情報科学作品一覧
-
-1巻3,960円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 生成AIおよびエージェントが拓くソフトウェア開発新時代 - 学会監修による全工程網羅の体系、事例、動向 本書は、情報処理学会ソフトウェア工学研究会の監修のもと、生成AI・LLM・エージェントをソフトウェアの設計からテスト、運用・保守にいたる全工程、さらにはマネジメントにまで組み込むための実践的な体系をまとめた一冊です。表面的な技術の流行にとらわれず、事例や研究動向を交えながら、社会や産業における新たな方向性を解説しています。 生成AIは、従来の自動化ツールでは困難だった多様で複雑なタスクを、思考のプロセスをともない、人と自然に対話するように遂行できます。これにより、顧客の声を的確に反映し、価値を継続的に高め、効率的かつ信頼性の高い開発と運用が可能になります。本書を通じて、従来の常識を超えたAI時代の開発のあり方を体得してください。 Chapter 1 生成AIの仕組み Chapter 2 生成AIによるソフトウェアの要求 Chapter 3 生成AIによるソフトウェアの設計 Chapter 4 生成AIによるプログラムの実装 Chapter 5 生成AIによるソフトウェアのテスト Chapter 6 AIエージェントによるソフトウェア開発の自動化 Chapter 7 生成AIの評価 Chapter 8 生成AIを活用したプロセスとマネジメント Chapter 9 生成AIによるソフトウェア産業の将来
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 感性情報処理では,人々のものやコト,サービスに関する感性情報を収集し,それらを解析して,どのような要素や特徴が人々のどのような感じ方につながるのかを解明したり,人々の感性情報を用いて,その人好みのものやコト,サービスを提案するシステムを開発したりします.本書では,感性情報処理について,特に前者に焦点を当て,ざっくばらんに理解することを目的としています.主眼点は,感性情報を得る対象はどのようなものか,感性情報はどのように計測されるか,取得した感性情報はどのように解析・利用されるかの3点です.
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「やりたい!ができる」シリーズは、生成AIを使って「やりたいことを叶える」ための指南書です。 生成AIを仕事や生活にもっと活用したい、生成AIでアプリ開発やイラスト制作にチャレンジしたい、そんな「やりたい」を実現するための方法を、その道の第一人者に教えてもらいます。 Officeツールの使い方をわかりやすく解説するYouTubeチャンネル(登録者数45.6万人)やオンライン講座で人気の「ユースフル(長内 孝平氏)」を著者に迎え、Copilotの基本から実践までを、初心者の視点に立って丁寧に解説します。 無料で使えるCopilot(MicrosoftのAIチャット)を中心に、Copilotを業務に取り入れて“やりたいことができる”状態に変えていくための会話術と活用ノウハウを紹介。 メール作成や情報整理、資料の要約、アイデア出しの壁打ちなど、日々の業務をスムーズにする具体的な使い方を、対話形式で楽しく学べます。 セキュリティ設定や情報漏えいリスクへの対処法といった、業務で安心して使うためのAIリテラシーも、専門知識がなくても理解できるよう丁寧に解説。 無料版と有料版の違いにも触れながら、Copilotを正しく、安全に使いこなすための知識が身につきます。 Copilotの導入を検討している方はもちろん、生成AIをこれから活用したいビジネスパーソンにも最適な一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「やりたい!ができる」シリーズは、生成AIを使って「やりたいことを叶える」ための指南書です。生成AIを仕事や生活にもっと活用したい、生成AIでアプリ開発やイラスト制作にチャレンジしたい、そんな「やりたい」を実現するための方法を、その道の第一人者に教えてもらいます。 本書では、『新たなAI活用を作る』AIディレクターであり大人気YouTuberでもあるKEITOさんと一緒に、生成AIに指示を出しながらアプリを作っていく様子を紙上で再現。ちょっとしたコツや難しいポイントもじっくり掘り下げながら丁寧に解説しているので、プログラミングなどの専門知識がなくても楽しくアプリづくりを実現できます。 【本書で作るアプリ】自分専用のAIチャットボット、SNS画像生成アプリ、音声日記アプリ、リスキリングに役立つ英単語クイズアプリなど 【使用AIツール】カスタムGPT、Claudeアーティファクト、Dify、boltなど
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Windows 11に標準搭載のAI「Copilot」の基本から便利な使い方まで紹介。著作権侵害や情報漏洩のリスクといった注意点や、プロンプトを設定するコツも紹介しているため、生成AIの進化に合わせて長く利用できます。また、調べものや資料作成、アイデア出しなど、仕事や日常における様々な作業にCopilotを役立てる方法を満載しています。さらに「Microsoft 365」と組み合わせて使う方法も解説。Word、Excel、PowerPointなどのアプリで作業を効率化する方法も紹介しています。
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 手を動かして理解する、実務で役立つMLOps 本書は、サービスに活用できる機械学習システムの開発・運用を解説する書籍です。 機械学習をサービスで活用するとき、機械学習モデル自体ではなく、運用上・管理上の問題に直面することは数多くあります。どれだけ優れた機械学習モデルを構築できたとしても、それをサービスに活かすためのシステムがなければ運用できません。 そこで本書では、機械学習システムを運用するための技術であるMLOpsを、機械学習システムの構築を通じて学んでいきます。具体的には、広告クリック率をリアルタイムで予測する機械学習システムをAWS上にデプロイします。 機械学習パイプラインや推論サービスの構築だけでなく、バージョニングやシステム監視など、サービス活用のために必要とされる一歩進んだ内容にまで踏み込んでいる点が特徴です。 【このような方におすすめ】 ◎ 機械学習システムに関わるソフトウェアエンジニア ◎ 開発だけでなくデプロイまで行うデータサイエンティストや機械学習エンジニア 〇 機械学習をビジネス活用しようと考えているプロダクトマネージャー 〇 機械学習をサービスで活用している企業で働きたいと考えている大学生 はじめに・目次 1章 MLOps概要 2章 環境構築 3章 モデル作成 4章 機械学習パイプライン 5章 実験基盤 6章 バージョン管理 7章 CI・CD 8章 推論サービス 9章 継続的学習 10章 監視 索引
-
-全1巻4,180円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 現場で使えるLLMを構築、本番環境に展開!成功へ導くための包括的なガイド本書では、大規模言語モデル(LLM)を実装し、本番環境にデプロイするためのノウハウを解説。LLMの基礎概念から、実装、デプロイ、運用、管理における複雑な課題とその解決策まで、包括的に取り上げます。まず、LLMの可能性と限界、そして自社構築か既存サービスかの判断基準などから説明。また、運用(LLMOps)に関しては、ダウンロード時間、デプロイ時間、レイテンシー、GPU管理、トークン制限、ハルシネーション、バイアスといった具体的な課題への対策を詳しく解説。データエンジニアリングの重要性にも触れ、成功に不可欠なデータ準備、評価指標、クリーニング、前処理を説明。トレーニングとファインチューニングのほか、効果的なプロンプトエンジニアリングについても具体的に紹介。さらに、Llamaの再実装、Raspberry Piというエッジデバイスへのデプロイ、AIコーディング拡張機能の構築など、読者が自らの手で動かせるようなサンプルプロジェクトを説明します。本書は、LLMの可能性を最大限に引き出し、実際に機能する製品に変えるために必携の一冊となっています。※ 本書は『LLMs in Production: From language models to successful products』(Manning Publications)の翻訳書です。※本書の内容はPythonとPyTorchの知識があることが前提となっています。【章構成】第1章 言葉の覚醒:なぜLLMは注目を浴びたのか第2章 LLM:言語モデリングの本質を探る第3章 LLMOps:LLM向けのプラットフォームを構築する第4章 LLMのためのデータエンジニアリング:成功へのステップ第5章 LLMの訓練:生成モデルの作り方第6章 LLMサービス実践ガイド第7章 プロンプトエンジニアリング:プロンプトの魔術師になる第8章 LLMアプリケーションの構築:インタラクティブな体験を作り出す第9章 LLMプロジェクトの作成:Llama 3を再実装する第10章 AIによるコーディング支援プロジェクト:この機能がもっと早くほしかった第11章 Raspberry Piでのデプロイ:限界に挑戦第12章 本番環境は絶えず変化する:物語はまだ始まったばかり
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネット上に蓄積された、膨大な量のデータを活用できるようにするため、いまデータサイエンスが注目されています。本書はそうしたデータサイエンスの基礎技術や関連するAI技術などのことをオールカラーでビジュアルに解説します。 ■世界中に雲のように存在するビッグデータ 現在、インターネットを介して誰でも閲覧できるサーバーが無数にあります。そこには文字情報だけでなく画像、音声、動画などの膨大な情報があります。こうした未整理の状態の複雑なデータをビックデータと呼びます。 ■ビッグデータから宝を掘り出す このビッグデータはただのガラクタの山ように見えて、じつはこの中にはお宝が埋まっています。お宝を、道具を使って採掘することをデータサイエンスではデータマイニングと呼びます。 ■データ分析の技術やツール 本書では、データの山から必要なデータを抽出する方法やデータから意味のある情報を取り出す統計の技法、ツールのことを、イラストや模式図、チャート図、表などを使ってフルカラーでていねいに解説しています。 ■切っても切れないAI技術との関連 また本書では、AIがデータを分析する手法であるニューラルネットワークやビッグデータを使ってニューラルネットワークを強化する機械学習、ディープラーニングについてもていねいに解説しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 フリーソフトのScilabを使ってシステム制御を理解できる! 「制御工学」は数学的な知識を前提に解説されるが、現場では数値解析ソフトを使って設計がなされる場合が多い。 本書は、フリーソフトであるが入門には十分な機能があるScilabでの演習を通じて「制御工学」を実感し、必要な知識を身に付けられることを目的としたテキストで、豊富な例題により自習書としても役立つ。 このような方におすすめ ・高専、大学学部、大学院、専門学校の学生(教科書・参考書・自習書として) ・上記学校の教員 ・制御関連の初級技術者 主要目次 第1章 はじめに 第2章 Scilab入門 第3章 システム制御に必要な数学 第4章 伝達関数とブロック線図 第5章 時間応答 第6章 周波数応答 第7章 フィードバック系の安定性 第8章 PID制御 第9章 状態方程式の構造と性質 第10章 状態フィードバックとオブザーバ 第11章 最適制御 第12章 ディジタル制御
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「データを伝える力」を高める、データ実務者のためのデザイン原則 データ理解からデザインの基礎、ダッシュボード設計まで網羅した可視化の必読書 (Data Graphics Inc. 荻原和樹 推薦) データビジュアライゼーションデザインの実践に役立つ知識を体系的に解説。データの基礎知識から人間が情報をどう認識・処理するか、アクセシビリティ、色彩理論、タイポグラフィ、良いチャートの作り方、インタラクションデザイン、ダッシュボード設計まで幅広く紹介しています。 ●目次 第1部 第1章 データビジュアライゼーションの世界にようこそ 第2章 人はどのようにして情報を認識するか 第3章 データについての基礎知識 第2部 第4章 色の選択 第5章 タイポグラフィ 第6章 よいチャートの作り方 第7章 インタラクションデザイン 第3部 第8章 調査立案、デザイン設計、製作開発 第9章 トラブル対策 付録 参考資料 ●著者 ●著者 Desireé Abbott 製品分析、ビジネス インテリジェンス、科学、設計、ソフトウェア エンジニアリングの分野で10年以上の経験を持つ。 ●日本語版監修 山辺真幸 博士(政策・メディア) 情報可視化研究者。一橋大学大学院ソーシャル・データサイエンス研究科特任講師、慶應義塾大学大学院メディアデザイン研究科特任講師。複雑な大規模データのビジュアライズデザインを専門とし、手掛けた作品は、NHK、日本科学未来館などで展示されている。グッドデザイン賞、可視化情報学会賞、他受賞多数。 ●翻訳 長尾 高弘 株式会社ロングテール社長、技術翻訳者。最近の訳書として『数式なしでわかるAIのしくみ』(マイナビ出版)、『Wiring the Winning Organization 成功する組織を導く3つのメカニズム』(日本能率協会マネジメントセンター)、『scikit-learn、Keras、TensorFlowによる実践機械学習 第3 版』(オライリー・ジャパン)、『Web APIテスト技法』(翔泳社)、『継続的デリバリーのソフトウェア光学』(日経BP 社)、『Scalaスケーラブルプログラミング 第4 版』(インプレス)などがある。 ※この商品は固定レイアウト型の電子書籍です。 ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 ※お使いの端末で無料サンプルをお試しいただいた上でのご購入をお願いいたします。 ※本書内容はカラーで制作されているため、カラー表示可能な端末での閲覧を推奨いたします
-
-◆実務で活躍できる、ワンランク上のデータサイエンティストへ!◆ データサイエンティストに求められるスキルは、いまや分析技術だけではありません。実務で活躍できるデータサイエンティストになるためには、チームでの働き方も身に付けなければいけないでしょう。本書では、分析環境の準備・分析データのチェックから、機械学習モデルの運用やプロトタイプ開発まで、データサイエンティストが抑えるべき「分析前後」の知識を身に付けられます。ワンランク上のデータサイエンティストになるための、強力なガイドとなる本です。 ■こんな方におすすめ ・新人データサイエンティスト ・分析技術は学んできて、これからチームで働く人 ■目次 第1章 実務で生き抜くためのエンジニアリングスキル ・1.1 データサイエンティストを取り巻く環境の変遷 ・1.2 プロジェクトで求められるエンジニアリングスキル ・1.3 まとめ 第2章 環境構築 ・2.1 分析の土台としての環境構築 ・2.2 リポジトリの構造を整える ・2.3 VS Codeでの開発環境の整備 ・2.4 Dev Container による仮想環境構築 ・2.5 uv によるパッケージ管理 ・2.6 まとめ 第3章 コードの品質管理 ・3.1 Notebookだけのデータサイエンティストからの卒業 ・3.2 コード品質とは ・3.3 品質の高いコードとその実現方法 ・3.4 コードレビューによる品質管理 ・3.5 まとめ 第4章 データの品質確認 ・4.1 データの品質確認の重要性 ・4.2 分析開始前のデータ確認 ・4.3 Panderaによるデータフレームのバリデーション ・4.4 データ品質管理の継続的な取り組み ・4.5 まとめ 第5章 機械学習モデルの実験管理 ・5.1 実験管理の意義 ・5.2 Hydraによるパラメータ管理 ・5.3 MLflowによる実験の比較 ・5.4 まとめ 第6章 プロトタイプ開発 ・6.1 プロトタイプ開発の意義 ・6.2 Streamlitによるプロトタイプ開発 ・6.3 まとめ ■著者プロフィール ●浅野 純季(あさの じゅんき):株式会社ブレインパッド リードデータサイエンティスト。プロジェクトマネージャーとしてECサイトのマーケティング分析、レコメンド、効果検証、ゲームのチート検知などのプロジェクトをリード。 また、データサイエンスpodcast「白金鉱業.FM」の配信、Meetupイベント「白金鉱業Meetup」の主催、大学での寄付講義などでも活動。 1章と3章の執筆を担当。 ●田中 冬馬(たなか とうま):株式会社ブレインパッド データサイエンティスト。デジタルマーケティングの領域での分析集計・機械学習モデルの構築や、LLMを活用したプロダクト開発などを担当。