と都市型含めた大規模化について分析している。また、DC関連業界カオスマップと新設DC日本地図・地域別地図、IXマップを掲載する。その他、大規模停電によるデータセンター停止事故や設定ミス、データ焼失など示唆に富んだ事故事例や、COVID-19による影響と事業者の対応なども解説する。 第2章、第3章では、2種類のアンケート結果を掲載。 「データセンター事業に関する意向調査」は、データセンター事業を運営する企業に対して意向を調査。大手クラウドサービスとの連携や、ファシリティの保有状況、事業の今後の方向性や戦略について調査している。 「利用企業動向調査」では、ITインフラユーザー企業を対象に、商用データセンターの利用率、ラックや電力などのデータセンター利用状況、選定理由、支払っている金額、強化してほしい点、クラウドサービスの利用有無やサービス名なども調査している。 参考資料には、市町村別のデータセンター拠点一覧とデータセンターサービス一覧を掲載するほか、市場で提供されているデータセンターサービスの調査結果を掲載している。179サービスの基本スペックや付加価値オプション、特徴などを調査し、多角的に集計している。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、インプレスの専門メディア『クラウド&データセンター完全ガイド』による監修のもと、データセンターの市場動向、データセンター事業者の動向、企業の利用動向などをまとめた調査報告書です。 DXの進展やICTサービスの需要増を支えるクラウドサービスの利用増を背景に、その基盤となるデータセンターは急拡大し、ハイパースケール型、リテール型ともに活況を呈しています。近年は、生成AI需要の高まりも加わりますます投資は増大、大規模なAIデータセンターの新設計画も相次いでいるほか、大手クラウド事業者の莫大な投資も発表されています。また、データセンター事業者はAI対応に迫られており、GPUサーバーやHPCサーバーなどの安定稼働を提供する「高発熱サーバー対応サービス」、LLMの開発やAIサービス提供、AI利用に使用する計算リソースを提供する「AIクラウドサービス」のどちらも拡大している状況です。その一方で、カーボンニュートラルに向けた再生可能エネルギーへの取り組みも加速しています。 本書では近年の国内データセンター新設動向、データセンター事業者と利用企業の調査などから、クラウドおよび生成AIが拡大する中でのデータセンター市場を多角的に分析。ハイバースケール型とリテール型のそれぞれの新設動向と今後の計画、政府の施策動向や最新トピック、AI対応サービスへの取り組みと動向、関東・関西ならびに各地方の新設動向、利用企業のITインフラ利用の現状と意向をまとめています。また、不動産市況からみたデータセンター市場についての有識者による寄稿も掲載しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 近年は、DXの進展やICTサービスの需要増を支えるクラウドサービスの利用増を背景に、その基盤となるデータセンターの急拡大が続いている。このような中、この1年は行政による国内デジタルインフラ強靭化と地方分散化の推進、ハイパースケール型データセンターへのさらなる新規参入や発表済み計画の前倒しと加熱する用地確保競争、リテール型データセンターにおける都心部のインターコネクション向けの新設と周辺主要都市でのハウジング用の新設の双方の増加、電力料金の高騰と再エネ利用への対応の4つがトレンドとして挙げられるだろう。 第1章では、こうしたトレンドの中、データセンターの新設を中心に市場全体、地域の動向を分析する。あわせて、政府の施策動向や最新トピック、脱炭素に向けた動きを解説する。 第2章、第3章では、提供・需要の両者意向調査として2種類のアンケート結果を掲載。「データセンター事業に関する意向調査」は、データセンター事業を運営する企業に対して意向を調査。大手クラウドサービスとの連携やファシリティの保有状況、高騰する電気料金への対応、事業の今後の方向性や戦略(投資状況や今後の事業継続性)等について調査している。 「利用企業動向調査」では、ITインフラ利用企業を対象としてアンケート結果を掲載。商用データセンターの利用率、ラックや電力などのデータセンター利用状況、選定理由、支払っている金額、強化してほしい点などをまとめて掲載している。また、クラウドサービスの利用有無や利用しているサービス名なども調査している。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、インプレスの専門メディア『クラウド&データセンター完全ガイド』による監修のもと、データセンターの市場動向、サービス動向、データセンター事業者の意向、ユーザー企業の利用動向などをまとめた調査報告書です。 