情報科学作品一覧
-
4.0
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Chainerのバージョン2でディープラーニングのプログラムを作る 本書はChainer を使ってディープラーニングのプログラムの作り方を示すものです。ディープラーニングは複雑なネットワークで表現された関数の回帰の問題と見なせます。そしてこのような問題は勾配法で解きます。この観点から Chainer によるプログラムの作成法を示しました。Chainerが2にバージョンアップしたため、2に対応し発行するものです。畳み込みニューラルネットワークについても解説しています。 主要目次 はじめに 第0章 Chainer とは 第1章 NumPy で最低限知っておくこと 第2章 ニューラルネットのおさらい 第3章 Chainer の使い方 第4章 Chainer の利用例 第5章 Trainer 第6章 Denoising AutoEncoder 第7章 Convolution Neural Network 第8章 word2vec 第9 章Recurrent Neural Network 第10章 翻訳モデル 第11章 Caffe のモデルの利用 第12章 GPU の利用 参考文献 ソースプログラム
-
4.0IoTを知らずにこれからのビジネスはできない 「IoT」の全てを網羅した決定版! 日本だけではなく世界が「IoT(Internet of Things、もののインターネット)」の時代に突入しつつあります。IoTの時代には、身の回りのあらゆるものがセンサーや制御装置を介してインターネットにつながり、データを集める。こうして集めたビッグデータを人工知能(AI)を使って分析し、効率や性能を高めます。さらには、新たなサービスを生み出し、これまでにないビジネスモデルを構築する──。IoTは「第4次産業革命」を起こし、既存のビジネスの世界を激変させるとまで言われています。 こうしたIoTの時代には、全てのビジネスパーソンにIoTの基礎的な知識やスキルが必須となります。あらゆるビジネスがIoTをベースに動くため、IoTを知らなければ仕事ができず、時代に取り残される可能性すらあるのです。一方で、IoTという言葉はよく聞くものの、内容が複雑でよく分からないという人が多いというのも現実です。 本書は「IoT」とは何かについて、基礎から体系的に学べる唯一の書です。IoT分野で使われる用語を網羅し、定義はもちろん、図版や事例を多用しつつ分かりやすく解説しました。 第1章から読んで体系的に学ぶことはもちろん、知りたいことがあったときに参照するという使い方もできます。検定試験「IoT検定」の公式本でもあります。 これから本格化するIoT時代を勝ち残りたいビジネスパーソンにとって、決定版となり得る1冊です。
-
4.0金融分野でのITの活用が進み,FinTech(フィンテック)という名称で話題を読んでいます。本書は,FinTechの基礎知識から,具体的なサービス,スタートアップ企業,FinTechを支える最新ITのしくみ,さらには企業での導入や家庭での活用方法までを1冊にパッケージ。これ1冊で,FinTechの全貌がわかります!
-
4.0
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はWebアプリケーションの脆弱性をチェックするための解説書です。Webアプリケーションはユーザーの個人情報や商品情報など重要な情報を扱っています。Webアプリケーションの開発者がセキュリティに自信がある場合でも、開発者のちょっとした打ち間違いや、勘違いがあることでWebアプリケーションに進入・改ざんなどが行われこれらの個人情報が悪用される恐れがあります。 本書ではWebアプリケーションの開発後にセキュリティを確認するための脆弱性診断についてまとめています。脆弱性診断を行う際のスタンダードツールとなっているOWASP ZAPとBurp Suiteを使用することで、開発者やセキュリティ担当者がセキュリティに問題がないかを検査することができます。 本書の前半では、Webアプリケーションがどのような仕組みで通信をし、どのようにして脆弱性が起こるのかといった診断に必要なネットワークの知識を学んでいきます。後半では、実際に問題があるBAD STOREというWebアプリケーションデータを使用し、仮想マシン上で実際に手を動かしながら脆弱性診断の手法を学んでいきます。診断の仕方はOWASP ZAPを使用して通信経路などを診断する方法と、手動で検索窓などにパラメータを挿入し診断する方法など様々な手法を解説しています。 著者の上野宣はOWASP ZAPの日本リーダーであり、脆弱性診断の第一人者です。脆弱性診断の手法を身に付けることで、セキュリティを客観的に判断することができますので、Webアプリケーションの開発者だけでなく、経営者の方にもおすすめの1冊です。 ※電子書籍版にはチェックシートは付属していません。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 学問の最先端にいる研究者がコミュニケーションの科学をテーマに様々な角度から語る画期的なシリーズ。第一弾のテーマはコンピュータのカオス。
-
3.9分析手法からAIの基本まで、 知っておきたい知識を全部図解 【本書のポイント】 ・解説とイラストがセットで理解しやすい! ・グラフや値の種類、データ構造など、基礎知識から解説! ・技術関連の項目も図解。初心者にもわかりやすい! ・統計学やAIの基本などの周辺知識もしっかりカバー! ・情報社会におけるデータ活用の問題点や課題まで網羅! 【こんな方におすすめ】 ・データサイエンスの基本を知りたい人 ・業務でデータ分析に関わる人 ・AIの基礎や今後の課題など周辺知識まで知りたい人 ・現場の実態や出来事など、最新動向についても知りたい人 【内容紹介】 データを活用して、自社のビジネスやサービスに 生かそうという動きが活発化しています。 しかし、データの分析には幅広い知識が求められます。 本書では、データやグラフの種類、統計学の基本など、 基礎から周辺知識まで、データサイエンスを学ぶ際に 知っておきたいことを一通り解説しています。 見開きで1つのテーマを取り上げているので、 最初から順に読んで体系的な知識を得るのはもちろん、 気になるテーマやキーワードに注目しながら読むなど、 状況に合わせて活用してください。 【目次】 第1章 データサイエンスを支える技術~需要が高まる未来の必修科目~ 第2章 データの基本~データの表現方法と読み方~ 第3章 データの処理と活用~データを分類し、予測する~ 第4章 知っておきたい統計学の知識~データから答えを導き出す~ 第5章 知っておきたいAIの知識~よく使われる手法とそのしくみ~ 第6章 セキュリティとプライバシーの問題点~データ社会はどこに向かうのか?~ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.9★【シリーズ累計35万部】Excel本の歴史を塗り替えた伝説の1冊が全面リニューアル! 「5時間かかる作業が3時間でできます」ではなく「1秒で終わらせます」へ―― 作業そのものをゼロにしてしまう“究極の効率化”を実現するExcel VBAのポイントと、毎日の業務を瞬時に終わらせるしくみの作り方をかつてないアプローチで解説した定番書がリニューアル。 大量の書類作成の自動化、イミディエイトウィンドウによる効率的なデバッグなどの話題を追加し、画面をすべてOffice 365+Windows 10に刷新しました。 300社5000人の指導実績に裏打ちされた、実務直結のExcel入門決定版!
-
3.9機械学習エンジニアになりたい人に 機械学習エンジニアを志望する人が増えています。 採用数も増えており、さまざまな就職・転職サイトで「機械学習エンジニア」の募集がされており、この数は今後さらに増えることが予想できます。 しかし、採用側の話を聞くと、志望する人の大半は求める能力に達していないというミスマッチが発生しています。 これは、「機械学習エンジニア」という仕事が誕生して間もないため、 どのような能力を必要とするのかをエンジニア側が理解していないことに原因があります。 【本書の構成】 本書は「仕事編」と「実務編」の2部構成です。 「仕事編」では、機械学習エンジニアになりたい人向けに、 その仕事内容や必要な知識レベル、なるための勉強法、採用されるための履歴書の書き方などを解説します。 「実務編」では、身の周りのAI技術や実務ノウハウ、各国の機械学習エンジニア事情について解説します。 また、実際に機械学習エンジニアとして働く人やゼロから機械学習の知識を身につけた方々のインタビューも掲載しています。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.9■AIについての最も重要な命題=人類はAIを制御できるか、という「AIコントロール問題」と真正面から格闘した本命本。 ■近未来に、汎用的な能力においても思考能力においても、そして、専門的な知識・能力においても、人類の叡智を結集した知力よりもはるかに優れた超絶知能(スーパーインテリジェンス)が出現した場合、人類は滅亡するリスクに直面する可能性がありうる。そのリスクを回避するためには、スーパーインテリジェンスを人類がコントロールできるかどうかが鍵を握る。果たして、そのようなことは本当にできるのか? ■オックスフォード大学の若き俊英、ニック・ボストロム教授が、スーパーインテリジェンスはどのようにして出現するのか、どのようなパワーを持つのか、いずれ人類がぶち当たる可能性のある最大の難問、「AIのコントロール問題」とは何か、解決策はあるのかなどについて、大胆にして、きわめて緻密に論じる。2014年秋に原著が出版されるや、瞬く間にニューヨーク・タイムズ紙ベストセラーとなり、イーロン・マスク、ビル・ゲイツ、S・ホーキング博士およびその他多数の学者や研究者に影響を与え、AIの開発研究は安全性の確保が至上命題であることを広く認識させるきっかけとなった。 ■近未来においてスーパーインテリジェンスは実現する可能性はあるのか? どのようなプロセスで実現されるのか?スーパーインテリジェンスはどのような種類の能力をもち、人類に対してどのような戦略的優位性をもつのか? その能力が獲得される要因は何か? 人類が滅亡する危機に直面するリスク、人類との共存の可能性についてどう考えるべきか? これらAIをめぐる真に根源的な問題について著者は、類書をはるかに超えた科学的、論理的な考察を徹底して慎重に積み重ね、検証する。
-
3.8AIとより効果的な対話をするために 人工知能(AI)、特に大規模言語モデル(LLM)が私たちのコミュニケーション、働き方、そして思考に大きな革命をもたらしつつある現在、AIとのコミュニケーションは、単なる技術の領域を越えて、未来を形作るための重要な能力になっています。とくに、ChatGPTのような進化した大規模言語モデルがもたらす可能性を最大限に引き出すためには、プロンプトを理解して適切に操る能力(プロンプトリテラシー)が不可欠です。 本書は、大規模言語モデルの仕組みと「プロンプトエンジニアリング」の基本を理解するところから、AIに適切な質問をし、AIとより効果的な対話をするための「プロンプトパターン」「トリガープロンプト」、さらに進んだ発展的な技術、また最先端の「AIエージェント」にいたるまで、AIとのやりとりを最適化するための知識とノウハウが学べます。 具体的に例を挙げながらわかりやすく解き明かしているので、学生や一般のビジネスマンから読んでいただける内容になっています。本書を読めば、AIと効果的に対話するためのスキルや知識が身につき、すぐに日常生活や業務に活かすことができるはずです。 〈目次〉 第1章 大規模言語モデルの登場 第2章 プロンプトエンジニアリング 第3章 プロンプトパターン 第4章 トリガープロンプトの威力 第5章 発展的な技術 第6章 AIエージェントと社会 〈著者紹介〉 岡瑞起(Mizuki Oka) 研究者。筑波大学システム情報系 准教授/株式会社ConnectSphere代表取締役。2003年、筑波大学第三学群情報学類卒業。2008年、同大学院博士課程修了。博士(工学)。同年より東京大学 知の構造化センター特任研究員。2013年、筑波大学システム情報系 助教を経て現職。専門分野は、人工生命、ウェブサイエンス。著書に『ALIFE | 人工生命より生命的なAIへ』(株式会社ビー・エヌ・エヌ)、『作って動かすALife - 実装を通した人工生命モデル理論入門』(オライリージャパン)などがある。 橋本康弘(Yasuhiro Hashimoto) 研究者。会津大学コンピュータ理工学部上級准教授。1995年、東京大学工学部卒業。2000年、同大学院博士課程修了。博士(工学)。学術振興会特別研究員、東京大学工学系研究科講師、筑波大学システム情報系 助教などを経て現職。専門分野は、人工生命、計算社会科学。訳書に『ネットワーク科学入門』(丸善出版株式会社)、『人工知能チューリング/ブルックス/ヒントン』(株式会社岩波書店)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.8進化し続ける情報生態系 求められるメディアリテラシー 2016年、フェイクニュース元年から、 2020年、インフォデミックの時代へ――。 フェイクニュース現象の全体像を「計算社会科学」を武器に描き出す。 新型コロナ・パンデミックに端を発したインフォデミック、 米大統領選挙をめぐる陰謀論など、フェイクニュースの猛威が止まらない。 本書では、偽情報を信じる認知特性、その情報を拡散させる情報環境、 情報過多と注意力の限界などを解説し、 ファクトチェックをはじめとする対抗手段の有効性を検討する。 文庫版では、2018年以降のフェイクニュースをめぐる重要な動向をまとめた 「追補 インフォデミックの時代へ」を追加収録。 ※本書は、2018年12月に刊行された『フェイクニュースを科学する』(DOJIN選書)を加筆・修正し文庫化したものです。
-