LLMに関する研究活動にも取り組み、論文の執筆や学会での発表を行なっている。社外では、AutoResというAIを活用した研究を自動化するプロジェクトに参画している。 2章の執筆を担当。 ●武藤 克大(むとう かつひろ):株式会社Citadel AI ソリューションエンジニア兼ソフトウェアエンジニア。新卒で株式会社ブレインパッドに入社し、機械学習エンジニアとして、製造業・小売・金融業を中心に、MLOpsの推進や生成AIを活用したシステムの検証・開発に携わる。現職では、AIセーフティーやAIガバナンスに関するプロダクトの導入支援や開発を行う。 3章と6章の執筆を担当。 ●木村 真也(きむら まさや):株式会社ブレインパッド データサイエンティスト。金融・食品業界におけるDX推進組織の立ち上げに携わる。DX推進組織のビジョンやアクションプランの策定といった上流の支援に加え、課題整理、分析、運用化までのデータ活用支援も担当。顧客のデータ活用人財の育成や社内コンペの主催など、データ・AI活用の民主化に向けた取り組みも実施。 4章の執筆を担当。 ●栁 泉穂(やなぎ みずほ):株式会社タイミー データサイエンティスト。新卒で株式会社ブレインパッドに入社し、通信や小売の領域を中心に、予測モデル開発やLLMアプリケーション開発、データ基盤整備などのプロジェクトに携わる。統計学を専攻していた知見を活かし、新卒研修の資料作成や講師も担当。 4章と5章の執筆を担当。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆Wolframなら1行プログラムで体感しながらデータサイエンスがたのしく学べる!◆ 私たちの身の回りにあふれる「データ」は、デジタルデータの世界で画像、文章などさまざまな形で表現される万物を対象に、私たちが新しいストーリーを組み立てる手助けをしてくれます。私たちは「データサイエンス」という魔法の杖で、すべての事実をデータとして「思考の地平」に取り込み、見える化し、そこから新しいストーリー、つまり未来を紡ぐことができるのです。ただし、データサイエンスが本当に魔法の杖になってくれるのは、私たちがその本質を理解してうまく扱うことができた場合です。 本書は、データサイエンスやAIの本質を、手を動かしながら楽しい体験を通して、ワクワクしながら学べる題材があふれています。本書で扱っているWolfram言語には、データサイエンスやAIの世界を学ぶためのたくさんの「関数」が、あらかじめ用意されています。それらの関数を使うことで、ワクワクしながらこの世界に入門できるのです。 数学の計算やプログラミングの書式に煩わされることなく、クリエイティブなことにチャレンジできる本書で、ぜひあなたもAIとデータサイエンスに入門してみてください。 ■こんな方におすすめ ・実際にプログラムを自分で動かしてAIとデータサイエンスを学びたい方 ・AIとデータサイエンスの基礎を学んで教科学習や探究活動に活かしたい中高生や教員の方 ・Wolfram言語を使ったデータ分析やAI プログラミングの実践や活用方法に興味のある大学生や教員の方 ■目次 ●第1章 Wolfram言語の世界を体験してみよう ・1-1 オンラインコンテンツで体験してみよう ・1-2 基本ルールを学び、実際に使ってみよう! ●第2章 プログラミングの基礎 ・2-1 コンピュータのしくみ ・2-2 プログラミング言語の歴史と言語の種類 ・2-3 アルゴリズムとデータ構造 ・2-4 プログラムの3つの基本処理 ●第3章 画像データから見える世界 ・3-1 画像データとは ・3-2 画像処理のいろいろ ●第4章 音・音声データから見える世界 ・4-1 音・音声データとは ・4-2 音声処理のいろいろ ●第5章 AIのしくみ ・5-1 AIの頭脳はプログラム ・5-2 AIの頭脳を鍛えるしくみ:機械学習 ・5-3 教師あり機械学習とは ・5-4 演習:教師あり機械学習でお菓子を分類してみよう ・5-5 教師なし機械学習とは ・5-6 演習:教師なし機械学習で動物をグループ分けしてみよう ●第6章 テキストデータから見える世界 ・6-1 テキストデータとは ・6-2 自然言語処理 ・6-3 ワードクラウドとは ・6-4 演習:「走れメロス」のワードクラウドを作ろう ●第7章 統計学の基礎 ・7-1 統計学とAI・データサイエンスの関係 ・7-2 データの収集と種類 ・7-3 ヒストグラムと基本統計量 ・7-4 演習:ヒストグラムと基本統計量を求めてみよう ・7-5 2つのデータの関係 ・7-6 データの可視化(データビジュアライゼーション) ●第8章 社会の中でのAI・データの利活用 ・8-1 データ駆動型社会 ・8-2 AI・データ活用事例 ・8-3 個人情報と情報セキュリティの心得 ・8-4 AI・データを扱う上での心得 ●第9章 生成AI ・9-1 AIの歴史 ・9-2 ニューラルネットワーク ・9-3 知識ベースのWolframAlphaを使ってみよう ・9-4 生成AIのしくみ ・9-5 生成AIの未来 ●Appendix 現実世界を読み解くデータサイエンス ■著者プロフィール ※所属・肩書等は2025年8月初版発行時のものです。 北村美穂子:京都ノートルダム女子大学 社会情報学環 教授。博士(工学)。Wolfram Alpha LLCコンサルタント。 金光安芸子:Wolfram Research, Inc. 勤務。京都ノートルダム女子大学 社会情報学環 客員教授。 ドゥラゴ英理花:聖徳学園高等学校 校長補佐・データサイエンス部長。東京大学大学院教育学研究科博士課程在籍。WiDS TOKYO @ Shotoku アンバサダー。 小野陽子:大妻女子大学 データサイエンス学部 教授 国立研究開発法人 理化学研究所AIP 客員主管研究員。博士(工学)。 吉田智子:京都ノートルダム女子大学 社会情報学環 教授・学環長、ND教育センター 副センター長。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ★音声はどうして言語としてとらえられるのか 図や音声データ・動画を多用し、音声言語処理の仕組みをわかりやすく解説。4部構成。 まず物理学・生理学・心理物理学の切り口から音声言語の仕組みについて説明する。 次に「人間はどのようにして音声を聞き分けるのか」という問いに音声の科学的研究を通して答える。 さらに応用として、音声合成と音声認識の仕組みを解説する。 最後に今後の展望として、言語を獲得する人工知能の可能性について考察する。 掲載図版約160点、音声データ約160個、動画19本収録。 コラムとして、「ハートのこもった音を創る」「音が無いのに聞こえる」など、音声言語にまつわる興味深い話題を25編収録。 言語聴覚士のための教科書または副読本としても使用できる。 [音声ダウンロード・動画YouTube] 〈目次〉 I 音の物理学 1章 静けさの音と音の大きさ ~音が無いとシーンと聞こえるのか~ 2章 音を構成する部品 ~音色は物理的には何なのか~ 3章 スペクトル、そして美しい音とは II 音声科学 4章 音声生成の仕組み ~気管と食道がつながっている!?おかげで~ 5章 脳が音色を感じる仕組み 6章 音の心理物理 7章 言語音声の合成による分析 ~なぜハートは愛/ai/なのか~ III 音声工学 8章 AIがしゃべる人工音声 ~琉球語もしゃべる~ 9章 音声自動認識 ~自分で進化していく機械~ IV 言語の獲得・学習 10章 言語の獲得 ~ヒトとサルの違い~ 11章 言語獲得のモデル ~聞き話す赤ん坊コンピュータ~
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ベイズモデル、生成AIの数学的動作原理を学ぶ 増補改訂でより詳しく 本書は,機械学習の道具として使われている確率過程の書籍です.確率過程とは,誤解をおそれずにひと言でいえば「パラメータにしたがってランダムに変動するデータを解析するための数学の一分野」です.すなわち,ベイズモデル,生成AIの数学的動作原理です. 日進月歩の勢いで発展を遂げる機械学習の研究成果を各自の専門領域に取り入れるには,これらの中で道具として使われている確率過程の基礎的な知識が必要不可欠です.本書では,数学的な厳密性は犠牲としながらも,機械学習の最新の結果を理解するために最低限必要と思われる内容にしぼって,確率過程について説明しています. 今回の増補改訂によって内容を大幅に追加しています. 第1章 確率論の基礎 第2章 確率積分と確率微分方程式 第3章 マルコフ過程の性質 第4章 確率過程とベイズモデル 第5章 確率過程と機械学習 第6章 実問題への応用 付録A 基礎事項の復習式の復習 付録B サンプルコード
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Transformerを用いた代表的検出モデル「DETR」を中心に、ViT(Vision Transformer)による物体領域の検出、「CenterNet」による中心点予測型の検出、言語生成型アプローチである「Pix2Seq」、さらには「RetinaNet」などのCNN系アーキテクチャまで幅広くカバー、近年の物体検出分野の主要モデルを、比較・理解しながら習得できます。 全編にわたり、「Keras」(一部対応)と「PyTorch」の両ライブラリに対応しており、モデルの構築、推論、可視化、バックボーン(ResNet101/152)の変更や、COCOデータセットを用いた大規模推論処理の実装までを丁寧に解説しました。 画像分類のその先…「どこに、何があるのかを検出する」という実践的課題に挑むすべての人にお勧めの一冊です。 1章 開発環境について 2章 ViTモデルによる物体領域の検出(Keras) 3章 ViTモデルによる物体領域の検出(PyTorch) 4章 CenterNetによる物体領域の検出(PyTorch) 5章 DETRモデルによる物体検出(ResNet101) 6章 ResNet152をバックボーンとするDETRによる物体検出 7章 COCOトレーニングセットを使用下物体検出 8章 事前トレーニング済みDETRモデルによる物体検出 9章 Pix2Seqモデルを用いた物体検出(PyTorch) 10章 RetinaNetによる物体検出(Keras)
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆生成AIを基本からしっかり理解し、次の段階へステップアップ!◆ 近年続々と発表される実用レベルの生成モデル論文を深く理解するため、本書は変分オートエンコーダ(VAE)、LSTMといった基礎モデルから、VQ-VAE、拡散モデル、Transformerといった最先端モデルの先駆けとなったモデルの仕組みを、数学的な詳細に偏らず、シンプルなサンプルコードと演習を通して解説します。Kerasを用いた実装を通して、各モデルの主要機能と生成モデルとしての動作原理を、実際に手を動かしながら理解することを目的としています。 ■こんな方におすすめ ・機械学習の基礎から生成AIを学びたい方、生成AIのしくみをしっかりと基本から学びたい方。 ■目次 ●第1章 ディープラーニングの基礎知識 ・1.1 環境準備 ・1.2 分類モデルの仕組みと実装 ・1.3畳み込みニューラルネットワークによる画像分類 ●第2章 変分オートエンコーダによる画像生成 ・2.1 変分オートエンコーダの仕組み ・2.2 ラベルデータを活用した拡張 ●第3章 LSTMによる自然言語処理 ・3.1 LSTMによるテキスト分類 ・3.2 LSTMによるテキスト生成 ●第4章 トランスフォーマーによる自然言語処理 ・4.1 トランスフォーマーによる自然言語処理 ・4.2 トランスフォーマーによるテキスト分類 ・4.3 トランスフォーマーによるテキスト生成 ●第5章 拡散モデルの仕組み ・5.1 DCGANの仕組み ・5.2 拡散モデルの仕組み ・5.3 VQ-VAEの仕組み ●第6章 マルチモーダルモデルの実現 ・6.1 自然言語テキストによる画像生成 ・6.2 マルチモーダルモデルの実現 ■著者プロフィール 中井悦司(なかいえつじ): 1971年4月大阪生まれ。ノーベル物理学賞を本気で夢見て、理論物理学の研究に没頭する学生時代、大学受験教育に情熱を傾ける予備校講師の頃、そして、華麗なる(?)転身を果たして、外資系ベンダーでLinuxエンジニアを生業にするに至るまで、妙な縁が続いて、常にUnix/Linuxサーバーと人生を共にする。その後、Linuxディストリビューターのエバンジェリストを経て、現在は、米系IT企業のAI Solutions Architectとして活動。主な著書は、『[改訂新版]ITエンジニアのための機械学習理論入門』『Google Cloudで学ぶ生成AIアプリ開発入門――フロントエンドからバックエンドまでフルスタック開発を実践ハンズオン』(いずれも技術評論社)、『TensorFlowとKerasで動かしながら学ぶディープラーニングの仕組み』『JAX/Flaxで学ぶディープラーニングの仕組み』(いずれもマイナビ出版)など。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 はたしてなぜ生成AIは嘘をつくのか? ハルシネーションの原理とその対策を一からわかりやすく解説 生成AIを利用する際に最も厄介な問題となるのがハルシネーション(hallucination)です.ハルシネーションは幻覚とも呼ばれる現象で,一見もっともらしいのに,まったく正しくない文章が生成されることをいいます.これによって,実際にはありもしない発言や事実が大量につくり出され,SNSなどで拡散されて私たちの社会や認識を大きくゆがめてしまっています.これからの情報系エンジニアにとって,ハルシネーションの対策に必要な知見やスキルは非常に重要です. 本書では,ハルシネーションに挑むための土台となるべき自然言語処理や機械学習の基礎的な知識や,「言語の正しさ」に関する基本的な知見から解説しています.そして,これまで研究されてきたハルシネーションの検出方法や,LLMの学習方法および構造の改善,RAGや外部モデルの利用によるハルシネーション対策について解説しています. AI関連の技術は日進月歩で進歩していますが,エンジニアにとって重要なことは流行に乗り遅れないことより,少しずつ自分の引き出しを増やしていくことであると考えられます.この観点から,本書では「スタンダードな手法への手っとり早い入門」という以上の価値を提供できるように心がけています. Chapter 1 自然言語処理の基礎 1.1 自然言語処理とは 1.2 トークン化と分散表現 1.3 言語モデル 1.4 自然言語処理の評価指標 1.5 言語の研究の歴史 Chapter 2 統計学と機械学習の基礎 2.1 帰 納 2.2 統計的推測 2.3 強化学習 2.4 さまざまな生成AI Chapter 3 TransformerとLLM 3.1 Transformer登場の背景 3.2 Transformerの内部構造 3.3 学 習 3.4 TransformerによるLLM 3.5 ChatGPT 3.6 さまざまな大規模言語モデル Chapter 4 ハルシネーションの基礎 4.1 ハルシネーションとは 4.2 事実性/忠実性 4.3 内在型/外在型 4.4 文や知識の正しさとは 4.5 ハルシネーションの発生源 4.6 ハルシネーションの検出と評価 4.7 ハルシネーションに関する評価ベンチマーク Chapter 5 ハルシネーションの抑制 5.1 学習データの改善 5.2 デコーディング方法の改善 5.3 モデル構造の改良 5.4 プロンプトエンジニアリング Chapter 6 外部知識活用にもとづく生成 6.1 検索を組み合わせた生成 6.2 疎ベクトル検索 6.3 密ベクトル検索 6.4 知識データベース 6.5 RAGの発展的な話題 6.6 ツール拡張生成
-