近年は、DXの進展やICTサービスの需要増を支えるクラウドサービスの利用増を背景に、その基盤となるハイパースケール型データセンターは昨年までとは比較にならないほど急拡大しています。この1年間に、海外のデータセンター事業者に加えて、不動産投資・開発や物流不動産といった外資系事業者の新規参入が相次いでいること、すでに日本国内で展開中のデータセンター事業者が資産規模を大幅に拡大したこと、発表・予定されていた複数の新規データセンターの開設が前倒しになったことが大きな動向として挙げられます。一方で、リテール型データセンターは、引き続きネットワークを重視して接続性・インターコネクションによるエコシステム構築を目指した戦略に従った接続向けデータセンター新設が見られ、IX(インターネットエクスチェンジ)が充実してきた福岡市博多に注目が集まっています。 このような中、本書では近年の国内データセンター新設トレンド、地域ごとの動向、データセンター事業者とユーザー企業調査などから、急拡大するハイパースケール型データセンターとネットワーク・IXで差別化するリテール型データセンターの動向を中心に分析しています。 そのほか、提供・需要の両者意向調査として、データセンター事業者を対象としたサービス・施設状況についての現状・意向、ユーザー企業におけるITインフラ利用の現状・意向をそれぞれアンケート調査してその結果を収録しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 生成AIの普及とクラウドサービスの継続的な需要の高まりに後押しされ、データセンター市場は力強い成長を維持しています。主要なハイパースケーラー各社はAI需要に応じて設備投資計画を軒並み引き上げており 、国内においても数千億円規模の巨額投資計画が発表されるなど、ハイパースケーラー向けとみられるデータセンターの計画は引き続き活況です。 一方、生成AIの登場により、AIの学習等に必要となる計算能力が加速度的に増加しています。特に高性能GPUサーバーの出荷は今後も大きく成長すると予想されており、高負荷サーバーのハウジングやLLMといった大規模学習基盤としてのGPUクラウドサービスなど、データセンター事業者、クラウド事業者は需要の多様化へのスピーディーな対応が求められています。そのため、従来のビル型のデータセンターに加え、工期が比較的短いコンテナ型・モジュール型のデータセンターも注目を集めています。 このような背景のもと、本書『データセンター調査報告書2026』は、インプレスの専門媒体『クラウド&データセンター完全ガイド』の監修により、データセンターの市場動向、事業者動向、利用企業の動向をまとめています。 第1章では、ハイパースケール型やリテール型の規模と新設状況を解説し、コンテナ型・モジュール型の動向、データセンターの地方分散を推進する政府や自治体の施策、さらには液冷などの最新冷却技術や通信インフラの進化を解説します。また、AIデータセンターを支えるGPUについて、製品や消費電力、今後の動向等を解説します。 第2章では、AI向けのGPUサーバー等の高発熱サーバーハウジングサービスと、AIクラウド(GPUクラウド)サービスの両軸で整理。各社の取り組み、求められる要件、高効率冷却技術の導入、そして短工期で需要に対応可能なコンテナ型・モジュール型データセンターの状況等を解説します。 第3章では、東京圏、大阪圏を中心に、建設中、計画中のデータセンターについて、現地取材も踏まえて整理しています。 第4章では、ユーザー企業の情報システム担当者を対象としたアンケート調査の結果を解説。データセンターの利用状況や選定理由に加え、クラウドサービスの利用有無や、GPU/HPCサーバーの利用意向など、AI時代における企業のインフラ投資意向を具体的に調査しています。 第5章では、AIサービスをテーマに、関連各社の事業者戦略、課題等について個票形式で掲載しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 近年は、DXの進展やICTサービスの需要増を支えるクラウドサービスの利用増を背景に、その基盤となるデータセンターの急拡大が続いている。この1年は、ハイパースケール型データセンターの活況な状況が続く、リテール型データセンターは地方主要都市でもコネクティビティ重視の方針、政府の整備事業も加わり北海道での計画が起動、電力料金の高騰と再エネ利用への対応の4つがトレンドとして挙げられる。 本書は『クラウド&データセンター完全ガイド』監修のもと、業界動向、事業者動向、ユーザー動向をまとめた報告書である。 