3.8※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習のしくみをイラストや図解でやさしく学ぼう! 本書は、機械学習に関するさまざまなトピックスを概説する書籍です。人工知能における機械学習の位置づけを説明したのち、機械学習内の分野をマップ化し、マップ内の街(=機械学習内の分野)を旅する形でやさしく解説していきます。 数式や複雑な処理手順は扱わずに、「どんなしくみで、どこで使われていて、どう役に立つのか」という要点をわかりやすく示します。大枠や要点を掴むことを主眼としているため、短時間・効率的に学ぶことができます。機械学習について関心をもっているものの、専門書はハードルが高いと感じている学生やビジネスパーソンにおすすめです。 構成は、はじめに人工知能における機械学習の位置づけや手法の分類を示したうえで、機械学習の個々のトピック……すなわち、k近傍法や決定木などによる分類、進化的計算や群知能による最適化、強化学習、ニューラルネット、深層学習などを説明していきます。 まえがき 目次 はじまり-機械学習の国へ行こう- 第一章 いりぐち-機械学習ってなんだろう?- 機械学習ってなんだろう? AIにできること いきものとコンピューター、それぞれの学びかた コンピューターの学習 機械学習はなにができるの? 「言葉」を認識する 「画像」を認識する COLUMN 強いAIと弱いAI 第二章 観光案内所-機械学習の種類と仕組み- 機械学習には種類がある 先生に正解を教えてもらおう-教師あり学習- 教師データとラベル 教師あり学習の仕組み 自力で学習を進めよう-教師なし学習- 試行錯誤の経験から学習しよう-強化学習- コラム いろんな機械学習 学習した知識を役立てよう-汎化・タスク・アルゴリズム- 学習のしすぎに注意!-過学習- COLUMN オッカムの剃刀とノーフリーランチ定理 第三章 分類の街-k近傍法と決定木- 並べかたで分類しよう-k近傍法- 一刀両断、スパッと分類!-サポートベクターマシン- ○と×で分類しよう-決定木- 決定木の作りかた たくさんの決定木の森-ランダムフォレスト- COLUMN みにくいアヒルの子定理 第四章 最適化の街-進化的計算と群知能- 最適化ってなんだろう? 進化を模倣してよりよい情報を残そう-進化的計算- いきものの進化の仕組み 進化的計算ってなんだろう? 進化的計算の代表選手、遺伝的アルゴリズム 遺伝的アルゴリズムの仕組み もっと複雑なことをするには-遺伝的プログラミング- 生物の群れの行動から学習しよう-群知能- 蟻みたいに近道を見つけよう -蟻コロニー最適化法- 大勢で答えを探そう-粒子群最適化法- 魚みたいに餌を探そう-AFSA- 第五章 試行錯誤の街-強化学習- 強化学習ってなんだろう? とにかく試行回数を重ねよう-モンテカルロ法- より効率的に試行するには?-Q学習- Q学習で迷路を脱出しよう 第六章 神経回路の街①-ニューラルネット- 神経細胞と神経ネットワーク 神経細胞の模倣-人工ニューロン- 神経ネットワークの模倣-人工ニューラルネットワーク- ニューラルネットの学びかた 視覚のシミュレーション-パーセプトロン- ハイスピードで学ぼう!-バックプロパゲーション- ニューラルネットワークの種類 ①階層型 ニューラルネットワークの種類 ②全結合型と再帰型 「何か」を見つける-認識- 「何か」を動かす-制御- 「何か」を考える-判断- 必ず「何か」を返してくる。……それでいいのかな? 第七章 神経回路の街②-ディープラーニング- ディープラーニングってなんだろう? 人間の「視覚」を真似したニューラルネット これはイヌ? それともネコ?-畳み込みニューラルネットの画像認識- CNNはどうして高性能なんだろう? 時間で変わるデータを分析しよう-リカレントニューラルネットとLSTM- 本物そっくりのニセモノをつくる-敵対的生成ネットワーク- ディープラーニングを自動翻訳に役立てよう 経験から学ぶ深層学習-深層強化学習- 第八章 でぐち-機械学習をはじめよう- 機械学習に使われる言葉-プログラミング言語Python- 機械学習に使われるソフトウェア①-TensorFlowとKeras- 機械学習に使われるソフトウェア②-Caffe、PyTorch、Chainer- おわりに-AIについて学べる参考図書たち- 索引
-
3.8世界最大のデータ分析コンペサイト Kaggle(カグル)に挑戦して データ分析の基礎知識を身に付けよう! 【本書の概要】 本書はこれからデータ分析をはじめたいと思っている方や、 Kaggleに興味のあるデータ分析の初心者に向けて、 Pythonの実際のコードとともに丁寧に解説した書籍です。 データ分析で必要な一般的な知識とともに、 Kaggleへチャレンジするフローや、 Kaggleの初心者向けコンペへの取り組み方を紹介します。 データ分析や機械学習の一端に触れ、 実際に課題を解決するプロセスを体感できます。 【本書の対象読者】 ・データサイエンティストを目指す学生 ・データ分析に興味はあるが、あまり経験や知見がないデータ分析の初学者の方 【本書のポイント】 Kaggleの初心者向けチュートリアル「Titanicコンペ」「House Pricesコンペ」について、 分析の準備から結果の考察、そして精度を上げるプロセスを ステップバイステップでコードとともに、わかりやすく解説しています。 【本書より扱うコンペの特徴:本書より抜粋】 ・Titanicコンペの特徴 乗客ごとに性別や年齢、乗船チケットクラスなどのデータが、 生存したか死亡したかのフラグとともに与えられています。 生死に影響する属性の傾向をデータから分析して、 生死がわからない(予測用に隠されている)乗客について、 生死結果を予測することが目的です。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.8Amazon Web Services(AWS)のしくみや関連技術についてわかりやすく解説する図解本です。エンジニア1年生、IT業界などへの転職・就職を目指す人が、AWS関連の用語、しくみ、クラウドとネットワークの基礎技術などを一通り学ぶことのできる、1冊目の入門書としてふさわしい内容を目指します。本書では、クラウドやネットワークの基礎から解説し、AWSのサーバーサービス、ストレージサービス、ネットワークサービス、データベースサービスについて具体的なサービス名を挙げながら初心者向けにわかりやすく紹介します。今までのAWS解説書では用語がわからず難しかったという人も本書なら安心して学ぶことができます。
-
3.8※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 人工知能って、いったい何ですか? 人工知能学会の歴代会長を含む人工知能研究の権威が答えます! ! 今話題の深層学習(ディープラーニング)で注目されている機械学習など、人工知能分野で最先端の研究を行う研究者13人が、人工知能学会誌に連載したものを大幅に加筆修正した。研究者として自ら「人工知能とは何か」の再定義を行い、それをふまえて、各研究について一般読者に伝わるようにシッカリと解説を行っている。人工知能に興味のある読者はもちろん、知能、認知、脳科学、人間、哲学などに関心のある読者は必読必携である。13人の紙面上でのキャッチボールが示唆に富んでおり、読んでいてとにかく面白い! !大変好評を得ている『深層学習 Deep Learning 』に続く、人工知能学会監修企画!
-
3.8
-
3.82014年末に『エクサスケールの衝撃』を上梓させていただいたとき、世の中では「人工知能・AI」という言葉も「シンギュラリティ」という言葉も、まだそれほどメディアで目にすることはなく、新しい世界と社会の到来に対する感覚は希薄なものでありました。しかし今、まさに時代が大きく変わりつつあり、「エクサスケールの衝撃」に向けて速度を速めて世界が進みつつある状況を鑑みましたときに、これまで以上に多くの方々にその内容を知っていただき、迫る「プレ・シンギュラリティ(前特異点)」の意味や本質を理解していただき、それに対する準備を進めていただきたいと考えるに至りました。本書は、『エクサスケールの衝撃』の内容を約半分に凝縮した抜粋版でありますが、原書の重要箇所を余すところなく盛り込んでおります。ですから、その要点以上の内容を十分にご理解いただけるであろうことをお約束することができます。(「まえがき」より抜粋)
-
3.8
-
3.7
-
3.7デジタル通信メディアを軽々と使う若者たちは、どんなコミュニケーションをしているのか? 緻密な調査から、彼らの生態とともに、現代の日本社会が抱える問題点が浮かびあがってくる。 物心ついたころから、PCやケータイでコミュニケーションをとることが当たり前の“デジタルネイティブ世代”。彼らのコミュニケーションは、旧世代のものとどう違っているのだろうか? 文化人類学の手法を駆使して、15年にわたって調査をつづけてきた著者に見えてきたのは、PCやケータイなどのコミュニケーションメディアや、SNSやツイッターなどのサービスによって、大きく違いが出てきているという実態だった。そして驚いたことに、彼らがコミュニケーションで抱える問題は、現代の日本社会が抱えている問題──不確実なことを避ける傾向、ネット社会への不信感──と同じものだった。若者への調査から鮮やかに浮かびあがってくる、現代日本の姿。
-
3.7
-
3.7若手システムエンジニアが、予期せぬ大トラブルと出会い、自身の運命を切り開く! 後藤智彦、34歳主任、まじめで優秀だが不安いっぱいのシステムエンジニア(SE)。新技術の急速な進歩と変化、不確実なキャリアパス、そして自分の未来への疑問…。技術・キャリア・未来、ぜんぶ不安……。 大手メーカー系列の中堅システムインテグレーターでSEとして働く後藤智彦。しかし彼は12年働いた会社をやめようと決心していた。後輩に抜かれる昇進レース、生成AIのような画期的な新技術の出現、SEという彼の職業の未来への信頼が揺らいだからだ。 ある金曜日の夕方、後藤は退職願を懐に入れて上司のもとへ向かう。待ち受けていたのは、担当企業のシステムが大トラブルに見舞われたという連絡だった。上司の命で緊急対応に向かった彼はそこで、自分の運命を大きく変える男、五十嵐優一と出会う…… 本作は、一夜に渡るシステムトラブル対応の物語を通じて、コンピューター業界で働く若手ビジネスマンが抱える様々な課題に答えます。「ChatGPT」に代表される生成AIのような急速な技術進歩にどう対応すべきか、キャリアをどのように形成するか、昇進や転職成功の秘訣は何か、「稼ぐ」にはどうするか、そしてSEやIT業界には未来があるのか…。五十嵐が語る「37の鉄則」があなたの悩みに答えます。 キャリアや未来に悩む若手ビジネスマン、必読の書です。
-
3.7「政治、産業、文化芸術、教育、医療、防衛…… ここに挙げた全ての領域に、AIは破壊的変化をもたらすだろう。その結果、人間のアイデンティティーや経験する『現実』は、近代の幕開け以来最大の変化を遂げるだろう」 AIはどのようなイノベーションを起こすのか? AIは人間には認識できない現実を認識するようになるのか? 人間の評価にAIが使われるようになったら、人間はどう変わるのか? そして、これらの変化が起きたとき「人間である」とは最終的に何を示すのか? 元・米国国務長官、元・グーグルCEO、MIT学部長、それぞれの分野で頂点をきわめた三名が、人類史という大きなスケールから、AIのもたらす社会的変化と、私たちの未来について語る。
-
3.7AI活用がもたらす医療技術の変革! AI技術は病理学や医用工学、解剖学、神経科学、細胞生物学、 脳神経外科や内科学、眼科学、放射線医学、手術医学など、 基礎医学から臨床医学まで幅広い領域に浸透し始めています。 しかし、データの量や用途に応じて技術のラインナップの中から 適切な武器を選ぶ必要があるため、正しく活用するのは一苦労です。 さらにAIを医療機器としてリリースするためには、 資金調達、人材戦略、知財戦略などに抜かりがあってはいけません。 本書では、最新の事例、技術、法律と行政の取組みについて解説しており、 国内において医療AIをより活用できる1冊となっています。 【本書の概要】 ・AIと医療に関わる昨今の社会状況やAIの医療応用に関する法律を解説 ・AIが医療にどのように貢献しているかを、実際に事業化されている事例を中心に紹介 ・医療関連の画像を扱う技術や、電子カルテなど医療関連の自然言語や数値などの系列データを扱う技術など、 開発に必要な技術を紹介 ・医療AIの開発に使われる有名な公開データと提供元をリストアップし、データを扱う心構え、 標準的な開発の流れまで踏み込む ・医師かつ起業家の視点から、医療AIの事業化において役立つ情報が満載 ・韓国の医療AIベンチャーであるVUNO社とのインタビューと、日本が学ぶべき事柄を考察 【本書の読者層】 ・医療AIの開発に携わるエンジニア ・基礎知識として医療AIの基本事項を押さえておきたいエンジニア ・医療AIハード・ソフトウエアメーカやベンダーの企画、営業担当 ・医師 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.7※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 いま多くの企業で、データサイエンスを理解できる人材の需要が急増しています。本書は、データサイエンスや機械学習の概要を、初心者向けに難しい言葉や難解な数式を省き、わかりやすい言葉で解説した入門書です。「データサイエンスって何?」からはじめて、よく聞くキーワードや押さえておきたいトピック、ビジネスシーンでデータサイエンスがどう生かされているのかという最新事例まで、ポイントを絞って具体的に紹介します。
-
3.7
-
3.7AIの開発・活用において日本はもはや“後進国” 巻き返しのカギは若きAIチャレンジャー 「日本のディープラーニング・ビジネスは、米国はもとより 中国の台頭ぶりを見れば、世界で勝てる感じがしない、敗戦に近い。 ただし、人材の育成に取り組み、若い優秀な人材に権限委譲すれば、 様々な産業領域で世界一になれる可能性はある」 ――東京大学大学院特任准教授 松尾豊氏 米国企業はもとよりアリババ集団やテンセントなどの中国企業に比べても、 日本企業がAI活用のビジネスで大きく出遅れているのは紛れもない事実だ。 海外で開催されているAI関連の国際学会への論文採択数などでも、 米国や中国に比べて日本は極端に少ない。 まさにAI後進国ニッポンだが、 それでもAIを駆使して世界を切り拓く挑戦者たちがいる。 「脱出のカギはディープラーニング人材の育成」にあると見込む 松尾特任准教授は、日本ディープラーニング協会を設立し理事長に就任。 教育検定資格を通じて人材育成に乗り出した。 本書では、いま、日本で起こっているAI、中でもディープラーニングを活用した ビジネスの動向をダイナミックに描き、コマツ大橋徹二社長(兼)CEO、 リクルートホールディングス峰岸真澄代表社長兼CEO、経営共創基盤(IGPI) 冨山和彦代表CEOら、優れた経営者へのインタビューから 日本企業が進むべき道を示す。
-
3.7ベストセラー『プログラムはなぜ動くのか』『コンピュータはなぜ動くのか』著者 矢沢久雄 3年ぶりの待望の最新作! ふだん何気なく使っているのに、改めてその意味を問われると、ひと言では答えにくい言葉の一つが、「情報」です。そのとらえどころのない「情報」を処理しているのが、ほかならぬ「コンピュータ」です。では、現実世界のあいまいな情報を、あいまいなことを受け入れられないコンピュータに、どうやって処理させているのでしょう? 本書は、情報をどう表現して、処理手順をどう明確にするか、身近なテーマをひきながら一つひとつ解説していきます。 特徴1:情報を処理することの「知識」と「センス」が身につきます! 「情報を処理する」とは、与えられた情報を計算、変換、検索などして、目的の結果を得ることです。本書では、コンピュータが情報を扱う過程をわかりやすく説明します。「知識」はもちろん、情報を考える「センス」を感じとってもらえるはずです。「情報」をキーワードに、あいまいな現実とコンピュータをつなぐ不思議な世界を一緒にのぞいてみませんか。 特徴2:たくさんの「クイズ」で腕だめし! 途中には、たくさんのクイズが登場します。パズルのように楽しい問題ばかりです。ぜひ挑戦してください。 特徴3:世界初のコンピュータや、偉大な開発者たちを写真とともに紹介! コンピュータの原型となった考え方やコンピュータの開発に貢献した人たちの話なども写真とともに多数紹介します。どのような発明と発見があって現在のコンピュータになったのか、ぜひ知ってください。