-◆データをうまく活用できない壁を壊すノウハウを集大成◆ 「データに欠損値や誤りがあり、正しく分析できない」 「同じ顧客や企業が重複して登録されている」 「データの意味や使い方がわからない」 「部門ごとに見せられるデータが異なり、他部門に横展開できない」 「分析データに含まれる個人情報の取り扱いに苦慮している」 データを活用したいのに、うまくいかない……その壁を壊すには、データマネジメントが不可欠。 ・データをカタログ化、一元的に管理できる「Amazon DataZone」 ・さまざまなデータソースからデータを見つけ出して加工・統合でき、品質チェックの自動化もできる「AWS Glue」 ・データレイク内のデータに対して、行や列レベルでのきめ細やかなアクセス制御ができる「AWS Lake Formation」 など、データマネジメントに役立つ最新サービスの実践的な使い方をAWS Professional Servicesコンサルタントが解説。 ■こんな方におすすめ ・データがあるのにうまく活用できていない組織のエンジニア、データサイエンティスト ・AWSユーザー ■目次 1章 データマネジメントとAWS ・1.1 データマネジメントとは ・1.2 データマネジメントとAWSサービス ・1.3 データストア ・1.4 データパイプライン ・1.5 分析 ・1.6 セキュリティ/ガバナンス 2章 データに欠損値や誤りがあり、正しく分析できない ・2.1 データ品質の問題を解決するには ・2.2 Glue Data Qualityを使って保管されているデータの品質を測定する ・2.3 Glue Data Qualityを使って、データ処理パイプラインの中でデータ品質を測定する ・2.4 Glue DataBrewを使ってデータ品質を測定する 3章 データ加工処理が複雑で読み解けない ・3.1 データ加工処理の問題を解決するには ・ 3.2 Glue Studioによるジョブの作成 ・3.3 Step Functionsによるワークフローの構築 ・3.4 Amazon MWAAによるワークフローの構築 4章 同じ顧客や企業が重複して登録されている ・4.1 データの重複をなくすには ・4.2 AWS Glueを使って、ETLパイプラインの中で名寄せをおこなう 5章 データの意味や使い方がわからない ・5.1 メタデータの問題を解決するには ・5.2 メタデータの項目や記載ルールを整備する ・5.3 メタデータの充足化と公開 ・5.4 データカタログを用いてデータの存在と示す意味を把握する ・5.5 メタデータの品質維持と向上 6章 部門ごとに見せられるデータが異なり、他部門に横展開できない ・6.1 部門間でのデータ共有を推進するには ・6.2 組織間でデータを共有する ・6.3 データの共有範囲の確認と変更 7章 分析データに含まれる個人情報の取り扱いに苦慮している ・7.1 データ分析において個人情報の問題を解決するには ・7.2 「持ち込ませない」処理の実装 ・7.3 「残さない」処理の実装 ・7.4 「使わせない」処理の実装 ■著者プロフィール ●赤羽根正則:アマゾン ウェブ サービス ジャパン合同会社プロフェッショナルサービス本部所属。データ分析基盤のアーキテクチャ作成支援やデータエンジニアリングでのパフォーマンスチューニングなどに従事。 ●佐藤悠:アマゾン ウェブ サービス ジャパン合同会社プロフェッショナルサービス本部所属。AWS GlueやAWS Lake Formation、Amazon MWAAが得意。 ●仲谷岳志:アマゾン ウェブ サービス ジャパン合同会社プロフェッショナルサービス本部所属。AWSのプリンシパルアーキテクトとして、クラウドインフラやデータ基盤の設計・構築、生成AIプラットフォーム構想の策定支援などを担当。 ●松浦晋:アマゾン ウェブ サービス ジャパン合同会社プロフェッショナルサービス本部プラクティスマネージャー。エンタープライズ向けのデータプラットフォーム構築やデータマネジメント戦略立案に関する支援に従事。 ●吉濱佐知子:アマゾン ウェブ サービス ジャパン合同会社プロフェッショナルサービス本部所属。コンサルタントとして、データ管理・分析基盤の構想策定や基本設計、データ・AI活用のワークショップ実施やAWS技術活用のための研修活動などに従事。
-
-AI開発に必要な 数学の基礎知識を しっかり習得! 【本書の目的】 本書は線形代数、確率、統計/微分といったAI開発に必要な数学の基礎知識をコードを動かしながらわかりやすく解説した書籍です。 【対象読者】 ・数学がAIや機械学習を勉強する際の障壁になっている方 ・ビジネスでAIを扱う必要に迫られた方 ・数学を改めて学び直したい方 ・文系の方、非エンジニアの方で数学の知識に自信のない方 ・コードを書きながら数学を学びたい方 【第2版のポイント】 ・Python 3.12に対応 ・Anaconda及びライブラリのバージョンアップに対応 【目次】 序章 イントロダクション 第1章 学習の準備をしよう 第2章 Pythonの基礎 第3章 数学の基礎 第4章 線形代数 第5章 微分 第6章 確率・統計 第7章 数学を機械学習で実践 Appendix さらに学びたい方のために 【著者プロフィール】 我妻 幸長(あづま・ゆきなが) 「ヒトとAIの共生」がミッションの会社、SAI-Lab株式会社(https://sai-lab.co.jp)の代表取締役。AI関連の教育と研究開発に従事。東北大学大学院理学研究科修了。理学博士(物理学)。法政大学デザイン工学部兼任講師。Web上のコミュニティ「自由研究室 AIRS-Lab」を主宰。オンライン教育プラットフォームUdemyで、20万人以上にAIを教える人気講師。複数の有名企業でAI技術を指導。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 細胞培養(培地最適化)へ機械学習を応用するための基礎やノウハウを解説 本書は細胞培養(培地最適化)へ機械学習を応用するための基礎やノウハウを解説した書籍です.現状,細胞培養に機械学習を応用しようとすると,情報工学や数理統計学のテキストを読む必要がありますが,これらでは情報工学や数理統計学の基本的なカリキュラムを修了していることが前提とされていて,細胞培養のエンジニアや学生が読みこなすのは大変です. また,情報工学や数理統計学において重要な基本原理の解説と研究事例の紹介がメインであり,必ずしも細胞培養に応用するうえで,「機械学習をどう利用するのか」「どうやってデータサイエンス化するのか」について,詳しく書いてあるわけではありません. 本書では,情報工学や数理統計学のノウハウがなくても,つまり,AIの素養がなくても,読者ご自身の細胞培養の定量性や再現性を高め,予測可能な結果につなげるためのヒントをまとめたものです.著者の経験をもとに,機械学習を応用する大切なポイントを解説しています. 第1章 細胞培養の基礎を押さえよう 1.1 細胞培養について 1.2 細胞培養のための培地選び 第2章 細胞培養を定量化しよう 2.1 細胞の数を計測してみよう 2.2 増える細胞の様子を数値化しよう 第3章 細胞培養をデータ化しよう 3.1 データサイエンスの基本をざっくり把握しておこう 3.2 細胞培養・培地をデータ化しよう 3.3 データ化するための自動化 第4章 細胞培養を学習分析しよう 4.1 機械学習について知ろう 4.2 細胞培養のデータでデータサイエンスを行おう 第5章 細胞培養を最適化しよう 5.1 最適化するための方法 5.2 機械学習のアルゴリズムを押さえよう 5.3 学習データを取得しよう 5.4 モデルを訓練しよう 第6章 アクティブラーニングを活用しよう 6.1 アクティブラーニング 6.2 応用と展望
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 医療健康情報に関するデータを適切に取り扱うための知識をわかりやすく整理! IT技術者を主要読者対象として、医療健康情報を高度に活用するための、医療倫理にもとづくELSI(Ethical, Legal, Social Implications)、ならびに、関係法令等についてわかりやすく解説した書籍です。 医療健康情報の活用の歴史やポイント、および、医療健康情報を扱う研究者・技術者ならば当然抑えておくべき倫理的配慮、ならびに活用事例や課題についてまとめています。 人の医療健康にかかわる分析や、生成AIとの連携など、今後の発展や方向性に興味がある方にもお勧めです。 第1章 医療におけるDX~なぜ、医療機関で情報処理技術者が必要とされるのか?~ 第2章 医療機関の現状と課題 第3章 医療健康情報の利活用の現状と課題 第4章 医療保健情報を取り巻く法制度と解説 第5章 匿名加工医療情報、仮名加工医療情報の利活用
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ⦅生成AIの登場で社会が変わった⦆ 人工知能の最前線 AI技術の可能性と限界を知り 将来の社会の変革に備える。 ⦅最新用語とメカニズムを基礎から学ぶ!⦆ ●生成AIとは ●トランスフォーマーモデルとは ●大規模言語モデル(LLM) ●LLMの覇権を巡る争い ●AIの弱点となる「ハルシネーション」 ●独自情報に対応する「RAG」 ●続々と登場する「日本語LLM」 ●自律学習型汎用AI ●AI業界の覇者「NVIDIA」の今後の戦略 ●AGIとSGI、強いAIと弱いAI ●バーチャルとロボットとAIエージェント ●AIの開発、機械学習、モデルの作成・推論 ------------------------------------------------------ 最近ChatGPTとか生成AIとか、Office AIとか人工知能(AI)のことを知らないとマズイようだが、簡単に知りたい。 いまビジネスマンが知りたい、現在の人工知能がビジネス的にどこまで活用できるのかという疑問がわかる本。 進化の激しいAIについて、最新の状況をさっと知ることができます。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆「データサイエンス」の基礎を徹底解説◆ データサイエンスに重点を置いた情報科学とデータ分析の入門書です。 基礎知識から、関連する技術をわかりやすく解説します。本書の構成は、それぞれ標準カリキュラムの以下に相当します。 第1章「1. 導入、社会におけるデータ・AI利活用」 第2章「2. 基礎、データリテラシー」 第3章「3. 心得、データ・AI利活用における留意事項」 第4章「4. 選択、オプション」 数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル)に対応させると、第1章が「項目1」と「項目2」「項目3」に、第2章が「項目5」に、そして第3章が「項目4」に対応します。また、本書を改訂するにあたり、新たに生成AIに関するトピックを第6章として、さらにオープンデータの活用を第7章に追加しています。第6章は応用基礎レベルの「3. AI基礎」に該当します。第7章は応用基礎レベル「2.データエンジニアリング基礎」に相当します。 データサイエンスの基礎を学びたい方、AI技術に興味がある方、データ分析の実践力を身につけたい方など、幅広い読者におすすめです。 ■こんな方におすすめ ・情報科学およびデータ分析の基礎を学びたい方 ■目次 第1章 社会におけるデータ・AI活用 ・1-1 社会で起きている変化 ・1-2 社会で活用されているデータ ・1-3 データサイエンス・AIの活用領域 ・1-4 データサイエンス・AIの利活用のための技術 ・1-5 データサイエンス・AIの利活用の最新動向 第2章 データの要約と可視化 ・2-1 データの要約 ・2-2 要約統計量 ・2-3 関係をとらえる ・2-4 データの可視化 ・2-5 まとめ ・2-6 参考文献 第3章 データの法規と倫理 ・3-1 データ解析のインパクトと倫理 ・3-2 データの健全な取り扱い ・3-3 個人情報 ・3-4 結果の説明可能性 ・3-5 データと情報に関する権利と法律 ・3-6 参考文献 第4章 データ活用の手法と実践 ・4-1 はじめに ・4-2 代表的な確率分布 ・4-3 確率論とベイズの定理 ・4-4 推測統計学の基礎 ・4-5 統計的検定の基礎 ・4-6 ROC解析と推論の評価 ・4-7 モデリング ・4-8 回帰分析 ・4-9 単回帰分析 ・4-10 クラスタ分析 ・4-11 参考文献 第5章 データ構造、アルゴリズム、プログラミング ・5-1 プログラミングの話題に入る前に ・5-2 データ構造 ・5-3 アルゴリズム ・5-4 プログラミングの基礎 ・5-5 参考文献 第6章 深層学習、生成AI ・6-1 深層学習 ・6-2 生成AI ・6-3 参考文献 第7章 オープンデータの活用 ・7-1 オープンデータ ・7-2 クリエイティブ・コモンズ ・7-3 機械判読に適したデータ ・7-4 さらなるデータの活用と課題 ・7-5 機械学習によるデータの活用と限界 付録A RStudioによるRの実行 付録B Google ColabによるPythonの実行 ■著者プロフィール ●石田基広(いしだ もとひろ):徳島大学デザイン型AI教育研究センター教授。1991年東京都立大学大学院博士後課程中退。著書『Rによるテキストマイニング入門 第二版』(森北出版, 2017)、『新米探偵、データ分析に挑む』(SB Creative, 2015)、監修Wonderful Rシリーズ(共立出版)、Data Science Library(技術評論社)。本書の監修、前書き、付録Bの執筆を担当。 ●大薮進喜(おおやぶ しんき):徳島大学教養教育院/デザイン型AI教育研究センター教授。博士(理学)。2003年東京大学大学院理学系研究科博士後期課程修了。専門は宇宙物理学。本書の監修、第1章の執筆を担当。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 DX・AI時代における技術の本質を掴む!データ基盤技術の叡智とビジネス活用を徹底解説 ★大規模プロジェクトを複数手掛ける著者2名が執筆! ★500ページ超のボリュームで包括的に解説! 近年、データ活用の重要性が高まる一方で、適切な技術を選んで効果的に活かすことは容易ではありません。データ基盤の構築手段は多様化しているため、どの技術をどのように組み合わせるべきか迷う場面も多いでしょう。 本書は、ビジネスの成長に不可欠な「データプラットフォーム」の構築と活用について解説する一冊です。ユーザー行動やセンサーログなどのデータを収集・整理し、ETL処理やELT処理を経て価値ある情報に変換し、意思決定に活かす方法を紹介します。データ品質の維持や、効率的な分析手法についても詳しく解説しています。 DX(デジタルトランスフォーメーション)が進むなか、データとデジタル技術の役割はさらに重要になっています。本書では、Apache Sparkをはじめとする技術の選定や活用方法、設計の考え方を詳しく解説。最新技術だけでなく、将来の変化にも対応できる普遍的な知識を提供します。データを活用してビジネスの競争力を高めたい方、最適なデータ基盤を構築したい方は、本書を通じてデータプラットフォームの理解を深め、より効果的な活用を目指しましょう。 <本書で紹介する要素技術・原則(一部)> ・ログ転送:Fluentd ・アーキテクチャパターン:CQRS+ES、Delta、Kappa、Lambda、Lakehouse、メダリオンアーキテククチャ ・データフォーマット:Apache Hudi、Apache Iceberg、Delta Lake ・データレイク:Apache Spark、Databricks ・データウェアハウス:Amazon Redshift、Google BigQuery、Snowflake、Treasure Data ・ストリーミング:Amazon Kinesis、Apache Kafka ・ジョブスケジューラ:Apache Airflow、Digdag ・ETL処理:Apache Spark、Embulk ・ELT処理:dbt ・BIツール:Metabase、Redash ・データサイエンス:A/Bテスト、LLM、MLflow ・設計開発:データメッシュ、ドメイン駆動設計(DDD)、RDRA ・法則・原則:DIKWモデル、SOLID原則、YAGNI原則 Chapter 1 データプラットフォーム概論 Chapter 2 データプラットフォームの構成要素 Chapter 3 ログ転送 Chapter 4 データ変換・転送(バッチ編) Chapter 5 データ変換・転送(ストリーミング編) Chapter 6 データプロビジョニング Chapter 7 データマネジメントを支える技術 Chapter 8 要件分析 Chapter 9 データプラットフォームの構築 Chapter 10 データプラットフォームの改善 <著者> 島田 雅年(Masatoshi Shimada) インターネット広告、動画メディア、リテール、金融、官公庁など、さまざまな業界のプロダクト設計や開発に従事。得意分野は、組織内のデータを整理して、企業価値の向上を目的とするビッグデータ処理基盤構築。データ活用の現場では、営業職などのビジネス職域における多彩な課題が存在するケースが多く、円滑なデータ提供を支えるデータプロビジョニングシステムの構築はもちろん、組織構築や教育支援などのコンサルティングも手掛ける。 藪本 晃輔(Kosuke Yabumoto) 10年以上にわたりインターネット広告のプロダクト開発に従事。大量のトラフィックを処理する広告配信システムをはじめ、データ管理システムや広告効果計測ツール、媒体収益化など、さまざまなインターネット広告関連プロダクトにて、プロジェクトマネージャーや開発責任者を歴任。ロケーションデータを活用したインターネット広告事業を展開する株式会社ジオロジックではCTOに就任し、データプラットフォーム構築を中心に、エンジニアリングマネージャーから設計・開発まで幅広く担当。現在はスマートニュース株式会社にて、エンジニアリングマネージャーとして広告システムの開発に従事。 <編集者> 丸山 弘詩(Hiroshi Maruyama) 書籍編集者。早稲田大学政治経済学部経済学科中退。佐賀大学大学院博士後期課程編入(システム生産科学専攻)、単位取得の上で満期退学。大手広告代理店勤務を経て現在は書籍編集に加え、さまざまな分野のコンサルティングや開発マネジメントなどを手掛ける。著書に『スマートフォンアプリマーケティング 現場の教科書』(マイナビ出版)など多数、編集書籍に『ブロックチェーンアプリケーション開発の教科書』『ビッグデータ分析・活用の ためのSQLレシピ』(マイナビ出版)など多数。 ※この商品は固定レイアウト型の電子書籍です。 ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 ※お使いの端末で無料サンプルをお試しいただいた上でのご購入をお願いいたします。