第1章では、データセンターの新設を中心に市場を総括し、政府の施策や脱炭素に向けた動向、この1年の最新トピックについて解説する。 第2章では、事業者の動向と戦略を総括する。データセンター事業者を7つの分類にわけ、各分類の動向と戦略を総括している。 第3章では、地域別の新設状況を関東、関西、その他の地域にわけ近年の新設から計画段階のものまで幅広く取り上げている。 第4章では、各事業者の動向と戦略を個票形式で紹介。それぞれの事業者へヒアリング調査した結果をもとに、拠点の概況、強み、稼働状況と売上動向、顧客の動向、今後の戦略、クラウドへの取り組み、電気代高騰への対応、市場に対する認識、課題と対応策についてまとめている。 第5章では、「利用企業動向調査」の結果を掲載する。利用企業を対象としてアンケートを行い、商用データセンターの利用率、ラックや電力などの利用状況、選定理由、支払っている金額、強化してほしい点などをまとめて掲載している。また、クラウドサービスの利用有無や利用しているサービス名なども調査している。 参考資料には、市町村別のデータセンター拠点一覧とデータセンターサービス一覧を掲載する。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆高品質なデータを設計・開発する技術◆ Data-centric AIとは、機械学習の権威でありGoogleのAI研究チームを率いたAndrew Ngが2021年に提唱した、モデルよりもデータに主眼を置くというAI開発のアプローチです。過去数十年にわたりAI開発においては、固定されたデータセットに対してニューラルネットワークをはじめとしたモデルを適用し、そのモデルを改善することに関心が寄せられていました。しかし、このモデルを中心としたアプローチでは、データセットへの過度な依存やデータセットが抱える課題への無意味な適合により、実用において期待ほどモデルの性能が改善しないといった問題が指摘されています。そのため近年はモデルを固定したうえで、データ拡張、アノテーションの効率化や一貫性の担保、能動学習といったデータに工夫を加えることによってモデルの性能を向上させるアプローチに注目が集まっています。本書では、Data-centric AIの概要を解説したあとに、画像認識、自然言語処理、ロボットといった分野におけるデータを改善するための具体的なアプローチを解説します。最終章では、企業における実践的な取り組みを紹介します。 ■こんな方におすすめ ・データセットの作成、データの学習方法に興味のある方 ・基盤モデルに興味がある方 ■目次 ●第1章 Data-centric AIの概要 ・1.1 Data-centric AIとは ・1.2 データセットのサイズとモデルの性能の関係 ・1.3 データの品質の重要性 ・1.4 おわりに ●第2章 画像データ ・2.1 画像認識におけるData-Centric AIとは ・2.2 画像認識モデルの基礎知識 ・2.3 データを拡張、生成する技術 ・2.4 不完全なアノテーションからの学習 ・2.5 画像と言語ペアの関係性を学習した基盤モデル ・2.6 能動学習 ・2.7 おわりに ●第3章 テキストデータの収集と構築 ・3.1 言語モデルの事前学習 ・3.2 事前学習データの収集 ・3.3 ノイズ除去のためのフィルタリング ・3.4 データからの重複除去 ・3.5 テキストデータ収集の限界 ・3.6 おわりに ●第4章 大規模言語モデルのファインチューニングデータ ・4.1 ファインチューニングとは ・4.2 Instruction Data ・4.3 Preference Data ・4.4 ファインチューニングモデルの評価 ・4.5 日本語における大規模言語モデルのファインチューニング ・4.6 おわりに ●第5章 ロボットデータ ・5.1 はじめに ・5.2 RTシリーズの概要 ・5.3 多様なロボット ・5.4 ロボットにおけるデータ収集 ・5.5 データセット ・5.6 データ拡張 ・5.7 おわりに ●第6章 Data-centric AIの実践例 ・6.1 テスラ ・6.2 メタ ・6.3 チューリング ・6.4 LINEヤフー ・6.5 GO ・6.6 コンペティションとベンチマーク ・6.7 Data-centric AI実践のためのサービス ・6.8 おわりに ■著者プロフィール 片岡裕雄(かたおかひろかつ):2014年 慶應義塾大学大学院 博士(工学)。2024年現在、産業技術総合研究所 上級主任研究員、オックスフォード大学 Academic Visitor および cvpaper.challenge 主宰。時空間モデルのベースライン3D ResNetの研究開発,実データ不要の事前学習法 数式ドリブン教師あり学習(Formula-Driven Supervised Learning; FDSL)を提案。2019/2022年度AIST Best Paper、2020年 ACCV 2020 Best Paper Honorable Mention Award、2023年 BMVC 2023 Best Industry Paper Finalist。研究はMIT Technology Reviewや日経等メディアにて掲載。本書の監修を担当。