-
3.6
-
3.6※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ChatGPTは、入力する質問・指示次第でいくらでも使い勝手が変わります。しかし、その圧倒的な自由度のせいで、効果的に使いこなせていない人が多いのが現状です。特に多いのが、ChatGPTに自分の知らない知識を求めてしまうパターンです。ChatGPTはでたらめな回答をすることも多いので、失望して「使えない」と思った人も多いでしょう。しかし、それはあくまで使い方に問題があっただけなのです。ChatGPTには、あなたの優秀な部下だと思って接してあげましょう。部下への指示の出し方にコツがあるように、ChatGPTにも質問や指示の出し方にコツがあります。そのコツさえ掴んでしまえば、ChatGPTはいくらでもあなたのために働いてくれます。 ※本書はGPT-4にも完全に対応し、解説した1冊となっています。 ※本書はKindleで発売されている『おばちゃんでもわかる超入門ChatGPT』『ChatGPT の応答精度はプロンプトが9割』に最新情報を加え、大幅に加筆修正して出版したものです。
-
3.6
-
3.6AIの技術から歴史、 活用方法まですべて図解 確かな知識がつく「使える教科書」 【本書のポイント】 ・解説とイラストがセットで理解しやすい! ・AIの基礎から最新のトレンドまでカバー! ・機械学習やディープラーニングもすべて図解! ・キーワードから知りたい項目を調べやすい! ・初心者からエンジニアまで知っておきたい知識を収録! 【こんな方におすすめ】 ・複雑なしくみからAIの歴史、最新動向まで広く理解したい人 ・AIシステムを発注・管理している人 【内容紹介】 現代においてAI(人工知能)は世の中に広く知れ渡っていますが、 技術の発展とともにますます活用される範囲は広がり、 私達の生活にとって欠かせないものになっていくでしょう。 しかし、AIの全体像をつかむには 複雑で難しい技術を知る必要があり、 初めて学ぶときには難易度の高さを 感じる人も多いのではないでしょうか。 そこで、本書では見開きで 1つのテーマを取り上げ、 図解を交えて解説しています。 最初から順に読んで 体系的な知識を得るのはもちろん、 気になるテーマやキーワードに 注目しながら読むなど、 状況に合わせて活用してください。 【目次】 第1章 AIを取り囲む全体図 第2章 AIの基本的なしくみ 第3章 AIにおけるデータの取扱い 第4章 機械学習のしくみ 第5章 ディープラーニングに関わる技術 第6章 様々なAIと実用化 第7章 他分野と交わり進化するAI 第8章 AIにまつわる様々な議論 第9章 未来のAI ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.6本書は、現在話題となっているキャッシュレス決済に関心のある方へ向けて、キャッシュレス決済の定義と分類、各決済方式の仕組み、代表的な企業やサービスなど、キャッシュレス決済の全体像を俯瞰して解説する書籍です。現在急速に普及の進む「QRコード決済」の最新情報から、「カード決済」「電子マネー」を含む各種決済サービス、キャッシュレス化が進んだ中国の現状といった情報を整理し、図解を使ってわかりやすく解説します。
-
3.5※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIエージェント時代の標準規格MCP(モデル コンテキスト プロトコル)の入門書。 大バズりしたスライド「やさしいMCP入門」の著者が新技術の基礎をやさしく解説。 Chapter 1 MCPとは Chapter 2 MCPの仕組み Chapter 3 MCPを実際に触ってみよう Chapter 4 MCP対応クライアント紹介 Chapter 5 MCPサーバー紹介 Chapter 6 MCPサーバー紹介(開発者向け) Chapter 7 MCPがもたらすビジネスインパクト Chapter 8 MCPの展望と今後の発展
-
3.5
-
3.5●知識ゼロでもAI時代の波に乗れる! ●仕事で使えるAI活用法がこの一冊に凝縮 ●「わかりやすい」「即実践」「AIがパートナーに」これからの必須スキルを網羅! 【本書のポイント】・AI初心者でもスムーズに始められる簡単解説! ・AIを使った効率的な仕事術やクリエイティブな応用法を詳しく紹介 ・AIによる文章作成、画像生成、検索方法など、今すぐ使える具体例を多数掲載 ・最新のAIモデル「OpenAI o1」などChatGPTの革新性を徹底解説 【AIの力でこんなことが可能に!】・数時間かかっていた文章作成が、わずか数分で完了! ・高度なデータ分析やマーケティング戦略もAIと一緒に考えられる ・あなた専用のAIアシスタントをカスタマイズして、日々の業務を劇的に効率化!
-
3.51巻2,860円 (税込)【読めば読むだけ力になる、新スキルチェックリスト対応の公式リファレンスブック!】 集めたデータから価値を創出し、ビジネス課題に答えを出すデータサイエンティストは、ますます必要とされてきています。そんなデータサイエンティストには、様々なスキルが求められています。 ・情報処理、人工知能、統計学などの情報科学系の知恵を理解し使う、データサイエンス力 ・データサイエンスを意味のある形に使えるようにし実装・運用できるようにする、データエンジニアリング力 ・課題背景を理解した上でビジネス課題を整理し解決する、ビジネス力 さらに、これらのスキルを日常生活や仕事等の場で活かすための学修目標を示した「数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム」も公表されています。データサイエンティスト検定(リテラシーレベル)では、これらの基礎的な部分を総合的に問われます。 本書では、問われる項目をひとつひとつピックアップし、現場の第一線でで活躍する著者が詳しく解説しています。読み込めば読み込むほど力になる、試験対策のための一冊です。 ■目次 第1章 DS検定とは 第2章 データサイエンス力 第3章 データエンジニアリング力 第4章 ビジネス力 第5章 数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム データサイエンティスト検定TMリテラシーレベル模擬試験 問題 データサイエンティスト検定TMリテラシーレベル模擬試験 解答例 ■著者プロフィール ●菅 由紀子(かん ゆきこ):株式会社Rejoui(リジョウイ) 代表取締役、一般社団法人データサイエンティスト協会 スキル定義委員、広島大学 客員教授。 ●佐伯 諭(さえき さとし):一般社団法人データサイエンティスト協会 スキル定義委員会副委員長、事務局長、ビーアイシーピー・データ株式会社 取締役COO。 ●高橋 範光(たかはし のりみつ):株式会社ディジタルグロースアカデミア 代表取締役会長、株式会社チェンジホールディングス 執行役員、一般社団法人データサイエンティスト協会 スキル定義委員。 ●田中 貴博(たなか たかひろ):株式会社日立製作所 人財統括本部 デジタルシステム&サービス人事総務本部 直轄人事部 シニアHRビジネスパートナー、一般社団法人データサイエンティスト協会 スキル定義委員。 ●大川 遥平(おおかわ ようへい):株式会社AVILEN 取締役、一般社団法人データサイエンティスト協会 スキル定義委員。 ●大黒 健一(だいこく けんいち):株式会社日立アカデミー 事業戦略本部戦略企画部部長、一般社団法人データサイエンティスト協会 学生部会副部会長、博士(農学)。 ●森谷 和弘(もりや かずひろ):データ解析設計事務所 代表、データアナリティクスラボ株式会社 取締役CTO、一般社団法人データサイエンティスト協会 スキル定義委員。 ●參木 裕之(みつぎ ひろゆき):株式会社大和総研 フロンティア研究開発センター データドリブンサイエンス部、チーフグレード/主任データサイエンティスト、一般社団法人データサイエンティスト協会 スキル定義委員。 ●北川 淳一郎(きたがわ じゅんいちろう):LINEヤフー株式会社、一般社団法人データサイエンティスト協会 スキル定義委員。 ●守谷 昌久(もりや まさひさ):日本アイ・ビー・エム株式会社 シニアアーキテクト、一般社団法人データサイエンティスト協会 スキル定義委員。 ●山之下 拓仁(やまのした たくひと):一般社団法人データサイエンティスト協会 スキル定義委員。 ●苅部 直知(かりべ なおと):一般社団法人データサイエンティスト協会 スキル定義委員、LINEヤフー株式会社。 ●孝忠 大輔(こうちゅう だいすけ):日本電気株式会社 アナリティクスコンサルティング統括部長、一般社団法人データサイエンティスト協会 スキル定義委員。 ●福本 信吾(ふくもと しんご):一般社団法人データサイエンティスト協会 スキル定義委員。
-
3.5
-
3.5
-
3.5最新のAI開発プラットフォームで 機械学習・深層学習・強化学習の 基礎技術を学ぼう! 【本書の概要】 本書はUdemyで大人気の講座 『AIパーフェクトマスター講座 -Google Colaboratoryで隅々まで学ぶ実用的な人工知能/機械学習-』をもとにした書籍です。 ・機械学習(回帰、k平均法、サポートベクターマシン) ・深層学習(画像識別や画像生成、RNN) ・強化学習(Cart Pole問題、深層強化学習) といった、AI開発でニーズの高い人工知能技術を、深層学習を中心に解説しています。 また本書ではサンプルを用意していますので、サンプルを動かしながら、AI技術の仕組みを理解できます。 開発環境にはGoogle Colaboratoryを使用します。 【Google Colaboratoryとは】 ブラウザ上で利用できる機械学習や深層学習向けの開発環境です。 GPUを無料で利用できるので、コードの実行時間を大幅に短縮できます。 【本書ポイント】 ・機械学習・深層学習・強化学習の基礎知識を一気に学べる ・Pythonでコードを動かしながら機械学習・深層学習・強化学習の理論を学べる 【対象読者】 ・何らかのプログラミング経験のある方 ・機械学習・深層学習・強化学習を学ぶ意欲のある方 ・高校数学以上の数学知識のある方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。 人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.5ITが社会のすみずみまで浸透した結果、仕事の進め方も、ITを前提に考えるのが当然になっています。デジタルトランスフォーメーション(DX)やRPA、AIが必要とされるのも、そうした流れの結果と言えます。とはいうものの、ITを活用したビジネスの進め方に必要なものってなんでしょうか。ITを使って、仕事をよりよくするためには、どうしたらよいでしょうか。 そこで私たちに必要なのは、IT技術の知識そのものではなく、自分のビジネスや業務をどうしたいかという「ビジョン」、そしてそれを実現するためにどのように仕事を「設計」するか、さらに、設計した仕事をIT前提で行うための「要件定義」という3つです。本書では、「ビジョン」「仕事の設計」「要件定義」をどのように行えばよいのか、ITがわからない方でもしっかり理解して手を動かせるように、ていねいに解説します。
-
3.5「毎日,メール処理だけで時間が過ぎていく……」 「ファイルの添付忘れで,取引先の信用が……」 「なんとなく,アウトルックは使いにくい……」 毎日のメールのやり取りで,こんな悩みはありませんか? 本書では,アウトルックを使った「効率良い&ミスしないメール処理」のテクニックをわかりやすく解説。メール仕事の基本はもちろん,署名の扱い・フォルダ分け・定型文自動入力・ファイル添付・連絡先・メール検索まで,アウトルックを使ってスマートで快適なメール処理のテクニックが身につきます。さらに,アウトルックのスケジュールやカレンダー機能やDropboxなどの他サービスと連携テクニックも紹介。これ1冊で,アウトルックの“最強時短仕事術”をマスターしましょう。
-
3.5※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Python 3を使ったテキストマイニングの入門書! 本書は、Pythonを使ったテキストマイニングの入門書です。Pythonのインストールから基本文法、ライブラリパッケージの使用方法などについてもていねいに解説していますので、Pythonに触れたことがない方でも問題なく使用できます。また、テキストマイニングも、概要から実例に至るまで一から解説していますので、Python・テキストマイニング両方の知識が全くない方にとって最適な入門書となっています。 目次 第1章 テキストマイニングの概要 1.1 テキストマイニングとは 1.2 応用の例 第2章 テキストデータの構造 2.1 テキストの構成要素 2.2 統計分析・データマイニングの基本的な手法 2.3 テキストマイニング固有の考え方 第3章 Pythonの概要と実験の準備 3.1 Pythonとは 3.2 プログラムを作って動かす環境 3.3 Pyrhonの書き方ルール 3.4 テキストマイニングに役立つライブラリパッケージ 3.5 データの準備 第4章 出現頻度の統計の実際 4.1 文字単位の出現頻度の分析 4.2 単語の出現頻度の分析 第5章 テキストマイニングの様々な処理例 5.1 連なり・N-gramの分析と利用 5.2 共起(コロケーション)の分析と利用 5.3 語の重要性とTF-IDF分析 5.4 KWICによる検索 5.5 単語のプロパティを使ったネガポジ分析 5.6 WordNetによる類語検索 5.7 構文解析と係り受け解析の実際 5.8 潜在的意味論に基づく意味の分析とword2vec 付録 Python, Jupyter notebook のインストール
-
3.5最新ITキーワード解説書として大人気の「60分でわかる」シリーズ,機械学習とディープラーニングの解説書です。機械学習は難解な技術と思われがちですが,今やすべてのビジネスの効率化に理解が欠かせません。本書ではその基礎から最新知識までを幅広く解説します。機械学習の歴史や活用事例をはじめ,機械学習を支える技術,中小企業や個人でも実現できるビジネス活用のヒントなどをわかりやすく解説します。ビジネスパーソンが知っておきたい機械学習のすべてが,この一冊でわかります!