-
-令和のビジネスマンにはデータ分析が求められています。 もはや特定の専門家だけのものではありません。 大人気書籍「Python実践 データ分析 100本ノック」の著者が、 数字で考える思考技術を伝授します。 --- 『AIを使う側になる』 数字で考える技術と 現代に必要な発想法。 実はデータ分析の世界は、想像以上に “クリエイティブ”で“楽しい”のです。 ―――― データを活用するためのツールや技術が広まっています。 TableauなどのBIツールなどで、今ある手持ちの数字を、デジタルデータ化するという流れは非常に多く、グラフ化、ビジュアル化、データ基盤やダッシュボードなどは多くの企業で導入されています。 しかしながら、言われたとおりにデータをビジュアライズすることができても、その意味を理解するデータ分析脳が育っていないので、手順通りにやってみたにとどまり、説明ができずにデータが活用できていません。 本書は、その何故と方法を結び付け、データ分析をするための思考を学ぶことのできる必読の書籍です。
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 2000年以降は、ICTの目まぐるしい進歩があり、特にAIによる様々な分野への影響が広がり、社会現象としてこれまでにない様相が生まれつつあります。現象に内包される要因を正しく認識し、本質的な視点で問題解決を行うには、対象を正しくモデル化することが鍵となります。利用できる数理モデルを体系的に理解しておく必要があることから、本書では「システム数理」としてまずは導入となる内容をまとめました。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ヒューマンコンピュータインタラクションの基本をわかりやすく解説する定番の教科書、改訂3版! 本書は、人間の感性や認知に関する基礎知識とともに、対話システム、GUI、インタフェースの評価技術など、人間とコンピュータの親和性が高いシステムづくりに必要な技術を解説する教科書としてご好評いただいている『IT Text ヒューマンコンピュータインタラクション』の改訂3版です。今回の改訂では、XR、UX、人間中心設計、人工知能(AI)、技術者倫理などの近年注目されているキーワードを軸に情報をアップデートするとともに、図解を増やしさらに学びやすい構成としました。 第1章 ヒューマンコンピュータインタラクションとは 第2章 人間の感覚と知覚 第3章 人間の認知と理解 第4章 インタラクティブシステムのデザインと分析・評価 第5章 入力インタフェース 第6章 ビジュアルインタフェース 第7章 ビジュアルデザインとビジュアライゼーション 第8章 コミュニケーションインタフェース 第9章 協同作業支援とソーシャルコンピューティング 第10章 XR(クロスリアリティ) 第11章 環境と融合するインタフェース 演習問題略解 参考文献
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 個人データ活用ビジネスの指南書! ユーザーの行動や購買のデータをもとに、サービスが最適化されることが当然の時代となりました。ネットで買いものをするときは閲覧や購買の履歴に基づいて商品の推薦が行われますし、動画を閲覧するときは過去の視聴履歴に基づいてホーム画面に表示される動画が変わります。データに基づいた調整によって、ユーザーはより適切なサービスを受けられるようになりました。 しかしユーザーに紐づくデータ(≒個人データ)は、うまく活用すればビジネス強化につながる反面、使いかたを間違えれば社会的に大きな非難を受ける可能性があります。近年ではプライバシー保護に対する社会の目が厳しくなっており、グローバルプラットフォーマーがGDPRで高額な罰金を課せられたり、これまで明確な法規制のなかった国に日本の個人情報保護法に相当する法律が次々と制定されるなど、国際社会は法規制を強める方向に動いています。日本国内でも、データの不適切な取扱いにより問題となった事例は枚挙に暇がありません。いままさに個人データを活用するサービスを開発・運用している実務担当者であっても、以下のような不安を抱えている人は多いのではないでしょうか。 ・いま行っている個人データ活用の施策が、プライバシー法規制に抵触するリスクはないか? ・ユーザーの同意はどんなときに必要で、必要となる場合はどうやって合意を取得するべきか? ・事業者間でのコラボレーションや第三者機関での分析を考えるとき、適法性やセキュリティをどのように担保すればよいか? ・データ処理過程で個人が特定されるリスクはないか? ・レピュテーションリスクを想定したとき、どんな情報を公表しユーザーへ提供するべきか? 本書では、こういった疑問への解答を示し、顧客の個人データを扱う当事者が実務レベルで適切な対応をとれるよう導きます。まずはビジネスでの個人データ活用の利点と懸念点を概説し、関連する法律や技術を説明したのち、どう対応していけばよいか具体例を示していきます。 <本企画のポイント> ・国内外のプライバシー規制の動向を理解できる ・企業におけるプライバシー保護体制(プライバシーガバナンス)の具体的な確立方法がわかる ・ビジネスにおける個人データ活用のリスクを適切に評価し、必要な対策がとれるようになる はじめに/目次 1章 なぜ個人データの活用が注目を集めているのか? 2章 プライバシー保護と炎上 3章 個人データと法規制 4章 プライバシーガバナンスを構築する 5章 個人データの定義と活用における注意点 6章 個人データを守るプライバシーテック 7章 プライバシーテックを活かした個人データ活用のフレームワーク おわりに/索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 OpenAI、Anthropic、Gemini、LangChain、LangGraph、Gradio、Tavily、SerpApiなどを用い、基本からマルチエージェントシステムの設計まで、開発に必要なテクニックを体系的に解説 LLMエージェント(AIエージェント)は、ペルソナ(口調、知識、判断の方向、人柄)等を生成AIに組み込み、生きた人間の代わりに様々なことをするもので、カスタマーサービス、情報検索、分析、意思決定支援など、様々なタスクを自律的に遂行することができます。これにより、新たなサービスの創出、業務の自動化や効率化など、ビジネスに大きなインパクトをもたらすことが期待されています。 一方で、LLMエージェントを実際のビジネスに応用するためには、技術的な理解だけでなく、システム設計や運用における様々な課題をクリアする必要があります。例えば、エージェントの能力を最大限に引き出すための対話設計、複数エージェント間の連携制御、ユーザーとのインタラクションデザインなどを設計、解説します。 第1章 LLMエージェントとは 1.1 言語モデルとは何か 1.2 LLMエージェントとは 第2章 エージェント作成のための基礎知識 2.1 OpenAI API 2.2 LangChain入門 2.3 Gradio を用いたGUI作成 第3章 エージェント 3.1 LLMに知識を与える 3.2 LLMにツールを与える 3.3 複雑なフローで推論するエージェント 3.4 記憶を持つエージェント 3.5 ペルソナのあるエージェント 第4章 マルチエージェント 4.1 マルチエージェントとは 4.2 マルチエージェントシステムの構築 4.3 マルチエージェントの活用 第5章 LLMエージェント研究の最先端 5.1 直近の研究動向 5.2 ビジネスでの利用例 補足 OpenAI API/Anthropic APIキー/Gemini APIキー/Tavily APIキー/Serp APIキー/Google Colaboratoryのシークレット機能
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 これからのシステムリスク管理の常識をわかりやすく解説 本書は、AIと量子コンピュータが当たり前になる、これからのITシステムのリスク管理について、基本からわかりやすく解説した書籍です。特に、リスク管理を有効に機能させるために重要な考え方や具体的な手法についても詳しく解説しています。 今後、AIや量子コンピュータのもたらす技術革新にかかわるリスク管理能力の欠如は、あらゆる組織にとって致命的なウィークポイントになります。しかし、革新的な技術のもたらすリスクを網羅的に洗い出すことは難しいのが実情です。また、それらのリスクにより生じる損害の大きさや、損害がどの程度の可能性で発生するのかが不明瞭であることも多く、従来からのプロジェクトごとでのリスク管理手法がうまく適用できません。 そのようなリスクをうまく管理するために組織に必要となる、重要なITガバナンスについてまとめています。 第1章 ITシステムにおけるリスクと新技術 第2章 量子コンピュータが暗号にもたらすリスク 第3章 AIの発展と規制 第4章 AIシステムにおけるリスク管理 これからのリスク管理とガバナンス
-
-頻発するサイバー攻撃に対処するために、導入に向けて国会で議論されている「能動的サイバー防御」。 能動的サイバー防御とは、起こりうるサイバー攻撃が安全保障上の問題になると政府が判断したとき、攻撃による被害の顕在化を未然に防ぐものである。 本書では、能動的サイバー防御に関する議論の歴史的プロセス、サイバー攻撃の実態、核兵器による抑止との違い、主要国のサイバー対策などを官公庁からも頼りにされている専門家が網羅的に解説しています。 セキュリティ、システム・DX担当者から、インフラ事業者、政策立案者まで必読の書です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、数理・データサイエンス教育強化拠点コンソーシアムが公表している「数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム~データ思考の涵養」の「基礎(2.データリテラシー)」で示されている「データを適切に読み解く力」「データを適切に説明する力」「データを扱うための力」を養うことを目的としています。主に大学1年生を対象に、初学者にも扱いやすいスプレッドシート(Microsoft ExcelやGoogleスプレッドシート)を用いてデータサイエンスの基礎を学習します。序盤では、スプレッドシートの使い方やオープンデータの利用方法を通して、データの扱い方を学習します。中盤では、高等学校までの情報教育との接続としてデータの可視化や基本統計量についてより理解を深めていき、終盤では、代表的な確率分布を取り上げ、統計学への理解を深める構成としています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆BigQuery徹底活用!◆ 2021年2月に刊行した「Google Cloudではじめる実践データエンジニアリング入門」の改訂版です。改訂版の刊行までにデータ基盤に求められる要件は変化し、本書ではその間に進化を続けたGoogle Cloudの各サービスの情報をまとめています。 - Google Cloudの新サービスの反映:Dataform、Dataplex、BigLake、Datastream、Vertex AI、Geminiなど - 各種Google Cloudの新機能のアーキテクチャへの反映:BigQuery、Dataflow、Pub/Sub、Cloud Coposer、Lookerなど データエンジニアリングの業務について一般的な知識を整理しつつ、Google Cloud 上でどのように構築するのかを、実践経験豊富な著者陣の現場のノウハウとともに説明します。 ■こんな方におすすめ - すでにソフトウェアコードはある程度かけるが、実践的にデータエンジニアリングへの入門をしたい方 - SQL を利用した分析を行っているが、データ基盤がどういう形なのか興味がある方 - すでにGoogle Cloud をデータ基盤として利用しているが、自社の設計について体系的に理解したい方、より良くする方法を探している方 ■目次 第1章 データ基盤の概要 第2章 データウェアハウスの概念とBigQueryの利用方法 第3章 データウェアハウスの構築 第4章 レイクハウスの構築 第5章 ETL/ELT処理 175 第6章 ワークフロー管理とデータ統合 222 第7章 データ分析基盤におけるセキュリティとコスト管理の設計 第8章 BigQueryへのデータ集約 第9章 ビジネスインテリジェンス 第10章 リアルタイム分析 第11章 発展的な分析 - 地理情報分析と機械学習、非構造データ分析
-
-◆どのようなAIサービスが創れるのか、どのようにAIサービスを創るのか◆ 本書は「AIサービスを創る」ことをテーマとして、AIの基本的理解から、AIサービスの創出、分析、実装に至るまで幅広いトピックを扱います。生成AIが登場して以降、サービスを発案する役割、ビジネスモデルを検討する役割、システムを構築する役割という従来の役割の垣根が薄まる中、AIサービスについて全体を通して理解することの重要性は増しています。本書では、そのような役割の異なる人であってもAIサービスの全体像をつかみやすいよう、各トピックをできるだけ平易にわかりやすく紹介しています。そのうえで、サービス創り全般に対して生成AIを活用するアプローチ=「AI駆動によるサービス創り」として、生成AIの多様な活用方法について随所で紹介しています。 ■こんな方におすすめ ・生成AIを使ったサービスの開発に興味のある人 ■目次 第一部 AI駆動によるサービス創りの全体像 ●第1章 AIサービスの基本 ・1.1 AIサービスをなぜ作るのか ・1.2 AIサービス創りに必要な3つの観点と3つの分析 ●第2章 AIサービス創りのための3つの観点 ・2.1 どのようなAIサービスを創るか? ・2.2 観点1:不確実な対象に使う ・2.3 観点2:チャットでないもの、生成しないものにも使う ・2.4 観点3:ドメインの強みを活かす ●第3章 AIサービス創りのための3つの分析 ・3.1 サービス創りの前の事前準備 ・3.2 分析1:ビジネス分析 ・3.3 分析2:効果分析 ・3.4 分析3:リーガル分析 ●第4章 AIサービスの実装方式の種類と選択 ・4.1 AIサービスの実装方式 ・4.2 AIサービスの実装方式の選択 ・4.3 第一部のまとめ:AIサービス開発のはじめの一歩 第二部 AIサービスをノーコードで実装する ●第5章 ChatGPTの基本的な使い方 ・5.1 プロンプト ・5.2 追加データの活用方法 ●第6章 カスタムGPTによるAIサービスのノーコード実装 ・6.1 カスタムGPTの基本 ・6.2 カスタムGPTの応用 ・6.3 第二部のまとめ:AIサービスの可能性と課題 第三部 AIサービスをAPI/OSSモデルで実装する ●第7章 OpenAIAPIによるAIサービスの実装 ・7.1 OpenAIAPI keyの取得 ・7.2 Google Colaboratoryでのコーディングテスト ・7.3 Gradioを用いたデモ作成 ・7.4 Hugging Face Spacesでの公開 ●第8章 生成AIのOSSモデルによるAIサービスの実装 ・8.1 生成AIのOSSモデル利用の利点と注意点 ・8.2 Hugging Faceの生成AIモデルアクセス準備 ・8.3 Google Colaboratoryでのコーディング ・8.4 生成AIのOSSモデルの種類と選択 ・8.5 第三部のまとめ:AIサービスの実装、運用と管理へ向けて 第四部 AIを正しく駆動させるためのAIの理解 ●第9章 AIを理解する ・9.1 AIの基本 ・9.2 ルールベースAI ・9.3 機械学習の基本 ・9.4 分類問題を解くためのAI ・9.5 機械学習に用いるデータ ●第10章 大規模言語モデルを理解する ・10.1 言語モデルの基本 ・10.2 統計的言語モデル ・10.3 ニューラル言語モデル ・10.4 大規模言語モデルの学習 ・10.5 大規模言語モデルのドメイン適応 ・10.6 第四部のまとめ:LLMの現在と未来 ■著者プロフィール 貞光 九月(さだみつ くがつ):株式会社VAIABLE ファウンダー。1981年9月福岡県生まれ。筑波大学大学院博士課程修了後、NTT研究所、フューチャー株式会社Chief AI Officer/VPを経て、2022年に株式会社VAIABLEを創設。株式会社マネ―フォワード研究アドバイザを兼任。