-
-AIも、IoTも、ビッグデータも 法律の知識なくして成功なし! AIもIoTもビッグデータも、すべて「データ」活用ビジネスです。「データ」は法律で守られているので、法務的観点から検討すべきポイントはたくさんあります。にもかかわらず、日本企業は上場企業でも法務部門が1人という会社があります。そうした体制では十分な検討が行われず、「法務が軽視されている」のが実情です。 世界企業は違います。数百人もの弁護士がデータ活用ビジネスに携わる企業があります。欧米の企業は契約交渉する際、事業部門・システム部門・法務部門が連携してデータ関連の条項について粘り強く交渉し、自社に有意な契約を勝ち取っています。「攻めのビジネス」を支えるのは法務なのです。 本書に登場する法律は、個人情報保護法、マイナンバー法、特定商取引法、特定電子メール法、犯罪収益移転防止法、外為法、電気通信事業法、医療法、薬機法、銀行法、金商法、e文書法、電子帳簿保存法などです。法律を扱っていますが、事業部門やシステム部門の人を想定して書いています。Q&A形式ですので、無理なく読み進めることができるでしょう。 データ戦略を進める上で、本書の法律知識は欠かせません。データ活用を推進するビジネスパーソン必携の1冊です。
-
-「データは法律で守られている」 ビジネスパーソン必読の法務書 DX(デジタルトランスフォーメーション)を進めれば、ビジネスは「データ」基点になります。ここで押さえておかねばならないのは、「データは法律で守られている」ということです。個人情報保護法だけではありません。欧州のGDPRや特定商取引法、特定電子メール法など、合計10以上の法律が関係します。それらすべてに目を配り、法律を味方につけてこそビジネスを有利に展開できるのは間違いありません。データ戦略を進める上で、法律の知識は欠かせない時代なのです。 法務には「攻め」と「守り」の両面がありますが、本書の特徴は「攻めのビジネス」に力を入れていることです。法律に従うのは当然ですが、守り重視の姿勢では世界と伍して戦えません。ネットに国境はなく、このままでは外国企業が日本のデータビジネスを支配する日が来ないとも限りません。 こうした現状に危機感を抱いた著者陣(多くは弁護士)が立ち上がり、本書を執筆しています。法律を扱った本ですが、事業部門やシステム部門の人を想定して書いています。Q&A形式ですので、無理なく読み進めることができるでしょう。データ活用を推進するビジネスパーソン必携の1冊です。 (本書は2018年に発行した『データ戦略と法律 攻めのビジネスQ&A』の改訂版で、2018年以降に改正された各種法律に対応しています。)
-
3.0プロ野球のプレーや采配についてのツイッター発信がきっかけで、ダルビッシュ有投手と知り合いになり、「お股ツーシーム」を教えたことで一躍脚光を浴びた著者。その後、『セイバーメトリクスの落とし穴』などベストセラーも著しています。本書は、ダルビッシュからピッチングに関してアドバイスを求められるほどのお股ニキ氏が、ダルビッシュのすべてをデータで徹底解剖し、歯に衣着せない、お股流の視点で評論・分析します。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 電子版にCD-ROMは付属しません。あらかじめご了承ください。一年中使える保育のイラスト集が、データダウンロード付きにパワーアップ!・おたよりやクラスグッズ、個人マークが1冊で作れる!・使いやすくて可愛いイラストが800点以上!保育に役立つ、かわいいイラストをたくさん収録!『改訂版 CD-ROMブック 千金美穂イラストコレクション』を、待望のダウンロードデータ付きにリニューアル!保育雑誌『PriPri』の表紙イラストで大人気!千金美穂のカラーイラストを338点、モノクロイラストを479点掲載!イラストの使い方付きで、初めての先生も安心です。
表示されていない作品があります
セーフサーチが「中・強」になっているため、一部の作品が表示されていません。お探しの作品がない場合は、セーフサーチをOFFに変更してください。