-
3.5
-
3.5本書は,わずか11行のプログラム解説からはじまります。たったそれだけで深層学習を体験できるのが,いまの状況です。自らがハマってコードを書いて習得した著者が,Deel,Chainer,TensorFlowといった深層学習用フレームワークを使い,畳込みニューラルネットワークやリカレントニューラルネットワークのしくみをコードを読み解きながら解説します。ニューラルネットワークの学習には,画像と自然言語を対象に,GUIツール(CSLAIER)を使って行う方法を紹介。さらに後半では,AlphaGoにも使われた深層強化学習,ファインチューニングの手法,深層化の本命と目されているオートエンコーダについても知ることができます。
-
3.5自分で動かすから、よくわかる!専門知識を身につける第一歩! 本書は、今後ますますの発展が予想される人工知能の技術を、はじめて学ぶための本です。機械学習をはじめ、ニューラルネットワーク、遺伝的アルゴリズム、問題解決、ゲーム戦略、知識表現など、人工知能を支えるそれぞれの分野の基礎をつかむことができます。 独特の技術が多く使われている分野ですが、Excelのサンプルプログラムを体験することで、その技術を実感できるようになっています。Excelプログラムは簡単な入力とクリック操作で動くので、専門知識は不要です。操作を繰り返すことでプログラムが賢くなっていく様子は、人工知能技術への大きな期待も感じさせます。 また、本書で取り上げている各論は、高専5年生向けの授業がもとになっているので、学生・社会人問わず入門に最適です。特に、人工知能分野で活躍したい学生や、将来仕事で人工知能にかかわるかもしれない理系職種の方におすすめです。 【Excelサンプルプログラム】 ・多少ゆがんだ文字でも人工知能なら正しく認識できる ・「ちょっと高め/ちょっと低め」の感覚で空調を制御する ・遺産の適正な分配を要領よく行う ・宣教師が「人食い人」に食われずに川を渡れるか? ・最小コストで山の頂上まで登るときの経路を探せ ・簡単なカードゲームでコンピュータに挑戦! ・人工知能にことばの意味を教えよう ・病院に行く前に人工知能に聞いてみよう ・犯人を捕まえろ! 【本書で解説している技術】 機械学習/深層学習(概論)/ニューラルネットワーク/ファジィ/遺伝的アルゴリズム/問題解決/探索法/ゲーム戦略/知識表現/エキスパートシステム/エージェント/Lisp/Prolog など ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.5
-
3.3※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆IT時事ニュースをわかりやすく深掘り!◆ ワイドショーにもすっかり常連となったIT時事ニュース。 しかし、日々のニュースに関連するITは技術の発達が目まぐるしく、なんだかよくわからない、ついていけないと感じていませんか? 「SNSで炎上が頻繁に起こるのはなぜ?」 「ネット犯罪はどんなしくみで起こるの?」 「生成AIってなにが問題なの?」 しくみや背景を含めて、ていねいに読み解いていけば、理解が深まります。ITジャーナリストとして、テレビ・ラジオなど様々なメディアでニュースを解説してきた著者が、深掘りします。 ■目次 ●第1章 IT時事ニュースがますます世の中を騒がせる? 01 テレビ番組におけるIT時事ニュースの扱い 02 「バイトテロ」事件が繰り返し起きる原因は? 03 バイトテロ大炎上で閲覧数を稼ぐサイト・動画 04 ネット炎上参加は少数・事後対応が重要 ●第2章 個人を狙い撃ちするネット詐欺・サイバー犯罪 05 宅配便やアマゾン偽装のSMS=スミッシングの特徴 06 不正アプリでSMS再送信・情報盗み取り 07 偽サイト巧妙化・ネット広告まで利用 08 高額通話料の国際ワン切り詐欺とは 09 クレジットカード不正利用が巧妙化 10 ウェブスキミングとクレジットマスター 11 クレジットカード利用の安全対策 12 SNSで「捨て駒」を集める闇バイト ●第3章 社会・経済に影響を与えるITトラブル・インフラ障害 13 「やらせレビュー」が氾濫する理由 14 ランサムウェアが企業・病院で被害拡大 15 バックアップも暗号化? ランサム被害傾向 16 VPNなどの脆弱性が攻撃されて侵入被害 17 続発する内部不正事件の手口と背景 18 内部不正の動機は「給与待遇の不満」 19 スマホ決済で障害が多発する理由 20 スマホデータを捜査・裁判に使う時代 21 巨大災害におけるスマホ・携帯電話の障害 22 続発する携帯電話障害の理由 23 続発するクラウド・IT基盤の大規模障害 ●第4章 ビッグテックと国家が描く巨大なIT展望 24 世界はビッグテック=GAFAMが支配 25 GAFAMの売上構成比でわかるITニュース 26 グローバルIT企業と国家の衝突 27 日本は本当にデジタル後進国なのか 28 コロナ対策で見えたデジタル後進国・日本の課題 29 デジタル庁の要・ガバメントクラウド 30 カード自体の安全性は高いマイナンバーカード 31 頻発したマイナカード関連トラブルの原因 32 企業のあり方を変えるDXとは 33 IT技術による新しい文明「Society 5.0」 34 野心的目標に挑戦「ムーンショット」 ●第5章 私たちの生活を大きく変えるITサービス・最新技術 35 スマホ料金の多様化とパターン別お勧め 36 スマホ動画の勝者は? ショート動画の戦い 37 Web3(ウェブスリー)が夢見る新しいネット 38 生成AIの急速進化と基本技術 39 主要3社のマルチモーダルAIの特徴比較 40 生成AIの問題点と「使わないリスク」 ■著者プロフィール 三上洋(みかみ よう):東京都世田谷区出身、1965年生まれ。都立戸山高校、東洋大学社会学部卒業。テレビ番組制作会社を経て、1995年からフリーライター・ITジャーナリストとして活動。文教大学情報学部非常勤講師。専門ジャンルは、セキュリティ、ネット事件、スマートフォン、ネット動画、携帯料金・クレジットカードポイント。
-
3.3ディープフェイクとは、人工知能(AI)の技術を用いて合成された、本物と見分けがつかないほどリアルな人物などの画像、音声、映像やそれらを作る技術のことである。大統領が敵国への降伏を呼びかける動画が拡散されたり、ある企業のCEOの偽音声を用いた詐欺事件が発生するといった事例が生まれる一方、画像生成AIを用いて作成された絵画が米国の美術品評会で優勝するなど、アートやエンターテインメントの分野にも大きな変革が生じる可能性がある。ディープフェイクを生み出す原理や社会への影響などを平易に解説し、共存せざるを得ない未来に向けて知っておくべきことを語る。 ●偽ゼレンスキーかく語りき ●ディープポルノ――日本では逮捕者も ●GANの発明――敵対的生成ネットワークというアイデア ●画像生成AI――言葉を入力すれば絵ができる ●人はディープフェイク顔を信頼する ●脳はディープフェイクに気づいている ●フェイク動画を見破る ●ディープフェイクと共存する
-
3.3技術の無駄遣い!? 日常の些細な出来事を データサイエンスを駆使して 「まじめに」分析 【本書の概要】 ITmedia NEWS で大人気の連載記事 『データサイエンスな日常』をもとにした書籍です。 「飲み会での孤立」「LINEの既読スルー」「満員電車での立ち振る舞い」。 日常生活で気になるテーマを著者の持つ独特の視点で分析。 読み物としてもデータ分析の学習本としても楽しめます。 【本書の対象読者】 ・データやテクノロジー、デバイスを用いたテック系の読み物に興味のある方 ・データ分析、アプリケーション開発に興味のある方 【本書の目次】 PROLOGUE それはコミュニケーションの問題ではなくデータサイエンスの問題 PART 1 家の孤独に立ち向かう CHAPTER1 LINEの既読スルーにランダムフォレストで立ち向かう CHAPTER2 多面的な自分と向き合うためのチャットボット CHAPTER3 電子デバイスを駆使して強制的に感情移入できる漫画を作る CHAPTER4 在宅ワークの孤独に対抗してプロジェクションマッピングで“バーチャル職場”を作り出す PARTT 2 街の孤独に立ち向かう CHAPTER5 「休日に会社の同僚と遭遇しないための動き方」を物理シミュレーションとゲーマーの英知で解き明かす CHAPTER6 飲み会で孤立しないためのセル・オートマトン CHAPTER7 飲み会の帰り道での孤立に、ARシミュレーションで立ち向かう CHAPTER8 「満員電車で快適に過ごすための動き方」を物理シミュレーションで解き明かす CHAPTER9 すべての孤独に悟りとデータサイエンスで立ち向かう ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.3シンギュラリティ前夜! 脳科学と人工知能の接点がわかる! 【本書の概要】 本書はUdemyで大人気の講座、 『脳科学と人工知能:シンギュラリティ前夜における、人間と機械の接点』 をもとにした書籍です。 脳と人工知能のそれぞれの概要から始まり、 脳の各部位と機能を解説した上で、 人工知能の様々なアルゴリズムとの接点をわかりやすく解説。 脳と人工知能の、類似点と相違点を学ぶことができます。 後半の章では「意識の謎」についても解説します。 【シンギュラリティ】 また近年、人工知能の分野では「シンギュラリティ」という概念が注目されています。 シンギュラリティとは指数関数的に高度化する技術や人工知能が未来に人間の知能を凌駕するという概念ですが、 本書を読むことでそうしたシンギュラリティへの洞察力も養うことができます。 【対象読者】 ・人工知能に強い関心があり、人工知能の背景にある天然の「知能」の仕組みについて知りたい方 ・人工知能に関して、技術面以外の知識、特に生物学的側面を知りたいエンジニア ・人工知能の未来と、自身のキャリアを関連付けて考えたいビジネスマン ・素朴に、「ヒトって何?」という疑問のある方 ・知性の本質をアルゴリズムで探究したい方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。 人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.3※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 進化し続けるAI(人工知能)とテクノロジーにより「シンギュラリティ」は刻々と近づいている。ビッグデータ、IoT、ディープラーニングをはじめ注目の仮想通貨・ブロックチェーン・MRなど、知らないではすまされない最先端の技術革新と私たちの近い未来の「変わる生活」について、科学オンチにも身近で大切な話題を中心テーマにわかりやすく図解した一冊! <監修者について> 三宅陽一郎(みやけ よういちろう) ゲームAI開発者。京都大学で数学を専攻、大阪大学大学院理学研究科物理学修士課程、東京大学大学院工学系研究科博士課程を経て、人工知能研究の道へ。ゲームAI開発者としてデジタルゲームにおける人工知能技術の発展に従事。国際ゲーム開発者協会日本ゲームAI専門部会チェア、日本デジタルゲーム学会理事、芸術科学会理事、人工知能学会編集委員 。
-
3.3
-
3.2人工知能が俳句を詠む日はいつ訪れるのか。現在の人工知能はどこまでできて、できないのかを、俳句を詠むAIの開発を通して迫る! 突然ですが、 見送りのうしろや寂し秋の風 病む人のうしろ姿や秋の風 このふたつの俳句が松尾芭蕉と人工知能のどちらの作品かわかるでしょうか。 本書は、現在も精力的に研究の進む人工知能について、俳句の生成という視点から現在の研究・開発動向を解説するものです。コンピュータを用いた俳句の自動生成は1968年のCybernetic Serendipityというコンピュータアートの展覧会に端を発し、近年では小説を生成する「きまぐれ人工知能プロジェクト 作家ですのよ」などとともに、人工知能による文学生成研究のひとつとして進められています。俳句という身近でわかりやすいテーマであるため、TVや新聞などのメディアでも取り上げられるなど、人工知能による俳句生成は現在注目が集まっています。 本書では、実際に俳句を生成する人工知能である「AI一茶くん」を研究・開発している著者らが、現在の人工知能技術の動向から創作分野における人工知能の展開、俳句をどのように人工知能に解釈させ、生成するのかを具体的に解説します。そして「AI一茶くん」の活動の紹介を通して、現在の人工知能がどこまで達成し、なにができていないのかまで見ていきます。 人工知能がどんなことをできるのか気になる方、とくに人工知能の創造性について興味のある方にピッタリの1冊となっています。もちろん人工知能がどんな俳句を生成するのかが気になる俳句好きの方にもわかりやすく、ていねいに解説しています。 第1章 人工知能が俳句を詠む日 第2章 人工知能の歴史と未来 第3章 人工知能を実現する技術 第4章 人工知能と創作 第5章 俳句の人工知能的解釈 第6章 俳句を生成する人工知能、AI一茶くんの仕組み 第7章 AI一茶くんの活動 第8章 人工知能と俳句の未来 付録 AI俳句百句選