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆Excel、Word、PowerPointを使用した実習形式◆ 初学年の大学生向けの情報リテラシーのテキストです。本書は学校採用を目的に企画しています。半期の授業を想定した15章構成で、それぞれの章が1回の授業に対応します。Word、Excel、PowerPointを使用した実習形式の内容です。学生が完成例だけを見て自己流で作成を始めることを回避するため、画像を小出しにするなどの工夫をしています。スモールステップで無理なく作業を進めていき、技能を身につけていきます。 ■こんな方におすすめ ・PC作業に不慣れな大学1年生、テキスト採用を考える先生 ■目次 ●第1章 情報モラル ・1-1 ユーザー認証 ・1-2 SNS ・1-3 サイバー犯罪と法律 ・1-4 情報セキュリティ ●第2章 式の入力と基本操作 ・2-1 Excelの基本画面 ・2-2 四則演算,表示桁数 ・2-3 セルを参照しての計算、オートフィル ・2-4 SUM関数、割合と絶対参照 ・2-5 第2章の演習問題 ●第3章 統計関数と表の見た目の整え方 ・3-1 複合参照 ・3-2 AVERAGE関数 ・3-3 MAX関数、MIN関数 ・3-4 第3章の演習問題 ●第4章 論理関数 ・4-1 IF関数、IFS関数 ・4-2 AND関数、OR関数 ・4-3 第4章の演習問題 ●第5章 数え上げの関数と条件付きの統計処理 ・5-1 COUNTA関数、COUNT関数 ・5-2 COUNTIF関数、COUNTIFS関数 ・5-3 SUMIF関数、AVERAGEIF関数 ・5-4 第5章の演習問題 ●第6章 数値の丸めを行う関数と並べ替え ・6-1 ROUND関数、ROUNDUP関数、ROUNDDOWN関数、INT関数 ・6-2 並べ替え ・6-3 第6章の演習問題 ●第7章 条件付き書式とグラフ作成 ・7-1 条件付き書式 ・7-2 グラフ作成 ・7-3 第7章の演習問題 ●第8章 検索関数とエラー回避 ・8-1 VLOOKUP関数 ・8-2 IFERROR関数 ・8-3 第8章の演習問題 ●第9章 文字の入力と修飾 ・9-1 Wordの基本画面 ・9-2 ひらがな、カタカナ、漢字、英数字、記号の入力 ・9-3 フォントと段落の書式設定 ・9-4 第9章の演習問題 ●第10章 ページレイアウト ・10-1 ページ設定と段組み ・10-2 文末脚注とページ番号 ・10-3 第10章の演習問題 ●第11章 段落番号、脚注、Excelグラフの挿入 ・11-1 段落番号 ・11-2 脚注とヘッダー ・11-3 Excelグラフの貼り付け ・11-4 第11章の演習問題 ●第12章 図形と表の挿入 ・12-1 基本図形、テキストボックス、数式エディタ ・12-2 表の挿入 ・12-3 数式の形式の変更 ・12-4 第12章の演習問題 ●第13章 校閲 ・13-1 文章校正、コメント、変更履歴、置換 ・13-2 行間の調整、ルーラーの使い方 ・13-3 第13章の演習問題 ●第14章 スライドの作成と特殊効果 ・14-1 PowerPointの基本画面 ・14-2 スライドの作成 ・14-3 画面切り替えとアニメーション ・14-4 第14章の演習問題 ●第15章 コンテンツプレースホルダーの利用 ・15-1 SmartArt、表の挿入 ・15-2 Wordファイルをもとにスライドとノートを作成 ・15-3 第15章の演習問題
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2024年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 あたらしい1年生シリーズ 「データサイエンス1年生」の登場! ヤギ博士、フタバちゃんと一緒に データサイエンスの世界に飛び込んでみよう! 【本書の概要】 Python1年生でもおなじみのヤギ博士とフタバちゃんと一緒にデータサイエンスの基本について体験できる書籍です。データサイエンスに必要な知識から始まり、基本的なデータの読み解き方や、データの傾向や特徴をつかむ方法について解説します。 【本書の開発環境】 Google Colaboratory 【対象読者】 ・Pythonの基本文法は知っている方(『Python1年生』を読み終えた方) ・データサイエンスについて知りたい初心者 ・Pythonを使ってデータサイエンスの手法を体験したい初心者 【本書のポイント】 ・対話形式で、イラストを交えながら、基礎知識を解説します。 ・データの読み解き方をサンプルを元に学習できます。 ・データの傾向や特徴のつかみ方を学習できます。 【目次】 第1章 「好奇心×データ」で世の中の謎を解き明かそう 第2章 データサイエンスの基本的な手順 第3章 データからわかることは?:探索的データ分析 第4章 本当にそうだろうか?:確証的データ分析 第5章 アイスクリームの売り上げ分析で体験 第6章 AIで変わるデータサイエンスの未来 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコンBASICマガジン』(電波新聞社)の時代からゲームを作り続けて、現在はコンテンツ制作や執筆活動を行い、関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。近著に『Python2年生 スクレイピングのしくみ 第2版』、『Python2年生 データ分析のしくみ 第2版』『ChatGPTプログラミング1年生 Python・アプリ開発で活用するしくみ』、『Python3年生 ディープラーニングのしくみ』、『Python2年生 デスクトップアプリ開発のしくみ』、『Python1年生 第2版』、『Python3年生 機械学習のしくみ』、『Java1年生』、『動かして学ぶ! Vue.js 開発入門』(いずれも翔泳社)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-人工知能と哲学、「人」に迫る二つの学問が影響し合うその先を問い、考える 本書は、人工知能学会誌『人工知能』の連載記事:レクチャーシリーズ「AI哲学マップ」および関連記事を再編集し、書籍化するものです。 レクチャーシリーズ「AI哲学マップ」は、人文系(主に哲学)の研究者と人工知能分野の研究者の対談から、相互の知見を共有し集積した先に、「人工知能のフロンティアを描き出す」ことを目的として企画されました。本書では、記事・対談の内容から浮かび上がった下記四つの問いを提示し、これらを軸に対談内容を理解することで、人工知能研究の「現在地」と「方向性」を明らかにし、学問としての発展に示唆を与えます。 問い1 人工知能にとってコミュニケーションとは何か 問い2 人工知能にとって意識とは何か 問い3 人工知能にとって社会とは何か 問い4 人工知能にとって実世界とは何か 記事再編にあたり、人工知能を専門としない多くの方々にもわかりやすく読めるよう、技術解説の補足や挿絵の追加など、内容理解の助けとなる工夫を凝らしました。 はじめに 問い1 人工知能にとってコミュニケーションとは何か 問い2 人工知能にとって意識とは何か 問い3 人工知能にとって社会とは何か 問い4 人工知能にとって実世界とは何か おわりに 注釈語索引 対談参加者プロフィール一覧
-
-待望の第2版! 定番のAI開発プラットフォームで 機械学習や深層学習、強化学習、転移学習の 基礎を習得 【本書の概要】 本書はUdemyで大人気の講座『AIパーフェクトマスター講座 -Google Colaboratoryで隅々まで学ぶ実用的な人工知能/機械学習-』をもとにした書籍です。 ●機械学習(回帰、k平均法、サポートベクターマシン) ●深層学習(画像識別や画像生成、RNN) ●強化学習(Cart Pole問題、深層強化学習) などのAI開発で必要となる人工知能技術について解説します。 サンプルを動かしながら、AI技術の仕組みを理解できます。 開発環境にはGoogle Colaboratoryを使用します。 【Google Colaboratoryとは】 ブラウザ上で利用できる機械学習や深層学習向けの開発環境です。 GPUを無料で利用できるので、コードの実行時間を大幅に短縮できます。 【本書ポイント】 ●機械学習・深層学習・強化学習の基礎知識を一気に学べる ●Pythonでコードを動かしながら機械学習・深層学習・強化学習の理論を学べる 【第2版の変更点】 ●Google Colaboratory環境のアップデート(2024年8月時点) ●各種ライブラリのアップデート ●データセット(住宅データ)の変更 【対象読者】 ●何らかのプログラミング経験のある方 ●機械学習・深層学習・強化学習を学ぶ意欲のある方 ●高校数学以上の数学知識のある方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆数学が苦手な文系学生でもデータサイエンスが無理なく学べる!◆ 政府による「AI戦略2019」では,文理を問わず,すべての大学・高専生(約50万人卒/年)が正規課程でリテラシーレベルの数理・データサイエンス・AIを修得することを目標としました。そして各大学・高専で参照可能な「数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム」が策定されました(2020年4月版)。このモデルカリキュラムが2024年2月に改訂されました。 本書は「数理・データサイエンス・AI(リテラシーレベル)」通称MDASHに準拠した教科書です。2024年2月改訂のMDASHに対応しています。章構成は,モデルカリキュラムの「導入」「基礎」「心得」に沿った内容となっています。 一部の私立文系の大学では,中学数学すら修めていない学生が多く,コンピュータリテラシーも低い傾向にあります。本書は,そういった私立文系学生でも無理なく学べるよう,やさしく解説しています。Excelの基本的な操作を学習したあと,与えられたデータをもとに「データを読み,データを説明し,データを扱う」ことを,実際に動かしながら理解します。このデータ分析の演習を通して,データサイエンスを体験できます。 本書で「リテラシーレベルのモデルカリキュラムを網羅できる」ため,教科書として採用しやすい内容となっています。講義とExcel実習をバランスよくおりまぜた半期1コマ15回の授業計画のモデルケースを紹介しており,コンピュータリテラシー担当教員がすぐに数理・データサイエンス・AIのリテラシー授業を始めることができます。 ■こんな方におすすめ ・基礎的な「数理・データサイエンス・AI リテラシーモデルカリキュラム」の授業を考えている先生。履修する学生。モデルカリキュラムで学びたい社会人 ■目次 第1章[導入] 社会におけるデータ・AI利活用 1-1 社会で起きている変化 1-2 社会で活用されているデータ 1-3 データ・AI の活用領域 1-4 データ・AI利活用のための技術 1-5 データ・AI利活用の現場 1-6 データ・AI利活用の最新動向 第2章[基礎] データリテラシー 2-1 Excelの基本的な操作方法 2-2 時系列データの可視化 2-3 平均の算出とその可視化 2-4 標準偏差の算出とその可視化 2-5 大量のデータを扱う方法 2-6 基本統計量の算出と箱ひげ図 2-7 度数分布表とヒストグラムの作成 2-8 散布図の作成と相関係数の算出 2-9 定性データの扱い方とクロス集計 第3章[心得] データ・AI利活用における留意事項 3-1 データ・AIを扱う上での留意事項 3-2 データを守る上での留意事項 ■著者プロフィール 吉岡剛志(よしおかつよし):早稲田大学大学院 先進理工学研究科 博士後期課程修了(ナノ理工学専攻),博士(工学)。早稲田大学助手,早稲田大学助教,高輝度光科学研究センター博士研究員等を経て,現在,帝京平成大学 人文社会学部 経営学科 経営情報コース 准教授。 森倉悠介(もりくらゆうすけ):早稲田大学大学院 基幹理工学研究科 博士後期課程修了(数学応用数理専攻),博士(工学)。早稲田大学助教等を経て,現在,帝京平成大学 人文社会学部 経営学科 経営情報コース 講師。 小林領(こばやしりょう):早稲田大学大学院 基幹理工学研究科 博士後期課程修了(数学応用数理専攻),博士(工学)。早稲田大学講師等を経て,現在,帝京平成大学 人文社会学部 経営学科 経営情報コース 講師。 照屋健作(てるやけんさく):東京大学大学院 経済学研究科 博士課程単位取得退学(経済理論専攻)。帝京平成大学講師等を経て,現在,帝京平成大学 人文社会学部 経営学科 経営情報コース 准教授。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆モデルカリキュラムに対応。MDASH認定制度に準拠◆ AIリテラシー教育に対応した文系の方にもおすすめできる教科書です。 本書は「数理・データサイエンス・AI(リテラシーレベル)」(MDASH)の2024年2月改訂に対応しています。MDASHの「導入」「基礎」「心得」「選択(オプション)」モデルカリキュラムに準拠し、14章構成で半期15回の講義で進められるよう工夫されています。AIのしくみやデータ分析、プログラミングやデータ活用など、AIリテラシーを幅広く学べます。 ■目次 ●第1講 AIリテラシーとは ・1-1 AIの定義 ・1-2 なぜAIが必要とされているのか ・1-3 生成AI ・1-4 この本ではどこまで学ぶか ●第2講 社会でどのような変化が起きているか ・2-1 ビッグデータ、IoT、5Gなどの登場 ・2-2 第4次産業革命、Society5.0 ・2-3 データ駆動型社会 ●第3講 社会でどのようなデータが活用されているか ・3-1 人の動線をめぐるデータ ・3-2 多くの機器のログとオープンデータ ・3-3 1次データ、2次データ、メタデータ ・3-4 非構造化データの増大 ●第4講 データ・AIを何に使えるか ・4-1 データ・AIの活用領域の広がり ・4-2 具体的にどう使えばいいのか ・4-3 シェアリングエコノミー、エビデンスベース社会、ナッジ ●第5講 データ・AIの技術 ・5-1 データ解析とは何をしているのか ・5-2 可視化の手法にはどういったものがあるのか ・5-3 非構造化データの処理とは ・5-4 AIの技術とは ●第6講 データを読み、説明し、扱う ・6-1データの種類を知る ・6-2 基本統計量でデータの特徴をつかむ ・6-3 もととなるデータを集める ・6-4 集めたデータを集計する ・6-5 誤読しないデータの読み方、データの比較方法 ●第7講 データ・AIを扱うときに注意すること ・7-1 データ活用の負の側面 ・7-2 GDPR、忘れられる権利、ELSI、オプトイン・オプトアウト ・7-3 データの正義について ●第8講 データ・AIにまつわるセキュリティ ・8-1 情報セキュリティの基礎 ・8-2 情報のCIA ・8-3 暗号化と匿名加工情報 ・8-4 生成AIが生み出す新たなリスク ●第9講 統計と数学のきほん ・9-1 AIに必要な数学 ・9-2 AIに必要な集合・場合の数 ・9-3 AIに必要な確率・統計 ●第10講 アルゴリズムとは何か ・10-1 AIとアルゴリズム ・10-2 組み合せ爆発を攻略するAIのアルゴリズム ・10-3 探索問題 ・10-4 二部マッチング問題 ●第11講 データの構造とプログラミング ・11-1 ソフトウェアのプログラミング ・11-2 プログラミングの歴史 ・11-3 データの構造 ・11-4 プログラミング環境の構築 ・11-5 変数 ・11-6 条件分岐 ・11-7 繰り返し ●第12講 データを上手に扱うには ・12-1 ビッグデータの収集 ・12-2 データベース ・12-3 データ加工 ・12-4 データクレンジング ●第13講 時系列データと文章データの分析 ・13-1 時系列データ分析 ・13-2 時系列データの変動要因 ・13-3 時系列データ分析演習(二酸化炭素排出量の予測) ・13-4 文章データ分析 ・13-5 文章データ分析演習(スパムメールフィルタの作成) ●第14講 データ活用実践(教師あり学習と教師なし学習) ・14-1 AIの学習方式 ・14-2 教師あり学習の出力 ・14-3 教示なし学習の出力 ・14-4 過学習と汎化 ・14-5 データ活用実践1-教師あり学習、分類 ・14-6 データ活用実践2-教師あり学習、回帰 ・14-7 データ活用実践3-教師なし学習、連関分析 ■著者略歴 岡嶋裕史:中央大学大学院総合政策研究科博士後期課程修了。博士(総合政策)。中央大学国際情報学部教授。NHKスマホ講座講師。著書多数。 吉田雅裕:東京大学大学院博士課程修了。博士(学際情報学)。中央大学国際情報学部准教授。コンピュータネットワークとAIに関する研究教育活動に従事。中央大学AI・データサイエンスセンター所員,東京大学客員研究員,電子情報通信学会幹事。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データサイエンス・AIの数学的な内容について詳細に説明し、紙と鉛筆だけで取り組める問題を数多く配置した教科書。各手法のアルゴリズムを学習と予測に分けて明示し、一般的な数学の教科書と同じように、概念の説明、例、問という構成で、章末には確認問題を掲載しています。 [問] 例の類題や概念の説明を補うための問題。 [確認問題] 章の内容を確認するための問題。データサイエンス検定やG検定などの検定を意識した4択問題もあり。 数理・データサイエンス・AI教育プログラム認定制度における「応用基礎レベル」から「エキスパートレベル」にステップアップするための必読書籍!