-
3.1
-
3.0生成AIにどの業務を任せればよいのか? いま多くの企業は生成AIの導入フェーズを終え、活用フェーズに移行しつつあります。 どのように生成AIと向きあい、活用するべきでしょうか? 本書は、営業、マーケティング、R&D、製造・物流、顧客管理、人事、情報システム、経営企画・経理財務など8部署50業務ごとの活用方法を徹底分析。部署ごとの業務をどの程度AIに任せられるのか、「データ」と「ルール」の2軸で構成されたマトリクスに落とし込んで解説します。 プロジェクトの進め方、費用対効果の測定方法、そしてそしてERPやCRM、Copilotといった他のソリューションとの連携の可能性もカバーしています。 生成AIを単なるツールで終わらせない、戦略的かつ計画的に活用できるようになるための要諦を示す一冊です。
-
3.0
-
3.0ChatGPT&Midjourneyによる プロンプトエンジニアリングの 基本的な手法が学べる 【企画背景】 画像生成AIのMidjourneyやStable Diffusion、文章生成AIのChatGPTなどに代表される生成AIは、その高い精度と自然言語によるインターフェイスにより現在世界中の注目を集めています。生成AIはビジネスや開発の現場など多方面で利用が活発になり、生成AIでコンテンツを作成するプロンプトエンジニアリングの需要が高まってきています。 【ChatGPTとは】 会話形式で質問に答えてくれる文章生成AI。 【Midjourneyとは】 テキストから画像を作成する画像生成AI。 【書籍の概要】 生成AIを利用したプロンプトエンジニアリングの実践手法について解説した書籍です。生成AIの概要と基本的な利用手法から始まり、文章生成AIや画像生成AIを利用したコンテンツ生成の基本的な手法を解説します。最終章では今後の生成AIの展望についても触れています。 【対象読者】 ・文章生成AIや画像生成AIを利用したい方 ・プロンプトエンジニアリングに興味ある方 【本書の特徴】 ・ChatGPTやMidjourneyといった人気の生成AIの概要をつかめる ・文章生成AIや画像生成AIのプロンプトエンジニアリングの基本手法がわかる ・ChatGPTとMidjourneyを組み合わせたプロンプトエンジニアリング手法がわかる 【目次】 Chapter0 イントロダクション Chapter1 生成AIの躍進 Chapter2 文章を生成するAI:ChatGPTによるプロンプトエンジニアリング Chapter3 画像を生成するAI:MidjourneyによるAI画像生成 Chapter4 生成AIによる創作活動 (ChatGPT&Midjourney) Chapter5 生成AIの未来 Appendix さらに学びたい方のために 【著者プロフィール】 我妻 幸長(あづま・ゆきなが) 「ヒトとAIの共生」がミッションの会社、SAI-Lab株式会社の代表取締役。AI関連の教育と研究開発に従事。 東北大学大学院理学研究科修了。理学博士(物理学)。 法政大学デザイン工学部兼任講師。 オンライン教育プラットフォームUdemyで、10万人以上にAIを教える人気講師。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.0
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 研究と学びの新たなる地平! 「知」を研究対象とする著者ら人工知能研究者は今までの客観性を第一義とし、多数の中から普遍性を求める研究手法のみでは「知」を攻略することはほぼ難しいと考えるにいたった。 「知」は個人の中に内在するため、その文脈の中で語られてこそ本質を理解することができる。すなわち、「一人称」が研究のスタートとなる。これを積み上げることで「知」の攻略につなげられると考える。 本書は、この一人称研究の考え方と、実際の研究事例を丁寧な語り口で解き明かす。人工知能に興味のある読者はもちろん、新たな研究姿勢を模索する理工学、人文系の読者も興味を持って読むことができる。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 エヌアイデイ流スクラムのトリセツ&スクラムの品質管理 【雛型】プロジェクト計画書兼報告書解説付き 本書は、筆者が実施してきたスクラム開発の経験を基に、「これからスクラム開発プロジェクトに参画しようとしているが、どのように進めてよいかよくわからない方」や、「すでにスクラム開発に従事しているが、あまりうまくいっていない方」のために開発の進め方やアプローチの方法を具体的にガイドしているものです。プロジェクト計画書の雛形も掲載しており、共通認識としてスクラムチームで活用参照してほしい書籍です。 発刊にあたって はじめに 第1部 アジャイル開発の基礎 第1章 アジャイル開発とは 1.1 なぜアジャイル開発が求められるのか 1.2 アジャイルソフトウェア開発宣言とその意図 1.3 アジャイル宣言の背後にある原則 1.4 ウォータフォール開発とアジャイル開発との違い 第2章 アジャイル開発の手法 2.1 アジャイル開発の手法と特徴 2.2 開発手法の適用状況 第3章 スクラム開発 3.1 スクラム開発とは 3.2 スクラム開発の理論 3.3 スクラム開発の価値基準 3.4 スクラム開発の流れとフレームワーク 3.5 スクラム開発の進め方 第4章 スクラム開発での契約 4.1 契約の前に 4.2 契約形態について(請負契約と準委任契約) 4.3 顧客と当社の役割分担 4.4 契約前チェックリスト 第2部 開発の現場 第5章 受 注 5.1 契約前の合意および確認事項 5.2 見積りおよび契約 第6章 計画・立ち上げ 6.1 スクラムチームの編成と立ち上げ計画策定 6.2 インセプションデッキ作成 6.3 プロダクトバックログ作成 6.4 プロダクトバックログ見積り 6.5 初期リリース計画 6.6 スプリント準備 6.7 プロジェクト計画書の作成 第7章 スクラム開発のフレームワーク 7.1 スプリントプランニング 7.2 開発(技術プラクティス) 7.3 デイリースクラム 7.4 問題・障害・リスクの共有 7.5 進捗管理 7.6 スプリントレビュー 7.7 スプリント・レトロスペクティブ 7.8 リリース 7.9 プロダクトバックログ・リファインメント 第8章 品質管理 8.1 スクラム開発での品質の考え方 8.2 品質管理活動 8.3 品質データの収集および分析について 第9章 終 結 9.1 プロジェクトの実績評価とふりかえり 9.2 プロジェクト完了報告 9.3 プロジェクト実績の保管 第3部 各種資料 資料1 インセプションデッキの作り方・注意点 項目1:我われはなぜここにいるのか 項目2:エレベーターピッチを作る 項目3:パッケージデザインを作る 項目4:やらないことリストを作る 項目5:「ご近所さん」を探せ 項目6:解決案を描く 項目7:夜も眠れなくなるような問題は何だろう 項目8:期間を見極める 項目9:優先順位は? 項目10:何がどれだけ必要なのか 資料2 プロジェクト計画書の解説 1 管理表 2 体制 3 リスク管理 4 予算・要員計画 5 マスタスケジュール 6 進捗管理 7 品質管理 8 完了報告書 資料3 【雛型】プロジェクト計画書兼報告書 資料4 見積リスク評価表 資料5 スクラム開発プロセス俯瞰図 資料6 スクラムの実例紹介 1 プロジェクトの背景 2 プロジェクトの概要 3 インセプションデッキ 4 プロダクトバックログ 5 スプリントバックログ 6 デイリースクラム 7 スプリントレビュー 8 レトロスペクティブ 資料7 用語集 参考文献 あとがき
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 写真や動画の投稿,リモートワークの普及など,ここ数年で私たちはよりインターネットを利用するようになりました。 こうしたサービスのおかげで,私たちの生活はより豊かになった一方で,注意しなければいけないことも増えてきています。 本書では,豊富なイラストと図解で,「インターネットを通じたコミュニケーションで,気を付けるべきことは何か」「情報発信をする上で,してはいけないこととは何か」といったルールやモラルを学べます。 改訂に伴い,著作権や肖像権についての記述を追加しました。 これからのIT技術に対応したリテラシーを身に付けることができます。
-
3.0
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ICTやIoT技術の発展によって社会にあふれる「ビッグデータ」を活用して、有用な「価値」を引き出す学問分野「データサイエンス」は、ビジネスから行政、医療、スポーツなど、あらゆる分野で注目されている。データサイエンスの基礎となるデータ処理(情報学)やデータ分析(統計学)手法の基本やあらまし、さまざまな分野での活用実例などを、図版や写真、イラストを使ってやさしく解説するシリーズ第10弾。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ポストコロナ時代、企業はどうあるべきか?生き残りにはDXによる変革が一段と重要に――。 ポストコロナ時代、企業の在り方が問われる時代になった。本書では、単なる概論にとどまらず、金融、公共、流通といった業界を中心にDXの最新動向を追いかける。さらにデジタル庁のトップ、日本を代表する大手金融機関トップのインタビューを含め、ほかでは読めない独自コンテンツを満載した1冊。 ■総合解説 ポストコロナ、DXはこう進む ■金融DX最新動向 地銀の反転攻勢 東京海上、正攻法のDX インタビュー 東京海上ホールディングス社長 小宮暁氏 勘定系の新常態 インタビュー SBIホールディングス社長 北尾吉孝氏 「eKYC」急拡大/岐路の全銀システム/CAFISの葛藤 求められる競争原理 迷走、給与デジタル払い 賛否拮抗で解禁見えず ほか ■公共DX最新動向 激変する行政システム/デジタル庁 その理想と課題 役所・銀行・薬局 マイナカード利用に挑む/デジタル庁の試金石 ワクチン接種DX 政府テレワークの今 拒むのは技術にあらず ほか ■流通DX最新動向 クルマも化粧品も 「ノールック商売」台頭 デジタル直販「D2C」 最新EC誰でも手軽に 物流、再発明 ほか ■DXコラム システムの保守運用体制が瓦解 他人事ではない、みずほの惨事 量子コンピューターとメタバース IT産業と社会を変える技術はこれ 2022年に日本のDXの真価を問う 「地獄の沙汰」が意味するもの 日本のDXを阻む規制を見直す デジタル臨調への期待と不安 公取委がIT業界の暗部を調査 ESGで「見ぬふり」は許されず 岸田新政権
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 企業システムに関わる人が知っておくべきGoogle Cloudのサービスを 網羅的にわかりやすく解説 3つのシナリオにおける設計の進め方や注意点も収録 Google Cloudは企業情報システムへの対応を急速に進めており、DX(デジタルトランスフォーメーション)での存在感を高めています。本書は、企業情報システムの担当者やシステム企画部門、サービスを開発・運営する事業部門の担当者などが知っておくべきGoogle Cloudのサービスを網羅的に分かりやすく解説した一冊です。 データベースやセキュリティー、機械学習など11のカテゴリーに分けて重要なサービスを1つひとつ平易に解説しており、Google Cloudの基本的な知識を体系立ててつかむことができます。「ハイブリッドクラウドの構築」「データ分析基盤の構築」「IoT・機械学習システムの構築」という3つのシナリオにおける具体的な開発の進め方、設計例、考慮すべきポイントも収録しました。
-
3.01巻2,420円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ●AI・データサイエンス時代に対応した、新しい一般情報教育の標準テキスト ●これからのカリキュラムに対応して、情報基礎からデータサイエンスまでを網羅 本書は、情報処理学会一般情報教育委員会で編纂した、これからの一般情報教育に対応した標準テキストです。情報ネットワークや情報機器の基礎知識から、プログラミングの考え方、情報倫理、データサイエンス等、社会生活で不可欠な教養ともいえる知識を幅広く網羅します。 半期2単位の授業で使用することを前提に、内容をコンパクトに、かつわかりやすく構成しています。各大学・高専で一般情報教育の見直しが行われている中で、まさに最適の教科書としてご利用いただけます。 第1部 情報リテラシー 第1章 情報とコミュニケーション 第2章 情報倫理 第3章 社会と情報システム 第4章 情報ネットワーク 第2部 コンピュータとネットワーク 第5章 情報セキュリティ 第6章 情報のデジタル化 第7章 コンピューティングの要素と構成 第8章 アルゴリズムとプログラミング 第3部 データサイエンスの基礎 第9章 データベースとデータモデリング 第10章 モデル化とシミュレーション 第11章 データ科学と人工知能(AI) 参考文献
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習エンジニアが知らないでは済まされない知財と契約の基礎知識をコンパクトに、わかりやすく整理 本書は、エンジニア・研究者、学生を対象に、知らないでは済まされない機械学習にかかわる知財と契約の基礎知識をコンパクトに、わかりやすくまとめた書籍です。 GoogleやAppleの創業者がエンジニアであり、スタートアップ企業から始まっているように、いまや、そして特に機械学習に関連する分野では、エンジニア自身が知財活動や法務活動に積極的にかかわることが必要不可欠です。いいかえれば、何かことが起こればエンジニア自身が矢面に立たされたり、少なくとも責任の一端をとらされたりすることは避けられません。 本書は、このような背景を踏まえて、機械学習の研究開発に関連してエンジニアが知っておくべき法律的な考え方や知識を、主に実務的な観点を交えつつ、一から丁寧に解説しています。 第1章 AI・データと法的な保護 第2章 契約-当事者のインセンティブのデザイン 第3章 AI・データと特許 第4章 専門家とのコラボレーション 第5章 OSSと知的財産権
-
3.0データ分析は意思決定のためにあり! 現場で役立つデータサイエンスの新・定番書! 本書は、主に統計学の視点からデータサイエンスについて解説しています。 PythonやRといったプログラミング言語を通じて データ分析の手法は一通り学んだという皆さん、そのスキル、 実際に活かせていますか? 具体的な課題解決につながっていますか? ・分析結果から何を読み取ればいいのかわからない ・数字からどんな価値を見いだせるのかがわからない ・そもそも、その分析方法が適切なのかどうか自信がない ・効率のいい分析ができているのかどうかわからない という方、多いのではないでしょうか? データを使って意思決定を行うには、統計学の知識は欠かせません。 そこで本書では、8つの具体的な社会事例を用い、 ・課題に「適した」分析手法やデータの収集方法 ・事例の分析結果の解釈 ・分析や解釈の際に注意すべきこと を数学の知識で補完しながら紹介しています。 著者は首都圏初のデータサイエンス学部として2018年4月に創設された、 横浜市立大学 データサイエンス学部 学部長の岩崎 学先生。 データサイエンティストやエンジニアが見失いがちな、 「何のために分析するのか」を意識しながら読み進めてみてください。 【こんな方にお勧めします】 ・統計学もプログラミングも一通り学んだけれど、 結果をどう判断すればいいのかわからないエンジニア ・分析結果の数字やグラフから、 業務でいかすためのヒントを得たいデータサイエンティスト ・データサイエンスに興味のある学生(専門課程を選ぶ際の 参考資料として) ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 第3次AIブームが到来し、AIが浸透した社会における深刻な課題や問題が取りざたされてきている。中でも2017年にオックスフォード大学から公表された「近未来では人間の仕事の半数がAIで代替される」という話題の影響は強く、AIに仕事を奪われることに警鐘を鳴らす書籍が数多く出版されている。反面、ビジネス面以外の「AIによる不都合な現実」にスポットを当てた類書はまだ少ない。 本書は著者が所属する理研・革新知能総合研究センター 社会における人工知能研究グループの成果をもとに、AIの負の側面の紹介とAI設計・運用における倫理指針を示す構成となっている。第1章ではシンギュラリティ—AIが人間を超える可能性、第2章ではAIに奪われる仕事の範囲、第3章ではAIの発展の歴史、第4章では現状の「弱いAI」がもたらす数々の問題、第5章ではAI倫理を主軸とした社会制度の対応策について解説している。 AIの技術そのものに関する記述は少なく、人間社会におけるAIの影響という観点から執筆されているため、社会学や社会工学分野の読者にも興味を持たれる内容となっている。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「ディープラーニングをライブラリで実装できるけれど、よく意味が分かっていない」 「ディープラーニングの背景にある数式を理解して、何が行われているか知っておきたい」 本書はそんな人のための本です。 勉強中のプログラマ「アヤノ」と、友達の「ミオ」の会話を通じて、ディープラーニングでどんなふうに入力値から出力値までの計算がされているのか、楽しく学んでいきます。 ※本書は『やさしく学ぶ 機械学習を理解するための数学のきほん』の続刊となりますが、前作を読んでいない人でも問題なく読むことができます。 本書では、 ・ニューラルネットワークでは何ができるのか ・単層のパーセプトロンではどのような計算が行われているのか ・パーセプトロンではどうやって問題を解いているのか ・パーセプトロンにはどんな欠点があるのか などの基本的な部分から解説を始めます。 パーセプトロンが理解できたら、続いて多層のニューラルネットワークについて学んでいきます。 ・ニューラルネットワークではどうやって問題を解いているのか ・問題を正しく解くためのパラメーターはどうやって学習しているのか といったことについて、1つずつ数式を理解して、時には具体的な数値を当てはめて実際に計算しながら理解していきます。 ニューラルネットワークが理解できたら、いよいよ画像の分類などに向いている「畳み込みニューラルネットワーク」について学習を進めます。 何をやっているのか、図解と数式で確認しつつ学習し、どのようにして「畳み込みニューラルネットワーク」が分類のタスクを行っているのか丁寧に解説します。
-
3.0
-
3.0「Excel VBAの文法は入門書で学んだ。基礎の知識はひととおりある。でも,実践になると思うようにマクロが書けない……」。Excel VBAは生産性アップや時短を後押ししてくれる強力なツールですが,こんな“困った”を持つ人が少なくありません。「なぜ書けないのか」を知り尽くす著者の大村あつしさんは,知識とアイデアは別のものと指摘します。「いま持っている知識にアイデアとテクニックを加えればマクロを書くスキルは目に見えて上がる。そして,必ず知っておきたいアイデアの数は厳選できる」と。本書は,自動化,高速化から,データベース,ユーザーフォーム,外部ファイルの操作まで,お持ちの知識を活性化して上級者への確かな足がかりを築くことをお助けします。
-
3.0あらゆる企業や組織の中で価値あるデータが、新しい時代のために十分に活用されないまま大量に眠っている。さまざまな情報システムの中枢をなすRDBに保管されてきたデータはもちろん、日常使われるワープロやPDFの文書、ネットのWebページなどのデータもそれぞれの目的に応じて囲い込まれていると言っていい。これらを解放してAIやブロックチェーンで活用できた者は、第4次産業革命の勝者となる。そのためにはデータの生成から変換、管理、流通までのプロセス全体を円滑に回すことのできる、デジタル時代にふさわしい新しい「データサイクル」を実現することが欠かせない。その鍵は、AIなどの機械がそのまま理解することのできるデータの形式を採用することにある。そこで今、オープンな国際標準に基づくXMLデータ形式による低コストで柔軟なシステム作りが、あらためて注目されている。本書が提唱する革新的なXML自動変換技術によって、企業や組織は最強のデータ戦略を手に入れることができる。
-
3.0【背景】 近年、RPAをビジネスの現場で積極的に利用しようとする動きが活発です。 RPAとはロボティック・プロセス・オートメーションの略語で、 日常の定型業務をソフトウェアに代行させ、自動化を図ることです。 RPAが注目される理由としては、 ・慢性的な人員不足 ・システムの乱立とつなぎ業務の多さ ・製造業の成功 が背景にあります。 【書籍の概要】 本書は、長年自動化システムについて業務開発を行ってきた著者が、 オープンソースのRPAソフトウェアを組み合わせて、 RPAシステムを構築する手法を解説した書籍です。 RPAシステムで利用するソフトウェアはオープンソース「Sikulix」を利用します。 第1部ではRPAシステム開発の基本について簡単なシステム構築を元に解説します。 第2部では需要の高いRPAモデルケースを元に開発の勘所を中心に解説します。 【対象読者】 システムエンジニア 【Sikulix(シクリ)について】 OpenCV(インテル社が開発・公開したオープンソースの画像解析ライブラリ)を利用した GUIオートメーションツールです。 【著者】 小佐井 宏之(こさい・ひろゆき) 福岡県出身。京都工芸繊維大学同大学院修士課程修了。 まだPCが珍しかった中学の頃、プログラムを独習。 みんなが自由で豊かに暮らす未来を確信していた。あれから30年。 逆に多くの人がPCに時間を奪われている現状はナンセンスだと感じる。 業務完全自動化の恩恵を多くの人に届け、無意味なPC作業から解放し 日本を元気にしたい。株式会社完全自動化研究所 代表取締役社長。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 シンギュラリティ(Singularity)とは人工知能(AI)が人間の能力を超えることで起こる「技術的特異点」のこと。ロボット技術がさらに進化し、大変革が起こって後戻りできない世界に突入すると、人類はどうなるのか――。本書はシンギュラリティの実例と最新動向をわかりやすい文章と写真・イラストで解説し、近未来に訪れる世界を多角的に描き出す。話題の先端科学に触れたいとの知的好奇心に応えるシリーズ第3弾。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層強化学習の入門から実装まで、この一冊でわかる! アルファ碁などのゲームAIやロボットアームの制御、自動運転などで注目されている深層強化学習の基礎と、Pythonによる実装について解説した入門書です。 強化学習に適したライブラリであるChainer(ChainerRL)と、AIシミュレーション環境であるOpenAI gymを用いて解説しています。 ソフトウェアシミュレーションだけでなくRaspberryPiとArduinoを用いた実環境への応用も解説しているので、ソフト・ハード問わず自身の課題に深層強化学習を応用することができるようになっています。 1章 はじめに 2章 深層学習 3章 強化学習 4章 深層強化学習 5章 実環境への応用 付録 付録1 VirtualBoxのインストール 付録2 RaspberryPiの設定 付録3 Arduinoのインストール 付録4 Graphical Processing Unit(GPU)の利用 付録5 Intel Math Kernel Libraryを用いたNumPyのインストール
-
3.0要求仕様ゼロから価値を生み出す! IT現場の上流工程が変わる! ITを使って新しいサービスやビジネスを生み出したり、既存のビジネスの仕組みを変えたりする、いわゆる「デジタルシフト」のニーズが急速に高まっています。そしてデジタルシフトの実践に当たって、「デザイン思考」を情報システムの開発に活用する動きが広がりつつあります。 デザイン思考は、課題を発見し、それを解決する新しいサービスやビジネスを創り出すための考え方のこと。ユーザー自身がどのようなシステムを開発すべきか分からない、要求仕様が何もないところから開発を始めなければならないようなときに、デザイン思考が役立ちます。 本書は、ITエンジニアがデザイン思考をシステム開発で活用するときに必携の一冊です。デザイン思考を全く知らないというITエンジニアはもちろん、デザイン思考の勉強を始めたが難解で今ひとつピンとこないというITエンジニアにも、理解しやすく説明しています。デザイン思考は何となく理解したが、システム開発でどのように活用すればよいか分からないというITエンジニアにも、現場で役立つ実践的な情報が満載です。 第1章「デザイン思考の基本を学ぶ」では、デザイン思考における一般的なプロセスについて、その基本を解説します。実践的なイメージを想像しやすいように、架空のデザイン思考活用プロジェクトのストーリーを挿入しました。 第2章「現場で使える実践ノウハウ」では、デザイン思考を活用したプロジェクトでつまずきやすいポイントとそれを乗り越えるための処方箋をまとめました。 ITで新たな価値を生み出すために、ぜひ本書をご活用ください。
-
3.0本書は,Fintechをはじめとする次世代ITビジネスの中核技術として期待されている「ブロックチェーン」を取り上げ,ビジネスの常識として知っておきたい,ブロックチェーンの基本,ブロックチェーンを実現する最新IT技術のしくみ,中小企業や個人でも実現できるビジネス活用のヒント,ブロックチェーンの普及により社会や世界がどのように変わっていくかなどを,イラストでわかりやすく解説します。ビジネスパーソンが知っておきたいブロックチェーンのすべてが,この一冊でわかります!