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ファーストステップシリーズは、コンピュータを初めて本格的に学ぶ大学生・高専生を対象にしたものです。シリーズの中で、本書は、政府の「AI 戦略2019」によって、すべての大学・高専生が習得すべき「数理・データサイエンス・AI /リテラシーレベル」として策定されたモデルカリキュラム(2024年2月改訂)に準拠した内容のテキストです。特に、コンピュータに関する学習をこれから始める文系学部の学生の皆さんにとっても、分かりやすく学んでいただけるように配慮しました。 本書ではAI やデータサイエンスの知識や仕組みについて、事例や図解を使って具体的に説明しています。また、それらがどのように使われ、どんな有効性があるのか、反面、どんな問題があるのかについても示しました。AI・データサイエンスを1から学ぶためにこの上ない一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ファインチューニングについて,具体的なPythonコードを通じて基本から実践までわかりやすく説明 本書は,画像識別や自然言語処理といった実務における代表的なタスクで現れるモデルのファインチューニング,さらに近年著しく発達している生成AIモデルのファインチューニング,および,強化学習を活用したファインチューニングについて,それぞれ具体的なPythonコードを通じて基本から実践までわかりやすく説明した書籍です. ファインチューニングを実務で活用することを目指すエンジニアや研究者,および学生の方々を対象に,実務に直結したアドバイスや具体的な手法を提供し,現場での実践力を高めていただくことを目標としています. それぞれのタスクを実施するための手続きを「レシピ」としてパッケージ化して,その中身を「レシピの概要」「事前準備」「ファインチューニング実装」「評価」「応用レシピ」としています.具体的なPythonコードを通じて基本的かつ実践的な考え方を理解していただき,さらにそれを読者の皆さん自身の課題に合わせて修正できるようにしています. これからファインチューニングを始めたい,あるいはファインチューニングの実践におけるコツを知りたい方におすすめの書籍です. Chapter 1 ファインチューニングの基礎知識 Chapter 2 画像のファインチューニング Chapter 3 自然言語処理のファインチューニング Chapter 4 生成AIのファインチューニング Chapter 5 強化学習によるファインチューニング Appendix 評価指標
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆推論のしくみから紐解く高速化の原理◆ 本書は深層ニューラルネットワークによる予測を高速化する技法を解説します。巨大なニューラルネットワークを用いた予測には多くの時間と計算コストがかかります。これにより、応答が遅くなりユーザー体験が悪くなるといった問題や、運用コストが大きくなるといった問題が生じます。本書はニューラルネットワークの予測性能を下げることなく高速化することでこれらの問題を解決する技法を解説します。紹介する技法は量子化・枝刈り・蒸留・低ランク近似・モデルマージなど多岐にわたり、幅広い局面に対応します。また、平坦解や宝くじ仮説など、深層ニューラルネットワークの理論を通して、これらの手法がうまくいく理由についても深く本質的な理論を解説します。深層ニューラルネットワークを活用するエンジニアや研究者は必読の一冊です。 ■こんな方におすすめ ・ニューラルネットワークの計算や時間にかかるコストを削減したい人 ・Webサービスにニューラルネットワークを使っている方 ■目次 ●第1章 はじめに ・1.1 高速化の意義 ・1.2 高速化の理論的背景 ・1.3 用語の整理 ●第2章 高速化手法の概要 ・2.1 量子化と低精度計算 ・2.2 枝刈り ・2.3 蒸留 ・2.4 低ランク近似 ・2.5 高速なアーキテクチャ ・2.6 ハードウェアの改善 ・2.7 複数の技法の組み合わせ ・2.8 その他の技法 ●第3章 量子化と低精度計算 ・3.2 その他の低精度浮動小数点数フォーマット ・3.3 自動混合精度計算 ・3.4 整数量子化 ・3.6 なぜ低精度計算でうまくいくのか ●第4章 枝刈り ・4.1 代表的な枝刈り手法 ・4.2 訓練前の枝刈り ・4.3 構造枝刈り ・4.4 枝刈りの実装 ・4.5 ReLU活性化関数を用いた適応的な枝刈り ・4.6 なぜ枝刈りを行うのか・なぜうまくいくのか ・4.7 枝刈りの使いどころ ●第5章 蒸留 ・5.1 蒸留の問題設定 ・5.2 蒸留のアプローチ ・5.3 生徒モデルの選び方 ・5.4 推論に必要なデータの変更 ・5.5 生成モデルの利用 ・5.6 事例 ・5.7 なぜ蒸留でうまくいくのか ・5.8 蒸留の使いどころ ●第6章 低ランク近似 ・6.1 低ランク性とは ・6.2 畳み込みニューラルネットワークの低ランク近似 ・6.3 注意機構の低ランク近似 ●第7章 高速なアーキテクチャ ・7.1 深さ単位分離可能畳み込み ・7.2 高速なトランスフォーマーの亜種 ・7.3 ニューラルアーキテクチャ探索 ・7.4 高速なアーキテクチャと圧縮手法の比較 ●第8章 チューニングのためのツール ・8.1 PyTorchプロファイラ ・8.2 CPU上のプロファイリング ・8.3 GPU上のプロファイリング ●第9章 効率的な訓練 ・9.1 省メモリ化 ・9.2 モデルパラメータの算術 ■著者プロフィール 佐藤竜馬:1996年生まれ。2024年京都大学大学院情報学研究科博士課程修了。博士(情報学)。現在、国立情報学研究所 助教。専門分野はグラフニューラルネットワーク、最適輸送、および情報検索・推薦システム。NeurIPSやICMLなどの国際会議に主著論文が採択。競技プログラミングでは国際情報オリンピック日本代表、ACM-ICPC世界大会出場、AtCoderレッドコーダーなどの戦績をもつ。PDF翻訳サービスReadableを開発し、深層ニューラルネットワークを用いた翻訳システムにも詳しい。著書に『グラフニューラルネットワーク』『最適輸送の理論とアルゴリズム』(ともに講談社)がある。
-
-進化の速いAIはここを押さえる 製造業の業務活用のための人工知能講義 業務改革、DX推進部門、IT部門、生産技術部門、経営層の悩みに応える 製造業が人工知能(AI)を業務で活用するために、押さえておくべき「本質」を講義形式(読み物)でまとめました。AIは業務の生産性や付加価値の向上に非常に役立つ技術です。ところが、技術の進化が極めて速いため、多くのビジネスパーソンにとって理解が追い付かず、「どうやって使いこなせばよいのか、よく分からない」という現実があります。こうしたビジネスパーソン、中でも企業の業務改革やDX、AI、IT推進部、生産技術部の社員や管理者、経営者の悩みに応えるために、業務活用を進める上で押さえるべきAIのポイントを伝授し、変化に対応してAIを学ぶ際の「見取り図」を描くためのガイドを提供します。 筆者は、名だたる日本の大手企業からAI活用に関する研修のオファーを受け続けている速水悟教授。AIをどのように学べば実務において活用できるかについて、AIの専門知識を持たない人でも理解できます。
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能は作曲家の夢を見るか? 【本書のポイント】 ・深層学習による自動作曲技術の全体像を知る ・Colaboratoryを使った自動作曲のお試し ・データセットを多数紹介 機械学習による自動作曲(AI作曲)技術を解説した専門書です。機械学習やメディアアート関係の研究者、学生、音楽産業の技術者を主な読者対象として、現在の自動作曲技術をまとめています。また、実践要素(Python/Colaboratoryを使った自動作曲の実践)を設けて、情報科学の知識のないクリエイターやアマチュア作曲者、動画制作者などが自動作曲にチャレンジできるようにしました。 近年、画像生成を中心にAI(機械学習)によるメディア生成が注目を集めています。自動作曲はその名の通り、音楽を生成する技術で、近年では機械学習・深層学習による自動作曲・音楽分析が盛んに研究されています。 本書では、言語・音声などの従来の時系列データと異なる音楽データの特徴に基づく分析や、音声の生成のような「それっぽい」にとどまらない美的な質の学習方法や評価といった、音楽に特化した機械学習のアプローチを解説します。 読者は本書によって、現時点での深層学習による自動作曲の全体図を理解でき、またGoogleのMusic TransformerやOpenAIのJukeboxなど、最先端の重要モデルの仕組みや性能を学ぶことができます。自身のAI作曲の性能向上や実用性の改善を図ることが可能となります。 第 1 章 AI による自動作曲とは 1.1 背景 ── AI と作曲 1.2 自動作曲の歴史 1.3 本書の目的と構成 1.4 本章のまとめ 第 2 章 音楽の基礎知識 2.1 音楽の存在形式 2.2 平面的な要素 2.3 立体的な要素 2.4 音楽制作の流れ 2.5 本章のまとめ 第3章 AI モデル 3.1 時系列モデル 3.1.1 RNN・LSTM・GRU 3.2 畳み込みネットワークネット (CNN) 3.3 生成モデル 3.4 強化学習 3.5 本章のまとめ 第4章 楽譜(MIDI)としての自動作曲 1:時系列学習による自動作曲 4.1 RNN 基盤の自動作曲 4.2 トランスフォーマー基盤の自動作曲 4.3 本章のまとめ 第5章 楽譜(MIDI)としての自動作曲 2:生成モデルによる自動楽曲 5.1 GAN 基盤の自動作曲 5.2 VAE 基盤の自動作曲 5.3 拡散モデルによる自動作曲 5.4 本章のまとめ 第6章 楽譜(MIDI)としての自動作曲 3:強化学習による自動作曲 6.1 報酬の設定 6.2 他モデルとの融合 6.3 強化学習の二つのアプローチ 6.4 本章のまとめ 第7章 波形としての自動作曲 7.1 なぜ難しいのか 7.2 音声生成 7.3 波形としての音楽生成 7.4 本章のまとめ 第 8 章 データセットおよび評価指標 8.1 データセット 8.2 評価指標 8.3 本章のまとめ 第 9 章 前処理とデータ拡張 9.1 前処理 9.2 データ拡張 9.3 本章のまとめ 第 10 章 AIの他の音楽分野への応用 10.1 音源推薦 10.2 ジャンル識別 10.3 音源分離 10.4 自動ミックスダウンおよびマスタリング 10.5 本章のまとめ 第 11 章 まとめと今後の課題 11.1 今後の課題 11.2 音楽への関わり方の変化と意義 11.3 本章のまとめ 参考文献 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 企業にとってシステムを守ることは大きな課題です。不正アクセスやランサムウエアなどサーバー攻撃による企業の被害は増える一方であり、ひとたび被害に遭えばその影響も業績に直接響いてきます。 本書では、企業のセキュリティーを向上させる方法を様々な角度から紹介しています。万が一、被害に遭ったときにどう対処するかといったインシデント対応についても詳しく説明しています。図解を中心としており、これまでセキュリティー分野について詳しくなかった人でも理解しやすいようになっています。用語解説も豊富に盛り込んでいます。 ≪目次≫ ●第1部 製品とサービス 第1章 セキュリティー製品 利用実態調査 第2章 法人向けパソコンのセキュリティー機能 第3章 2024年こそ「脱パスワード」 第4章 「SASE」を読み解く 第5章 知っておくべき「ID」の基礎 ●第2部 攻撃を知る 第1章 詐欺メール撲滅大作戦 第2章 メールは危ない 第3章 ランサムウエア解体新書 第4章 ランサムウエア攻撃対策の勘所 第5章 多要素認証を破る「プロンプト爆撃」の罠 第6章 「USBメモリー」の罠に気をつけろ ●第3部 インシデント対応 第1章 インシデント対応「虎の巻」 第2章 「内部不正」との闘い方 第3章 CSIRT体験記 第4章 ドメイン管理トラブル撲滅術 イラストで学ぶ ネットワークキーワード SIEM 第5章 クラウドセキュリティー総点検 ●第4部 キーワード 第1章 セキュリティーキーワード 第2章 セキュリティー基準「NIST SP800-171」の正体 第3章 身に付けるべきネットワーク技術
-
-
-
-【データ加工の技とモダンなコードで織りなすAwesomeな実践知識を厳選!】 BigQuery、Pandas、Polarsを使った実用的なモダン前処理を学びましょう! データ分析において前処理が重要かつ多くの時間をとられる業務であることは広く知られてきました。同時に前処理を実現するためのライブラリは大きく改善されてきています。また、機械学習モデルの進化によって、求められる前処理の内容も変わってきています。本書は、初めて学ぶ方にも昔学んでから知識をアップデートしていない方にも、悪いサンプルコードと良いサンプルコードを紹介しながら丁寧にデータ分析の前処理を学べる技術書です。 本書は、第一版の前処理大全から大きく構成や内容を変更しています。SQLはBigQuery準拠に変更し、Pandasは最新バージョンの思想に沿い新機能を使ったコードに変更しました。Rの代わりにR同様にパイプラインで書きやすくかつ処理エンジンがRustベースで書かれているため高速なPolarsに変更しました。また、前処理内容も大きく変更し、より現在よく使われる処理を実用ケースとともに解説しています。また、新たな試みとしてコラムとして少しマニアックだけど役立つプログラムの裏側の解説や分析テクニックを紹介しており、中級者の方にとっても有用な知識をお届けしています。 ■こんな方におすすめ データ処理業務に従事するエンジニア、データ分析者 ■目次 ●Part1 前処理の基礎知識 第1章 前処理とは 第2章 SQL 第3章 pandas 第4章 Polars ●Part2 データの構造を対象とした前処理 第5章 抽出 第6章 集約 第7章 結合 第8章 分割 第9章 整形 ●Part3 データの内容を対象とした前処理 第10章 数値 第11章 カテゴリ 第12章 日時 第13章 文字列 第14章 ウィンドウ関数 ●Part4 実践前処理 第15章 演習問題 ■著者プロフィール 本橋智光(モトハシトモミツ):SIerの研究員、Web系企業の分析者を経て、SUSMEDのCTO。株式会社ホクソエムのメンバーでもある。基盤・Webアプリ・機械学習・数理最適化等幅広くこなす。最近の好きなプログラミング言語はRust。 橋本秀太郎(ハシモトシュウタロウ):北海道大学 大学院情報科学研究科 博士後期課程修了。博士(情報科学)。大学院修了後はSIerでデータ分析関連の研究開発やコンサルティングに従事。現在は国内でも有数の膨大なデータを持つインターネット企業に勤め、データサイエンスチームのリードとして、日々サービスグロースのためのデータ分析を行う。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【例題を通してJuliaを学ぼう!】 Juliaは、2018年にver.1.0がリリースされて以降、速さと書きやすさで、特に数値計算分野で注目を集めている言語です。本書ではそれぞれの数値計算問題に対し、さまざまな手法でアプローチしており、例題を通してJuliaを学べる書籍となっています。原理まで解説しており、他の手法とどのように違うのか、またどのようなメリット・デメリットがあるのかも解説しています。 第I部ではJuliaの基礎的な内容を、第II部では具体的な計算方法を例題と一緒に実装していく構成になっています。fortranやPythonから移行してくるユーザーが多いと考えられますが、初学者でも学べるような内容になっています。みんなもJulianになろう! ■こんな方におすすめ ・理工系のJuliaプログラミングを始めたい学生 ・FortranやPythonから移行したい人 ・数値計算プログラミングに興味のある人、更にレベルアップしたい人 ■目次 第I部 基礎編 Chapter1 Juliaをはじめよう Chapter2 Julia の基本 Chapter3 そのほかの特筆すべき点 第II部 実践編 Chapter0 Julia的数値計算 Chapter1 連立一次方程式 Chapter2 非線形方程式 Chapter3 固有値 Chapter4 数値積分 Chapter5 補間と近似 Chapter6 常微分方程式 Chapter7 偏微分方程式 付録 Jupyter Notebookを利用した環境作りと実行方法 ■著者プロフィール 永井 佑紀(ながい ゆうき):1982年 北海道生まれ。2005年 北海道大学工学部応用物理学科卒業。2010年 東京大学大学院理学系研究科物理学専攻博士課程修了。博士(理学)。2010年-2019年 国立研究開発法人日本原子力研究開発機構 研究員。2016年-2017年 米国マサチューセッツ工科大学物理学科客員研究員。2018年-2023年 国立研究開発法人理化学研究所革新知能統合研究センター客員研究員。2019年-2024年 国立研究開発法人日本原子力研究開発機構 副主任研究員。現職 東京大学情報基盤センター学際情報科学研究部門 准教授。専門は物性理論、計算物理。近年では機械学習と物理学を組み合わせた研究も行っている。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Wolfram|Alpha,Python,R,Mathematicaをフル活用して,大学教養レベルの統計,微分積分,線形代数の全体像を把握する.学び直しにも最適な一冊. コンピュータ(Wolfram|Alpha,Python,R,Mathematica)を活用して,数学の学びの質を高めましょう. 本書の具体的な目標は,線形回帰分析を理解することです.そのために必要な微分積分と線形代数も学びます.微分積分は多変数の微分積分まで,線形代数は特異値分解までです.これで,大学教養レベルの数学はほぼ網羅できます. すべてが線形回帰分析につながるので,何の役に立つのかと疑うことはありません.面倒な計算はコンピュータにまかせるので,計算に迷い込んでしまうこともありません. 線形回帰分析はデータサイエンス(人工知能・機械学習)の出発点です.本書を読んで,データサイエンスにおいて必要とされる数学力とプログラミング力を身に付けましょう. 大学教養レベルの数学の全体像の把握,学び直しにも最適な一冊です. コードは全てウェブで公開されます. 第I部 入門 第1章 実行環境 第2章 数と変数 第3章 データ構造 第4章 可視化と方程式 第5章 論理式 第II部 統計 第6章 1次元のデータ 第7章 2次元のデータ 第8章 確率変数と確率分布 第9章 多次元の確率分布 第10章 推測統計 第11章 線形回帰分析 第III部 微分積分 第12章 関数の極限と連続性 第13章 微分 第14章 積分 第15章 多変数関数の微分積分 第IV部 線形代数 第16章 ベクトル 第17章 行列 第18章 ベクトル空間 第19章 固有値と固有ベクトル 第20章 特異値分解と擬似逆行列
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 情報技術において欠かせない「データベース」の基礎を体系的に解説した教科書 本書は、データベースの基本概念から、データベースのモデル、SQL、論理設計やDBMS、ファイル編成などデータベースの基礎を体系的に、できるだけ図や例を多く用い、データベースとは何か直感的に理解できる教科書です。 ERモデルから関係モデルへの変換方法だけでなく、「基幹系と解析系(情報系)」「マスターテーブル、ファクトテーブル、スタースキーマ」なども解説しており、「データベース」の実務的な基礎を固めるうえで役立ちます. 第1章 データベースの概念 第2章 関係データベース 第3章 関係代数 第4章 SQL 第5章 概念スキーマ設計 第6章 意思決定支援のためのデータベース 第7章 データの格納と問合せ処理 第8章 トランザクション 演習問題略解
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【豊富な図と数式のコンビで、深層学習の基本原理が直感的に理解できる!】 本書では「深層学習に使用する数学」について、意味を直感的に理解できるように図を多用することで式を補完する。 第I部では深層学習についての基礎事項と次の部で使用する数学について、第II部ではニューラルネットワーク(深層学習)の中身について、第III部では深層学習の自動チューニングについてそれぞれ詳述。深層学習の実践・応用へステップアップするための基礎がじっくりと学べる、第一歩に相応しい一冊。
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonでデータサイエンスの理論と実践を学ぶ データサイエンスは、「データを科学的に扱う」学問分野です。近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。 本書は、データサイエンスの基礎となる統計分析からパターン認識(機械学習)、時系列データ分析、深層学習などを、Pythonを使って実際に分析しながら学ぶものです. データの取り扱い、確率・統計の基礎といった基本的なところから、パターン認識、深層学習といった統計・機械学習手法、時々刻々と変化する時系列データの分析などの解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。 Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。 第2版にあたっては深層学習を大幅に拡充し、自然言語処理、生成系(AutoEncoder、GAN)などの近年重要視されるテーマを取り上げました。 1章 はじめに 2章 データの扱いと可視化 3章 確率の基礎 4章 統計の基礎 5章 回帰分析 6章 パターン認識 7章 時系列データ分析 8章 深層学習の基礎 9章 深層学習による画像処理 10章 深層学習による自然言語処理 11章 生成系深層学習 12章 深層強化学習 索引
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ゲーム理論から社会ネットワーク構造を明らかにする! ▼社会ネットワーク分析とは 人と人が集まると社会が形成されます。人々には、家族であれば親子関係、婚姻関係、企業であれば上司と部下、同僚などの関係性がありあます。こうした関係はAさんとBさんの関係といった個々の関係を見るだけでは不十分であり、例えば、王族の家族関係は親子関係・婚姻関係の全体を見ることで、王位継承の争いをより深く理解できます。企業内でも、フォーマルであれ、インフォーマルであれ、誰と誰がより密な交流をしているかを全体として把握することで、企業内の派閥を確認でき、誰が出世しやすいかが見えてくるかもしれません。こうした個々の関係を超えた、集団や社会全体の関係、言い換えると、社会に存在する構造を明らかにする学問が社会ネットワーク分析です。 ▼ゲーム理論 他方、人は意思決定を行う主体にほかなりません。家族内では、子どもは学校でどのような行動をとるか(勉強するか、部活に打ち込むか、遊びに徹するかなど)を決めていき、親も子どもをどのようにしつけるかについて意思決定をしていきます。企業内でも、社員はそれぞれ意思決定をしながら、企業全体のパフォーマンスが決まっていきます。このときに、自分の望ましさは必ずしも相手の望ましさと共通にはなりません。子どもは勉強したくないし、親は勉強をさせたい。部下はサボりたいかもしれないし、上司はもっと頑張ってもらいたいかもしれない。こうした状況では、相手の行動に依存して、自分の取るべき行動が変わっていきます。こうした状況は駆け引きのある状況と言え、このような状況を分析する学問がゲーム理論です。 経済学や社会学を専攻する学部学生をはじめ、理論的な社会分析に興味のある社会人を主な読者対象として、ゲーム理論とRを通じて、社会ネットワーク分析を学ぶものです。 第1章ゲームとネットワークの記号表現 第2章ゲームとネットワークの記号表現の活用 第3章閉鎖性とネットワーク 第4章ネットワーク上の公共財供給と進化ゲーム 第5章ネットワーク形成についてのゲームとペアワイズ安定 第6章直接的なつながりの指標としての次数 第7章間接的なつながりも含めた中心性 第8章固有ベクトル中心性 第9章ナッシュ均衡と中心性 第10章社会関係資本と拡散中心性(三つの中心性の統合)
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 音楽を創りながらディープラーニングを身につける! 音楽の自動生成を題材に、ディープラーニングの代表的な手法を解説した入門書です。 音符一つひとつに文字を割り当てれば、自然言語と同じように音楽を扱うことができ、演奏内容をピアノロールという表現に変換すれば、画像として扱うこともできます。そのため、音楽という 1種類のデータを使ってさまざまな手法を広く学ぶことができます。 本書では、PythonとTensorFlowを使って、自分で音楽データを学習させます。現状で生成される音楽のクオリティは高くはありませんが、音楽を創りながら学ぶディープラーニングは体と耳になじみ、読者の力になるはずです。 第1章 音楽を題材にディープラーニングを学ぼう 第2章 音楽データを Python で読み書きしよう 第3章 長調・短調判定で学ぶ多層パーセプトロン 第4章 ハモリパート付与で学ぶ RNN 第5章 メロディのデータ圧縮で学ぶオートエンコーダ 第6章 メロディモーフィングで学ぶVAE 第7章 多重奏生成で学ぶ CNN 第8章 多重奏生成で学ぶ GAN
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 数式なしでデータ分析が理解できる!! いったいデータとは何か、データ分析から何がわかるのか、何のためにデータ分析を行うのか、ということからスタートし、「仮説構築」と「仮説検証」を中心に、プロセス全体をマンガで説明します。 これからデータ分析に取り組むたい人、現在取り組んでいるが完全に納得していない人、いまよりデータ分析を効率的に行い人に役立つ内容となっています。 プロローグ 登場人物紹介 第1章:何が問題か?(思考プロセスと因果関係 1.1 何が問題か掴めなければデータ分析は無意味 1.2 物事を因果関係で捉える 第2章:「問い」を探す(観察力と洞察力 2.1 「具体」と「抽象」をマスターせよ! 2.2 ルールに合致しない例外を探す 2.3 観察力と洞察力を磨く 第3章:「仮説」を立てる(演繹法と帰納法) 3.1 どんな意思決定を下すのか?が全て 3.2 仮説構築と仮説検証の違い 3.3 演繹法と帰納法 第4章:「仮説」を証明する 4.1 なぜ調査をするのか? 4.2 論証と実証、2つの証明 第5章:意思決定を下す 5.1 なぜ発表(プレゼン)は失敗したのか? 5.2 どうすればうまくいくか エピローグ
-
-第一線の人工知能研究者が見通す、近未来の「人と人工知能」の協働シナリオとは? 人工知能が急速に能力を高めているなか、 近い将来、シンギュラリティは本当にやってくるのだろうか。 それはいつごろなのか。 人間の価値観を揺るがすような、パラダイムシフトは起こるのだろうか。 そのとき、労働はどう変わる? 教育は? 芸術はどうなる? 富の偏在はどうなる? 著者は、俳句を生成する人工知能「AI一茶くん」を開発した人工知能研究者。 研究者から見たGhatGPT出現の意味とは。 GhatGPTなどの大規模言語モデルの仕組みから、 近未来の社会変容までを平易に解説。 【目次】 序 章 六十七年の時を経て 第一章 人工知能は自ら学習する――脳の仕組みとディープラーニング 第二章 本能と知能と、生と死と――「知能」と「人工知能」の違い 第三章 ChatGPTで見えた次のフェーズ――人工知能研究の現在地と近未来 第四章 人工知能との「協働」シナリオ――「強い人工知能」と「弱い人工知能」 第五章 新たな価値の出現と富の再配分――人工知能時代のパラダイムシフト 第六章 人工知能が人工知能を開発する日――研究の最前線と課題 第七章 代替される「知能」、代替されない「芸術」――人間に残される仕事は何か 第八章 一変する「教育」の風景――人工知能時代に必要な自発的「学び」 終 章 人間とも人工知能とも「仲良く」する力 【著者】 川村秀憲 1973年、北海道に生まれる。小学生時代からプログラムを書きはじめ、人工知能に興味を抱くようになる。同研究院で調和系工学研究室を主宰し、2017年9月より「AI一茶くん」の開発をスタートさせる。ニューラルネットワーク、ディープラーニング、機械学習、ロボティクスなどの研究を続けながらベンチャー企業との連携も積極的に進めている。
-
-■その仕事、ChatGPTに任せて時短しませんか? 本書は便利さにハマって「ChatGPT」を500時間以上使い込んだ著者が、仕事に本当に役立ち、時短につながるChatGPTと画像生成AIの使いこなし術を基本から応用まで指南します。ChatGPTだけでなく、画像生成AIについてもとても簡単で、ビジネスにすぐ使えるテクニックを解説しています。 「AIは難しそうで……」と、躊躇してきた人にこそ、この本をお薦めします。リスクを避ける心得や使いこなしのコツ、セットアップなど初歩の初歩から丁寧に説明しています。 ■面倒な顧客への謝罪メール、商談相手に送る英文の催促メール、営業日報や出張報告、社内会議の資料作り……。面倒な仕事はぜんぶ、ChatGPTに任せましょう 目的別に整理して、使いこなし術を23の基本技と12の応用技に絞り込みました。課題のリストアップ、資料の要約、文章の添削、メールの代筆、日報や報告書の作成、エクセルの上手な使い方を探す方法などなど、すべてをChatGPTで自動化する方法を解説します。 無数のプロンプトを羅列するのではなく、なぜそのプロンプトになるのか、どう考えて作ったのか、作り方から丁寧に説明しました。真似してやってみて納得し、ご自分でその技を応用していくことができます。 使わない理由を探すことはやめて、まずは使ってみましょう。本書では、すぐにビジネスで使えるプロンプトをたくさん紹介しています。まずは、まねして入力するところからチャレンジしてください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 思考や記憶など,脳の活動を担うニューロンの状態変化を情報処理システムと捉える新しい計算方式「カオスニューラルネットワーク・モデル」を解説。この計算方式では「アルゴリズムによる計算」ではなく,ダイナミクス—多数素子による超並列処理—により計算を行う。従来のコンピュータが“苦手”としている最適化問題などを解かせることで,その有用性や可能性を論じる。先進的な計算機科学に興味を持つ学生,研究者が対象。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 可逆計算には、どの時点の状態をとっても直前の時刻の状態を唯一に決められるという性質がある。 ファインマンがその方向性を論じて以来、本格的な研究が始まった。量子コンピュータとも大変親和性があり、計算システムの全く新しい概念を提供する。 読者は、学生・研究者。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 本巻は、DNAナノエンジニアリングについて、基礎から最先端の研究までを解説。読者は、情報科学、材料科学、生命科学、システム工学等の学生・研究者である。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 第1巻『光計算』は光物理現象を演算系とする情報処理を考え、光を用いる計算ならではの独自計算方式やアイデアを取り上げ、その基本概念や手法を説明。応用例も紹介する。
-
-打たれ強いシステムを考える! レジリエンスとは、大きなアクシデントを受け、一時的に機能を失ったとしても柔軟に回復できる能力を指す概念である。この能力を持つシステムは、生物、生態系、国家や企業などの社会システム、人間の心理など、多様な分野で様々なかたちで存在する。 本書は、この多様な分野のレジリエンスを調べて共通な知識を体系化し、持続可能社会の構築に向けての提案を分かりやすい語り口で説いている。上述の分野のシステムに係わる読者はもちろん、自然界の復元力、柔軟な耐障害性構築などに興味のある読者には大変示唆に富んだ内容で、必読必携である。
-