-
3.0ITアーキテクトを目指すエンジニア必携の一冊 マイクロサービスやDevOpsにも対応! エンタープライズの情報システム開発において、ITアーキテクトの重要性がますます高まっています。スマートフォンやタブレットを生かした新たなシステムの構築や、クラウドサービスを利用したスモールスタートのシステム開発など、システムアーキテクチャーをゼロから考えなければならない場面が増えているからです。 しかしITアーキテクトを名乗るエンジニアの数はまだまだ少なく、またITアーキテクトのタスクや役割についても曖昧なのが実情です。本書では、そんなITアーキテクトがすべきことや求められるスキルを、システム開発の工程に沿って体系的にまとめました。ITアーキテクトが各工程で実施するタスクを、その成果物とともに解説しています。この一冊で、ITアーキテクトがシステム開発プロジェクトの中で何を考え、何をしているのかが見えてきます。 改訂版では、掲載内容を最新の情報にアップデートするとともに、注目の最新技術である「マイクロサービス」や「DevOps」に対応するパートを追加しました。 企業システムのデジタルシフトに伴って、システム開発では想定外の機能要件の追加や変更にも柔軟に対応し、その変更の影響範囲を極小化できるアーキテクチャーが求められます。改訂版で追加した第7章には、こうしたニーズに対応する際に取り得るアーキテクチャー戦略をまとめています。 ITアーキテクトは、アーキテクチャー設計というタスクを通じて、企業のビジネスおける様々な課題をITの力で解決します。本書はその問題解決力を磨くために必携の一冊です。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『C による数値計算とシミュレーション』のPython版登場!! 本書は、シミュレーションプログラミングの基礎と、それを支える数値計算の技術について解説します。数値計算の技術から、先端的なマルチエージェントシミュレーションの基礎までをPythonのプログラムを示しながら具体的に解説します。 アルゴリズムの原理を丁寧に説明するとともに、Pythonの便利な機能を応用する方法も随所で示すものです。 まえがき 第1章 Pythonにおける数値計算 1.1 Pythonによる数値計算プログラムの構成 1.1.1 Pythonによる数値計算プログラム 1.1.2 Pythonモジュールの活用 1.2 数値計算と誤差 1.2.1 数値計算における誤差 1.2.2 数値計算における誤差の実際 1.2.3 Pythonモジュールの活用 章末問題 第2章 常微分方程式に基づく物理シミュレーション 2.1 質点の1次元運動シミュレーション 2.1.1 自由落下のシミュレーション 2.1.2 着陸船のシミュレーション 2.2 ポテンシャルに基づく2次元運動シミュレーション 2.2.1 ポテンシャルに基づく2次元運動 2.2.2 2次元運動シミュレーション 2.3 Pythonモジュールの活用 章末問題 第3章 偏微分方程式に基づく物理シミュレーション 3.1 偏微分方程式の境界値問題 3.1.1 ラプラスの方程式 3.1.2 ラプラスの方程式の境界値問題 3.1.3 境界値問題の数値解法 3.1.4 ガウスの消去法による境界値問題の計算 3.1.5 逐次近似による境界値問題の計算 3.1.6 その他の二階偏微分方程式 3.2 ラプラスの方程式による場のシミュレーション 3.2.1 ラプラスの方程式の反復解法プログラム 3.2.2 より複雑な形状の領域の場合 3.3 Pythonモジュールの活用 章末問題 第4章 セルオートマトンを使ったシミュレーション 4.1 セルオートマトンの原理 4.1.1 セルオートマトンとは 4.1.2 セルオートマトンの計算プログラム 4.2 ライフゲーム 4.2.1 ライフゲームとは 4.2.2 ライフゲームのプログラム 4.3 交通流シミュレーション 4.3.1 1次元セルオートマトンによる交通流のシミュレーション 4.3.2 交通流シミュレーションのプログラム 章末問題 第5章 乱数を使った確率的シミュレーション 5.1 擬似乱数 5.1.1 乱数と擬似乱数 5.1.2 乱数生成アルゴリズム 5.1.3 Pythonの乱数生成モジュール 5.2 乱数と数値計算 5.2.1 数値積分と乱数 5.2.2 乱数と最適化 5.3 乱数を使ったシミュレーション 5.3.1 ランダムウォーク 5.3.2 ランダムウォークシミュレーション 5.4 Pythonモジュールの活用 章末問題 第6章 エージェントベースのシミュレーション 6.1 エージェントとは 6.1.1 エージェントの考え方 6.1.2 Pythonによるエージェントシミュレーションの実現 6.1.3 マルチエージェントへの拡張 6.1.4 相互作用するマルチエージェント 6.2 マルチエージェントによる相互作用のシミュレーション 6.2.1 マルチエージェントによるシミュレーション 6.2.2 マルチエージェントシミュレーションプログラム 章末問題 付録 A.1 4次のルンゲ=クッタ法の公式 A.2 ラプラスの方程式が周囲4点の差分で近似できることの説明 A.3 ナップサック問題の解法プログラムrkp30.py A.4 シンプソンの公式 章末問題略解 参考文献 索 引
-
3.0「神の一手」の謎にせまる! 【概要】 2017年5月にAlphaGoと柯潔(カ・ケツ)九段の最終決戦が行われ、 AlphaGoの3連勝となりました。AlphaGoは今回の対戦で さらに進化をとげました。 このようにAIの技術進化は日進月歩で進んでおり、国内でも 企業で研究開発が進んでいます。中でも目されているのは、 機械学習・深層学習・強化学習です。 本書はネイチャーで提供されているAlphaGoに関する 難解な学術論文を著者のほうで読み解き、「AlphaGo」で 利用されている深層学習や強化学習、モンテカルロ木探索の 仕組みについて、実際の囲碁の画面も参照しながら、 わかりやすく解説した書籍です。 本書を読むことで、最新のAIに深層学習、強化学習、 モンテカルロ木探索がどのように利用されているかを 知ることができ、実際の研究開発の参考にすることができます。 【読者対象】 ・人工知能関連の開発に携わる開発者、研究者 ・ゲームAI開発者 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。検索やハイライト等の機能が使用できません。 初心者でもPythonを用いて機械学習が実装できる! 本書は、今後ますますの発展が予想される人工知能の技術のうち機械学習について、入門的知識から実践まで、できるだけ平易に解説する書籍です。「解説だけ読んでもいまひとつピンとこない」人に向け、プログラミングが容易なPythonにより実際に自分でシステムを作成することで、そのエッセンスを実践的に身につけていきます。 また、読者が段階的に理解できるよう、「導入編」「基礎編」「実践編」の三部構成となっており、特に「実践編」ではシステム計画研究所が展示会「Deep Learning実践」で実際に展示した「手形状判別」を実装します。 詳細目次 第1部 導入編 第1章 はじめに 1.1 機械学習とは 1.2 Python と機械学習 1.3 インストール&セットアップ 1.4 Python 早分かり ― NumPy とmatplotlib 1.5 クイックツアー 小話 深層学習って何だ? 第2 章 機械学習の様々な側面 33 2.1 機械学習をとりまく環境.. 33 2.2 関連分野. 34 2.3 学習法による分類. 35 2.4 手法や課題設定による分類. 36 2.5 応用例. 37 第2部 基礎編 第3章 分類問題 3.1 分類問題とは 3.2 最初の分類器 3.3 学習データとテストデータ ミニ知識 色々な用語 ―学習・訓練・教師 vs テスト・評価・バリデート・検証 ミニ知識 k- 分割交差検証 3.4 分類器の性能を評価しよう ミニ知識 正答率(Accuracy)と適合率(Precision) ミニ知識 色々な平均.調和平均・算術平均・幾何平均 3.5 色々な分類器 3.6 まとめ 第4章 回帰問題 4.1 回帰問題とその分類 4.2 最初の回帰 ― 最小二乗法と評価方法 4.3 機械学習における鬼門 ― 過学習 4.4 過学習への対応 ― 罰則付き回帰 4.5 様々な回帰モデル 4.6 まとめ 第5章 クラスタリング 5.1 iris データセット ミニ知識 フィッシャーのあやめ 5.2 代表的なクラスタリング手法 ― k-means 5.3 その他のクラスタリング手法 5.4 まとめ 第3部 実戦編 第6章 画像による手形状分類 6.1 課題の設定 6.2 最初の学習 6.3 汎化性能を求めて ― 人を増やしてみる 6.4 さらに人数を増やしてみる ミニ知識 学習データに含める人数について 6.5 データの精査と洗浄 ― データクレンジング 6.6 特徴量の導入 6.7 パラメータチューニング 6.8 まとめ 第7章 センサデータによる回帰問題 7.1 はじめに 7.2 準備 7.3 センサデータの概要 7.4 データの読み込み 7.5 高松の気温データと四国電力の消費量 7.6 もっと色々、そしてまとめ 7.7 終わりに 第4部 付録 付録A Python で作る機械学習 A.1 この付録の目的 A.2 最小二乗法 A.3 行列計算による解析解の導出 A.4 反復法 A.5 コードを書く前に A.6 実装例 付録B 線形代数のおさらいと代表的な非線形モデル B.1 この付録の目的 B.2 そもそも「線形」とは B.3 線形変換とアフィン変換 B.4 ノルムと罰則項 B.5 線形回帰の最小二乗解を考える B.6 機械学習における「非線形」
-
3.021世紀、インターネットの登場で情報流通革命が起きた。 利便性が格段にあがり、既存のビジネスモデルに代替性が提供されてきた。 かつてはプロしか持てなかった機材を世界中の誰でも持てるようになり、消費者だった人間が自分でコンテンツを生産し発信する時代の到来である。 インターネットの流通革命は、いまや表現の革命段階に移行しつつある。 インターネットの世界で無数の表現者たちが生み出す無数のコンテンツ。 この群像の時代にメディアやコンテンツビジネス戦略はどう展開されていくのか。 放送、インターネットの海外動向を調査・分析してきた著者が、ここ数年の世界のメディア戦略の動きをレポートし、メディア・コンテンツの行く末を考えた。【※本作品はブラウザビューアで閲覧すると表組みのレイアウトが崩れて表示されることがあります。予めご了承下さい。】
-
-全1巻3,080円 (税込)●AI&ソフトウェアテストにおける世界的な第一人者が、 AIをソフトウェアテストと品質保証の視点から解説! 本書は、『Artificial Intelligence and Software Testing: Building systems you can trust』(BCS, The Chartered Institute for IT:英国コンピュータ協会 刊)の翻訳書です。 AI(Artificial Intelligence:人工知能)は、ソフトウェアに新しい可能性をもたらすとともに、私たちの生活にも大きな変化を起こしました。もちろん、その品質保証のスタイルも大きな変更を余儀なくされました。本書は、AIをソフトウェアテストと品質保証の視点から解説し、複雑なAIシステムをどのように信頼のあるシステムにしていくかを読者に示します。 AIは、その機能品質の担保の難しさというデメリットだけではなく、テスト自動化等々のソフトウェアテストに活用できるというメリットも注目され始めています。本書では、これらについても扱います。また、シフトライトテスト(リリース後にユーザーフィードバックを素早く製品に反映すること)や、AIOps(AIを活用したIT運用管理)といったトピックなど、AIにおける品質保証とテストについても扱います。 AI開発を行なうITエンジニアやテスト担当者に一読いただきたい一冊です。 ●本書の構成 第1章 イントロダクション――Rex Black 第2章 信用できるAIと品質――Adam Leon Smith 第3章 品質とバイアス――James Harold Davenport 第4章 機械学習システムテスト――Adam Leon Smith 第5章 AIベースのテストの自動化――Jeremias Rößler 第6章 ソフトウェアテストのオントロジー――Joanna Isabelle Olszewska 第7章 デジタルツインであるメタバースにおけるシフトライトテスト――Jonathon Wright
-
-全1巻1,430円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 『データサイエンスってなんだろう?』 「データサイエンス」という言葉を聞いたことはあるけれど、内容がよくわからないという人に向けて書かれた入門書です。 できるだけ難しい数式は使わずに、データサイエンスの考え方や役割をイメージしやすく紹介しています。たくさんのデータを整理・分析して、未来を予測したり、よりよい判断をするための方法を学ぶのがデータサイエンスです。その根本には、「私たちが見るデータは、見えない確率のルールから生まれている」という考えがあります。 本書では、どんな分野で役立っているのかも具体例を通して解説し、データと向き合う力がこれからの社会でどれほど大切かを伝えています。専門家でなくても、データサイエンスの考え方に触れることは、自分の考える力を育てるために役立つ一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆AIエージェントのしくみから導入・運用の基礎知識までが60分で身につく◆ AIエージェントは、いま世界中で急速に注目を集めている新しい人工知能技術。従来の対話型AIやRPAを超え、多彩なツールやAPIを連携しながら自律的にタスクを遂行する「行動するAI」の可能性は、産業界の構造に変革をもたらすだけでなく、私たちの働き方そのものにも影響を与え始めています。本書では、AIエージェントの基本概念から応用、導入プロセス、そして今後の可能性までを体系的に整理し、これから実務に活かしたいと考えるビジネスパーソンに向けて、実践的かつ現実的な視点から解説します。併せて、設計の複雑さ、信頼性の担保、社内運用の難しさなど、導入されはじめたばかりのAIエージェントの課題やリスクについても言及します。 ■こんな方におすすめ ・本格的な導入前にAIエージェントのきほんの「き」について知りたいビジネスパーソン ・自社の事業領域や業界、自身の仕事への影響と未来について知りたい人 ・AIモデルの活用先として有望な業界やAI産業の動向について知りたい投資家 ■目次 Part1 自ら動き出すAIの時代 AIエージェントとは Part2 自律する知能の設計図 AIエージェントの仕組み Part3 AI進化のロードマップ AIエージェントの発展段階とレベル定義 Part4 AIが変える仕事の現場 領域別にみるAIエージェント活用事例 Part5 安全と成長のマネジメント AIエージェント導入・設計・運用の実践 Part6 AIと歩む新しい世界 AIエージェントと共創する未来 ■著者プロフィール 上田雄登(うえだ・ゆうと):東京大学工学部卒業、同大学院工学系研究科技術経営戦略学専攻修了(松尾豊研究室)。2016年株式会社YCP Japan入社後、経営コンサルティングおよびAIコンサルティング業務に従事。2021年より松尾研究所経営企画部門にて事業改善や中期経営計画策定を担当。2023年6月、生成AIの導入支援およびコンサルティングを手がける株式会社GenerativeXを共同創業し取締役CAIOに就任。国内外大手企業向けの生成AIを活用した業務改革、AIエージェント開発、経営戦略立案を専門とする。著書に「ビジネスに魔法をかける 生成AI導入大全」(KADOKAWA)、「60分でわかる! 生成AI ビジネス活用最前線」(技術評論社)などがある。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 数理最適化を使って現実の問題を解決できるようになる! 本書は、数理最適化の基礎から実務に応用する際のポイントや注意点まで、「モデリング」の観点を中心にして初学者にもわかりやすく解説します。 モデリングには、「教科書的な問題」と「現実の問題」の間に大きな壁があります。本書は、数理最適化の実応用に日々取り組んでいる著者たちが、その経験をもとに、「数理最適化を使う際にどのようなことを気にするか」「どのように問題を捉えるか」などを、「数理最適化の考え方」としてまとめたものです。 典型的な例題を、条件を変えながら深く考察しているので、様々に応用できるモデリングの考え方が身につきます。本書の「考え方」を習得することで、現実の問題を数理最適化を使って解決できるようになります。 また、モデリングスキルだけでなく、実際に数理最適化を応用する際のノウハウについても学べる点が特徴です。 数学的な予備知識はなるべく仮定せず、必要となる概念は本を読み進める中で自然に身につくようになっています。 まえがき 第1章 数理最適化という考え方 1.1 数理最適化について知ろう 1.2 今,数理最適化が注目されている理由 第2章 実務に活かす数理最適化の考え方 2.1 数理最適化とモデリング 2.2 定式化,求解,分析 2.3 最適化ソルバー 2.4 数理最適化問題の分類 2.5 まとめ 第3章 数理最適化問題の問題構造という考え方 3.1 配合問題 3.2 輸送問題 3.3 生産計画問題 3.4 まとめ 第4章 二択が含まれる最適化モデルの考え方 4.1 二択を表す変数 4.2 取捨選択問題 4.3 輸送問題再訪 – 問題拡張1 4.4 輸送問題再訪 – 問題拡張2 4.5 まとめ 第5章 割り当てという考え方 5.1 世の中にある割当問題 5.2 割当図と割当表 5.3 割当問題のモデル化 5.4 まとめ 第6章 割当問題を応用するための考え方 6.1 人員配置問題 6.2 シフトスケジューリング問題 6.3 配送計画問題 6.4 まとめ 第7章 問題を分割するという考え方 7.1 問題を分割するとは? 7.2 期間で分割する 7.3 粒度で分割する 7.4 問題構造で分割する 7.5 制約の強さで分割する 7.6 まとめ 第8章 数理最適化プロジェクトを成功させるための考え方 8.1 問題をどう定めるか 8.2 システム化における注意点 8.3 数理最適化プロジェクト開始前の見極め 8.4 数理最適化プロジェクト進行の要諦 8.5 数理最適化の課題の発見について 付録 A Excelソルバー B よく使う数学記号 C スラック変数 文献案内 あとがき 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 もう一つのLLM ―大規模言語モデルの一手法― 解析木を中間データとする機械翻訳方式は,原言語解析木発生,原言語解析木から目的言語解析木への言語変換,目的言語解析木から目的言語文発生という縦続する3つの処理から構成される.このうち原言語文解析木発生処理は,方式が原言語文を理解することに相当し,処理誤りの9割がこの処理で発生するといわれている. 本書の「文例を用いた文解析木発生方式」は,この原言語解析木発生動作を行うものであり,既存の機械翻訳方式KATEの解析木発生部分をベースとして,これに多数の文例文とその句構造解析結果である文例解析木の対を用いるための改良を加えた方式である.この方式は,大量の言語データを用いる点において大規模言語モデル(LLM)の一種といえる. 「文例を用いた文解析木発生方式」は,1つのデータ対の効果が大きいことにより,学習データの枯渇の影響を受けにくいという利点が得られる.本書の後半で通常のニューラルネットワークを用いた単語列間変換(seq2seq)方式との共同動作の構想を示している.同一入力に対して「文例を用いた文解析木発生方式」とニューラルネットワークを用いたseq2seq変換方式という動作機構の全く違う2つの方式の出力間の共通部分を得ることにより,信頼度の高いデータ対を獲得し,それを新しいデータ対として用いることにより,両方式に対してより信頼性の高いデータ対の自動取得が可能となることが期待される. Ⅰ編 文解析木発生方式 序章 まえがき 1章 機械翻訳における文例を用いた文解析木発生方式の構成 2章 共通単語列の検出 3章 文例排他木の作成 4章 一時排他木木値算出 5章 上位被覆 6章 解析木発生 7章 禁止木非含有判定 8章 文解析木発生方式各部分の役割 9章 機械翻訳における文例を用いた文解析木発生方式の動作実験 10章 ニューラルネットワークを用いた単語列間変換との結合動作に関する構想 11章 ニューラルネットワーク単語列間変換による翻訳に対する1つの提案 12章 Ⅰ編のまとめ Ⅱ編 文解析木発生方式のアルゴリズム A. Ⅱ編の構成 B. 一時排他木木値ユニットを除く一時排他木発生モジュール C. 一時排他木木値ユニット D. 上位被覆モジュール E. 最大木値木発生ユニット F. 解析木発生モジュール G. ニューラルネットワークを用いた単語列間変換との共同動作 H. ニューラルネットワーク単語列間変換による翻訳に関するアルゴリズム
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆------------------------------------------------------------◆ 生成AIと一緒なら、できることがこんなに広がる! ◆------------------------------------------------------------◆ 『生成AIと一緒に学ぶ Excel VBAふりがなプログラミング』は、生成AIを活用してExcel VBAやマクロの基本を楽しく学べる新しいスタイルの学習書です。企業のDX推進課を舞台に、「AIでプログラムを生成する」→「生成されたコードを読んで、ふりがなをふってみる」→「しくみを理解する」という実践的な流れで進行。プログラムにふりがなをふることで理解が深まり、Excel VBAの基礎をしっかり身につけられます。 AI生成のコードは、意図通りに動かないこともありますが、それを修正したりカスタマイズしたりする力を養えるのがこの本の大きな魅力。「Excel VBAを仕事で使いたい」「入門書で挫折した経験がある」という方にぴったりです。具体的なミッションを解決しながら、プログラミングスキルを楽しくステップアップできます。生成AIと一緒に、Excel VBAの世界に飛び込んでみませんか? ■本書の内容 Chapter 1 「Excel VBAと生成AIでDXして!」といわれて Chapter 2 「1日でExcel VBAの基礎を身に付けて!」といわれて Chapter 3 「便利な小物マクロをたくさん作って!」といわれて Chapter 4 「見積書の作成を自動化して!」といわれて Chapter 5 「大量のデータの突合せ作業をやって!」といわれて Chapter 6 「ピボットグラフを自動的に作って!」といわれて ■本書はこんな人におすすめ ・Excel VBAの基本を身につけたい人 ・過去にExcel VBAの入門書で挫折してしまった人 ・仕事でExcel VBAを活用してみたい人
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2025年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
-
-「メルマガ配信を自動化したい」「社内資料をもとに提案書を作成させたい」「お客様からの問い合わせに 24時間対応できる仕組みが欲しい」……こういったリクエストを耳にすることが増えてきました。AI(人工知能)はすでに私たちの生活に入り込み、日常生活や業務などのあらゆることを効率化してくれています。 しかし、実際に導入してみると、「思ったほどの精度が出ない」「期待したようには使えない」と戸惑う場 面も少なくありません。そういった背景には、AIに対する過度な期待と誤解があることがほとんどです。 あるいは「AIを使えば需要なんて簡単に予測できるんだろう」「提案書くらいAIに任せればいいじゃないか」……そんな言葉を、上層部や管理職の何気ない一言として耳にすることもあるでしょう。 「生成AIに任せてよい仕事」と「生成AIには任せてはならない仕事」の境界線は、どこにあるのでしょうか? ブレーンストーミング、ドキュメント要約、営業AIエージェント、メルマガ生成といった活用事例をもとに、新進気鋭のデータサイエンティストが生成AI・LLM(大規模言語モデル)の可能性と限界、ビジネス活用の注意点を解き明かします。 【目次】 ◆第1章 AIで何ができるのか 【活用の基本】 1-1 生成AIがビジネスシーンで活躍する理由 1-2 3つの生成AI活用例 ◆第2章 AI活用5つのキーワード【活用の段取り】 2-1 言葉のエンジン[LLM] 2-2 うまく指示する技術[プロンプトエンジニアリング] 2-3 外部情報を活用する[RAG] 2-4 AIの司令塔[AIエージェント] 2-5 研修で育成する[ファインチューニング] ◆第3章 その仕事、AIには無理です【活用の現実】 3-1 ビジネス活用のハードルを乗り越えるには 3-2 営業ロールプレイングの課題 3-3 ドキュメントの質が左右する社内ナレッジ検索 3-4 「業務の流れの言語化」がAIエージェントを活かす 3-5 メルマガ生成で自社らしさを出すには ◆第4章 任せられる仕事、任せられない仕事【活用の戦略】 4-1 AI時代の成功の鍵 4-2 実際の現場が示す「生成AIとの協働」 4-3 「生成AIに任せてよい仕事」と「任せてはならない仕事」の境界線
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIに指示するだけで動画を作れる「動画生成AI」がこの1冊でわかる! 専門知識や高価な機材は不要で、誰もが動画クリエイターになれる時代が来ました。本書は「作りたい」をカタチにするための動画生成AIの活用ガイドです。基本操作はもちろん、クオリティを左右するプロンプト(指示文)のコツや、動画の素材にする画像の作り方、キャラクターを思い通りに動かす技術まで、動画生成AI利用のコツを解説しています。本書では高精度な動画生成AIサービス「Midjourney」を活用して動画を作ります。特典のプロンプトとサンプル画像をダウンロードして、すぐに実践可能です。ご自身のPCで手を動かしながら読み進めることで、動画制作のノウハウが自然と身につく、最初の一歩に最適な一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 見えないAIリスクを“見える化”する、生成AI時代の実務ガイド いま、生成AIを活用して新しいサービスを作りたい、自社の業務にAIを取り入れたいという企業が増えています。 しかし、導入や運用の段階で注意すべき法律上のポイントを、明確に理解している人はまだ多くはありません。 本書では、AIに関する法務リスクを体系的に整理し、「ここだけは押さえておきたい実務の勘所」を分かりやすくまとめています。 法律の専門書というよりも、「何を相談すればいいのか分からない」「どこまで聞けばいいのか迷う」という方のための、最初の一冊としてお役立ていただけます。 この書籍を読むことで、AIに関する法的リスクを全体的に把握できます。 開発や運用における法務上の問題点を、一般論から具体的な事例まで体系的に理解できます。 〇AIに関する法的リスクを全体的に把握できる 開発や運用における法務上の問題点を、一般論から具体的な事例まで体系的に理解できます。 〇AI導入・運用の各段階で注意すべきポイントが分かる 企画・開発・運用といったフェーズごとに、どの場面でどんなリスクがあるのかを明確にできます。実際に注意点を把握したうえで運用・開発計画が立てられるので、計画進行中のトラブル発生のリスクを軽減できます。 〇参照すべき法律・ガイドラインを見つけられる ポイントを把握することで、自社に関係するルールやガイドラインをスムーズに確認できます。 〇有識者・法律家・弁護士への相談がスムーズになる どのように相談すれば良いかのイメージがつかめるため、具体的で効率的なやり取りが可能になります。結果として、法務上・ビジネス上の落とし穴を事前に可視化でき、無駄なコストやトラブルを避けられます。 ◎有識者・法律家・弁護士に相談するための下地をつくり、安心してAI活用を進めるための実務的なガイドブックです。 AIを活かした開発や事業を安全に、そして前向きに進めたい方におすすめです。 序章 LLM開発者、LLMを使うスタートテック経営者の皆様へ 第1章 LLMモデル開発、運用とかかわる法律権利の一覧 第2章 LLMモデルの開発運用までのスケジュール 第3章 モデル開発に関する法務 第4章 モデル運用に関する法務 第5章 LLM開発者、提供者として知るべきAIに関する考え方 第6章 おわりに―開発運用後にLLM事業者の進むステージ
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆勾配がなくても、答えは見つかる◆ ブラックボックス最適化は、関数の内部構造や勾配に依存せず、出力値のみに基づいてパラメータを調整する枠組みであり、科学・工学・産業の幅広い分野で活用されています。本書では、その中でも代表的なCovariance Matrix Adaptation Evolution Strategy(CMA-ES)を体系的に解説します。CMA-ESは優れた性能を誇る一方、研究の積み重ねによって段階的に発展してきたため、初心者が一から正しく理解するのは容易ではありません。本書の前半では、アルゴリズムの基本や設計指針を直感的にも理解できるよう解説し、後半では混合変数最適化や多目的最適化、ノイズを含む観測といった現実的な問題設定への応用を扱います。加えて、具体例や数値実験を通じて理解を深められるよう構成し、再現可能なPythonコードも公開しています。対象読者は、実務でパラメータチューニングに取り組む技術者や、CMA-ESを研究で扱う学生・研究者です。本書は、ブラックボックス最適化に取り組む読者にとって、これまでにない包括的なガイドとなることを目指しています。 ■目次 第1章 ブラックボックス最適化 ・1.1 問題設定 ・1.2 CMA-ESの活躍する場面 ・1.3 本書のゴールと構成 第2章 分布パラメータの更新則 ・2.1 挙動の直感的理解 ・2.2 多変量正規分布 ・2.3 候補解のサンプリング ・2.4 平均ベクトルの更新 ・2.5 共分散行列の更新 ・2.6 ステップサイズの更新 ・2.7 CMA-ESのアルゴリズム ・2.8 ハイパーパラメータの設定 ・2.9 Pythonによる実装例 ・2.10 上下限制約の対処 ・2.11 初期分布の設定方法 第3章 ベンチマークによる挙動解析 ・3.1 ベンチマーク関数 ・3.2 可視化指標 ・3.3 実験結果と考察 第4章 設計原理 ・4.1 不偏性 ・4.2 不変性 ・4.3 自然勾配法 第5章 高次元最適化 ・5.1 CMA-ESの時間・空間計算量 ・5.2 Sep-CMA-ES ・5.3 VD-CMA-ES ・5.4 共分散行列モデルと収束レートの関係 ・5.5 実験結果と考察 ・5.6 より発展的な手法 ・5.7 pycmaライブラリからの利用 第6章 学習率適応 ・6.1 サンプルサイズ適応と学習率適応 ・6.2 多峰性関数と学習率の関係 ・6.3 学習率適応法 ・6.4 実験結果と考察 ・6.5 cmaesライブラリからの利用 ・6.6 実用上の注意 第7章 混合変数最適化 ・7.1 問題設定 ・7.2 CatCMA with Marginの概要 ・7.3 連続・整数変数の最適化 ・7.4 カテゴリカル変数への対処 ・7.5 数値実験と性能評価 ・7.6 cmaesライブラリからの利用 第8章 多目的最適化 ・8.1 問題設定 ・8.2 スカラー化法 ・8.3 進化的多目的最適化法 ・8.4 スカラー化法と進化的多目的最適化法の選択 ・8.5 実験と考察 ■著者プロフィール 野村将寛(のむらまさひろ):2015年名古屋工業大学工学部卒業、2017年東京工業大学大学院総合理工学研究科知能システム科学専攻修了、2025年東京科学大学情報理工学院博士後期課程修了。博士(工学)。同年4月より東京科学大学情報理工学院助教。主な研究分野はCMA-ESをはじめとするブラックボックス最適化や機械学習におけるハイパーパラメータ最適化であり、進化計算に基づくアルゴリズムの設計と応用に従事。近年の研究成果はAAAI、CIKM、GECCO、ICML、IJCAI、WebConfといった主要国際会議で発表されており、GECCO 2022、2023、2025ではBest Paper Awardにノミネートされている。 秋本洋平(あきもとようへい):2007年3月東京工業大学工学部情報工学科早期卒業、2008年3月同大学大学院総合理工学研究科知能システム科学専攻修士課程早期修了、2011年3月同博士課程修了。博士(工学)。2025年9月より筑波大学システム情報系教授。進化戦略の理論から応用に至る研究に従事し、これまでにCMA-ESに関する論文を学術論文誌および国際会議にそれぞれ30件以上公表しているCMA-ESを含む進化戦略の教育および普及活動にも努めている。