-1巻1,870円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 実は自然は計算をしている! 自然界は、私たちが考える以上に様々な手法で計算をしている。 本書は、その計算手法—アルゴリズム—を読み解き、新たな情報処理を確立しようという最先端の試みを、数式を極力避けて平易に解説した。わくわくする最先端の科学・技術に興味のある学部生、大学院生、研究者には必携の書である。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 変化し、長期運用するシステムの信頼性を確保する! 本書は、現代社会において、変化しつつ長期的に運用される巨大で複雑な複合システムに対し、いかにしてその不具合を減らし、重大事故を防ぎ、信頼性を保ちつつ運用を継続していくかについて体系的に議論した初めての技術書である。機能や構造、その境界が変化するシステムは通常「オープンシステム」と呼ばれる。我々はこのための技術体系を「オープンシステムのためのディペンダビリティ工学」、英文で“Dependability Engineering for Open Systems”、その略称をDEOS(デオス)と呼んでいる。システム開発・保守・運用に従事する技術者、研究者に必携の書である。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 マイナンバー法が求める個人情報影響評価の手法が分かる 2013年に成立した行政手続番号法(通称マイナンバー法)は、2016年1月から運用が開始され、行政機関に提出する税や社会保険などに関する書類への番号記載が必要となる。同法は大変重要な個人情報を扱うため、違反者には厳罰が用意されている。 そのマイナンバー法が、個人情報を適正に運用するために義務づけたものが「個人情報影響評価」である。本書はプライバシーバイデザインと個人情報影響評価の考え方を示し、実践例や評価書のサンプルを提示して具体的なスキルが身につくよう工夫してある。 同法に直接携わる行政機関、ソフトウェア会社、または民間においても従業員の「個人番号」、個人支払先等の「個人番号」を取扱う担当部門には必携の書である。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンピュータ理論の古典に学ぶ! 本シリーズは,「コンピュータ理論の起源」を当時の原典に探る試みとして,現在もコンピュータ理論の古典と呼ばれる,チューリングとフォン・ノイマンの論文を紹介する。 第1巻である本書には,チューリングのコンピュータに関わる重要な論文4編の完訳と,それぞれの論文に対し,内容を的確に理解するための時代背景を含めた詳細な解説が収められている。 コンピュータ理論に興味のある読者はもちろん,コンピュータに携わる読者には必携の書である。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 緊急事態は情報が「カギ」になる! 3.11の東日本大震災時に経験したように、緊急事態(災害時)には日常とはまったく違う情報システムが必要となる。それは、いわゆる情報系だけではなく、人的リソース、行政活動、ボランティアなど様々なことが複合的に絡み合う形で動的に変化しながら形成されていく。 本書は、米国を中心にこれらについて研究された成果が整理されてまとめられている数少ない邦訳書である。実践的なケーススタディが多数盛り込まれており、我国の今後の取組みへ向けての貴重な指針となろう。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【入門! コンピュータとプログラミングの基礎の基礎】<br/〉 コンピュータに関する教育が高校でも正規授業として必修化され、大学入試の共通テストでも受験生は情報科目に直面せざるを得なくなったような状況が生まれている現在、この「情報とプログラミング」に焦点を当てた入門書の決定版として本書をお贈りします。もちろん、内容的には高校生にとどまらず社会人のプログラミング入門にも十分に応え得るものです。何らかの言語の入門ではなくプログラミングの「考え方の入門」であることから、まったく何の知識もない方にも抵抗なく入っていただけます。これからの社会人が基礎知識を獲得するのにも役立つこと間違いなし。まずは本書を読んで、プログラミングとはどういうものか、どういう考え方をすればよいのかを理解したうえで、Pythonなど具体的な言語の入門書を手に取るなりして次のステップに進んでいただくのが、遠回りなようで実は最も効率的な学習方法なのです。前提知識は必要ありません。 今後社会で活躍する人に必ず求められるはずの教養(=プログラミング)を獲得するための第一歩として、本書をご活用ください。 ■こんな方におすすめ<br/〉 これからプログラミングを勉強する(または、しなければならない)方/情報科目でプログラミングに触れた高校生/社会人や大学生を含むプログラミング入門者 ■目次<br/〉 ●第1章 情報とコンピュータ 1 「情報を処理する」ってどういうこと? 2 情報×コンピュータ=快適な暮らし ●第2章 コンピュータのしくみ 1 コンピュータが情報を処理する方法 2 コンピュータってどんな機械? 3 プログラミングのすすめ ●第3章 プログラムを書こう! 1 コンピュータへの命令のしかた 2 日本語の指示書の役割 3 日本語の指示書を作ろう(その1)── ロボボのお使いプログラム 4 日本語の指示書を作ろう(その2)── 秘密の暗号プログラム 5 これからのこと 6 ところで「アルゴリズム」って何? ●第4章 データの入れ物 1 値を入れる箱──変数 2 箱の使い方 3 箱の大きさ──データ型 ●第5章 コンピュータの演算 1 変数に値を入れる──代入 2 コンピュータを使って計算する──算術演算 3 コンピュータを使った計算の宿命 4 2つの値を比較する──比較演算 5 TrueとFalseを使った演算──論理演算 6 演算子の優先順位 ●第6章 命令を実行する順番 1 プログラムの流れは3通り──制御構造 2 分かれ道を作る──条件判断構造 3 同じ道を何度も通る──繰り返し構造 4 改訂版:ロボボのお使いプログラム ●第7章 データをまとめて入れる箱 1 同じ種類のデータを並べて入れる──配列 2 縦横に並べた箱にデータをまとめて入れる──二次元配列 3 関連するデータをまとめて入れる──構造体 4 大事なデータを保存する──ファイル ●第8章 プログラムの部品を作る 1 プログラムを入れる箱──関数 2 関数を定義する 3 関数を利用する 4 プログラムで使う「箱」を整理しよう 5 改訂2版:ロボボのお使いプログラム ●第9章 日本語からプログラミング言語へ 1 プログラミング言語の選び方 2 これからの勉強のしかた ●第10章 情報を整理する力 1 間違いはどこにある? 2 AIが出した答えは本当に正しい? 3 コンピュータにできること、人間がすべきこと 4 おわりに ■著者プロフィール<br/〉 谷尻かおり:データベースから画像認識・画像処理、機械学習まで手掛ける現役のプログラマー。それぞれの分野に関する入門的解説書から数学やプログラミングの入門書まで数多くの書籍や雑誌記事の執筆も手掛けてきており、誰にとってもわかりやすい、その優しい語り口には定評がある。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 従来のコンピュータシステムの視点から量子コンピュータシステムをとらえた他に例をみない解説書.実用化に向けて急速に進化する量子コンピュータシステムの全容と課題がわかる. 本書は,従来のコンピュータシステムの視点から量子コンピュータシステムをとらえた,他に例をみない解説書です.本書の著者の1人のFrederic T. Chong氏は,コンピュータアーキテクチャの世界的な研究者でありながら,いち早く量子コンピュータシステムの研究に取り組み,多くの先駆的な成果を上げており,その知見を活かして,現在のノイズのある量子コンピュータシステムの全容と課題を本書にコンパクトにまとめています. また,多種多様な観点より参考文献が豊富にあげられており,本書で量子コンピュータの現在の全体像を押さえ,必要に応じて参考文献を頼りに深掘りしていくことで,これからの量子コンピュータの研究開発者に求められる素養が身につけることができます. 黎明期とはいえ,量子コンピュータは実用化に向けて急速に進化しており,これから量子コンピュータにかかわる研究者,技術者,学生にとってエキサイティングな時代が到来することは間違いありません.従来のコンピュータがたどった経緯を振り返れば,量子コンピュータの黎明期にあたるいまこそ,その基礎固めに最適な時期といえます.ぜひ本書を一読してみてください. 第I部 量子コンピュータの基礎 第1章 量子計算の起源と現在 第2章 量子計算と古典計算 第3章 量子アルゴリズムとアプリケーション 第II部 量子コンピュータシステム 第4章 量子コンピュータシステムの最適化 第5章 量子プログラミング言語 第6章 量子回路の合成とコンパイル 第7章 マイクロアーキテクチャとパルスコンパイル 第8章 ノイズ緩和と誤り訂正 第9章 量子計算の古典シミュレーション 第10章 量子コンピュータシステムのこれから
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 AI精度向上はトレーニングデータが鍵。 良質なトレーニングデータを手に入れるための必須知識。 アメリカをはじめ、ヨーロッパや中国などを中心にAI(機械学習)やディープラーニングを活用としたユースケースやビジネスモデルなどが大きく進化し、日本国内においても、自動車、製造、建築・土木、公的機関、eコマースなどさまざまな業種で機械学習やディープラーニングの適用が進んできています。 このようにAIに使われる機械学習を、高い精度・確率のものとするためには、高い品質、さまざまな条件の分布、バリエーションに富んだトレーニングデータを準備することが成功の鍵といえます。 本書では、トレーニングデータの性質に焦点をあて、解説を行います。 はじめに 第1章 機械学習とトレーニングデータ 1.1 ディープラーニングに進化する過程 1.2 ディープラーニングはブラックボックス 1.3 機械学習の種類 1.4 プログラミングから見た機械学習 1.5 トレーニングデータの位置付け 第2章 マネジメント層とエンジニアの機械学習 2.1 データ活用とは 2.2 DXからデジタルファーストへ 2.3 マネジメント層の大事な役割 2.4 エンジニアとトレーニングデータ 2.5 機械学習を取り巻く課題 2.6 実行すべきこと 第3章 AIとトレーニングデータ 3.1 音声認識とは 3.2 機械翻訳 3.3 画像認識 3.4 動画 3.5 チャットボット・ボイスボット 3.6 自然言語処理系AI 3.7 固有表現抽出 3.8 ポイントオブインタレスト(POI) 3.9 自動車関連系AI 3.10 AR/VR/MRとメタバース 3.11 その他 第4章 各種トレーニングデータ 4.1 音声データ 4.2 画像データ 4.3 動画データ 4.4 センシングデータ(3D点群データ) 4.5 シンセティックデータ 第5章 データアノテーション 5.1 データアノテーションとは? 5.2 プリラベリングデータ 5.3 音声データからのアノテーション 5.4 テキストデータのアノテーション 5.5 画像データのアノテーション 5.6 アノテーションフォーマット 第6章 アノテーションツール 6.1 アノテーションツールの種類 6.2 データ収集 6.3 プロジェクト定義 6.4 データ管理と割り当て 6.5 音声系へのアノテーション 6.6 テキスト系のアノテーション 6.7 画像・動画系データ 6.8 品質チェック工程 6.9 データ取りまとめ 第7章 データセキュリティ 7.1 関連する法律 7.2 データセキュリティについて 7.3 AI倫理 第8章 トレーニングデータの重要性 おわりに 参考文献
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 量子コンピューティングがやさしくわかる 「量子コンピューティング」は量子コンピュータを用いた計算手法です。量子コンピュータには、大別してゲート型量子コンピュータとアニーリング型量子コンピュータがあり、ほかにアニーリング型量子コンピュータに着想を得た疑似量子コンピュータがあります。 本書で特に力を入れて説明しているのは、イジングマシンを使った具体的な問題の解き方です。イジングマシンは、組合せ最適化問題を解く専用のコンピュータで、アニーリング型量子コンピュータと疑似量子コンピュータのことを指します。組合せ最適化問題は応用範囲が広いので、具体的な問題の解き方を知ることで、量子コンピューティングの役立つシーンがイメージしやすくなるはずです。そうしたイメージができて興味がわいてきたら、もう少し専門的な資料を読んだり、量子コンピュータを使ってみたりして、さらに上の段階に進めると思います。 量子コンピューティングのしくみと、量子コンピュータを使ってどんなように問題を解くのかを知りたい方に基礎からていねいに解説します。 1章 量子コンピューティングの概要 1.1 量子コンピューティングとは 1.2 量子コンピューティングの応用例 1.3 量子を使わない量子コンピューティング 2章 イジングマシンのしくみ 2.1 イジングマシンとイジング模型 2.2 イジングマシンの計算のしくみ 2.3 問題を解くために必要なこと 2.4 問題を解く前の注意点 3章 イジングマシンで問題を解く 3.1 最大カット問題 3.2 画像のノイズ除去 3.3 グラフ彩色問題 3.4 クラスタリング 3.5 巡回セールスマン問題 3.6 ナップサック問題 4章 イジングマシンを使った機械学習 4.1 二値分類 4.2 行列分解 4.3 ブラックボックス最適化 5章 ゲート型量子コンピュータ 5.1 ゲート型量子コンピュータの計算のしくみ 5.2 量子アルゴリズム 5.3 量子ビットと操作の方式 6章 量子コンピューティングの今後 6.1 イジングマシンの進化 6.2 ゲート型量子コンピュータの発展 6.3 量子コンピューティングへの期待 付録 A.行列とベクトル A.1 行列とベクトルの演算 A.2 行列の固有値と固有ベクトル B.ブラックボックス最適化の補足 B.1 損失関数の平方完成 B.2 多変数ガウス分布 C.量子アルゴリズムの補足 C.1 ブラケット記法 C.2 ドイチュ・ジョサのアルゴリズム C.3 グローバーの量子探索アルゴリズム 参考文献 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 テキストアナリティクスの技術と実践を詳しく解説! 本書は、アンケートやSNSといったテキストデータを対象とした分析に興味がある方や実務で応用したい方に向けて、テキストアナリティクスに関する基本的な知識と、著者が非常に重要であると考える技術について解説した入門書です。テキストアナリティクスは従来のテキストマイニングにとどまらず、より明確な分析目的や理論的枠組みをもった方法論です。 本書では、データの構築から分析までを行った、汎用性の高い事例を紹介しています。また、単にツールとしてのRの使い方を知るだけでなく、読者が目的に応じた分析方法を判断できるようになるようにまとめています。 サンプルのデータやコードを参考に手を動かしながら学習することができ、初心者の「一冊目」にうってつけです。 はじめに [基礎編] 第1章 テキストアナリティクス入門 1.1 テキストアナリティクスとは 1.2 社会で活用されるテキストアナリティクス 1.3 テキストアナリティクスの活用事例の探し方 1.4 テキストアナリティクスの歴史 第2章 テキストアナリティクスの理論的枠組み 2.1 テキストデータの構築 2.2 テキストデータの分析 [準備編] 第3章 分析データの準備 3.1 データセットの構築 3.2 テキストファイルの作成 3.3 CSVファイルの作成 3.4 テキスト整形 第4章 Rの基本 4.1 Rの導入 4.2 コードの入力 4.3 変数と代入 4.4 ベクトル 4.5 行列とデータフレーム 4.6 ファイルの操作 4.7 パッケージのインストール 4.8 ヘルプの参照 第5章 データ分析の基本 5.1 データハンドリング 5.2 文字列処理 5.3 可視化 5.4 統計処理 第6章 テキスト分析の基本 6.1 RMeCabの導入 6.2 形態素解析 6.3 単語の分析 6.4 n-gramの分析 6.5 共起語の分析 6.6 複数テキストの分析 6.7 頻度表の加工 6.8 用例検索 [実践編] 第7章 授業評価アンケートの分析 7.1 授業評価アンケートに基づく授業改善 7.2 分析データ 7.3 単純な頻度集計 7.4 品詞別の頻度集計 7.5 用例検索 第8章 オンラインレビューを用いたクチコミ分析 8.1 マーケティングのためのクチコミ分析 8.2 分析データ 8.3 レビューの評価と集計 8.4 低評価コメントと高評価コメントの比較 8.5 共起語の集計 8.6 共起ネットワークによる可視化 第9章 スクレイピングによる特徴語抽出 9.1 スクレイピングによるデータ収集 9.2 分析データ 9.3 特徴語抽出 9.4 用例検索 第10章 警察白書のトピック分析 10.1 白書から見る現代社会の諸相 10.2 分析データ 10.3 トピックモデル 10.4 階層型クラスター分析 第11章 文学作品の著者推定 11.1 文体識別指標を用いた著者推定 11.2 分析データ 11.3 箱ひげ図 11.4 対応分析 11.5 ランダムフォレスト おわりに 参考文献 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 NFTを仕組みとコードで知り尽くす! NFTは、ブロックチェーン技術における最大のトレンドです。唯一無二のデジタルトークンとして、アートはもちろん、メタバースの不動産、チケット機能など、様々な応用があります。本書は、NFTについて基礎から応用まで深く学べる、実践的なガイドです。暗号通貨の歴史やブロックチェーンの基本概念、そしてスマートコントラクト設計やデプロイ方法など、理論と実践の双方を広くカバーします。すぐにデプロイできる多数のサンプルも紹介、NFTやDeFiの開発に興味ある方は必読の一冊です。この本を手に取って、NFTの深い世界に飛び込んでみてください! はじめに 第1章 NFTの全体像 1.1 NFTとは 1.2 NFTが誕生するまで 1.3 NFTの様々な事例 1.4 Fungibility?代替可能性とは 1.5 ブロックチェーンとNFT 1.6 NFTのエコシステム 第2章 NFTを体験する 2.1 ウォレットの準備 2.2 ETHの購入と出庫 2.3 NFTの購入 2.4 NFTの発行と販売. 第3章 NFTを支える技術 3.1 ブロックチェーンの設計思想と仕組み 3.2 BitcoinとEthereum 3.3 ブロックチェーンノードとNode as a Service 3.4 メインネットとテストネット 3.5 ブロックチェーンエクスプローラ 3.6 スマートコントラクト 3.7 Ethereum上のスマートコントラクト 3.8 コンテンツのホスティング 3.9 Dappsフロントエンドとweb3.js 第4章 最初のトークン:Hello NFT 4.1 事前準備 4.2 NFTコードの作成 4.3 ローカル環境でのテスト 4.4 パブリックブロックチェーンへのデプロイ 4.5 フロントエンドの実行 4.6 コントラクトコードのアップロード 第5章 スマートコントラクト開発に役立つ知識 5.1 Solidity言語について 5.2 Ownableによる管理用の関数の実装 5.3 アップグレード可能なコントラクト 5.4 ガスの節約 5.5 パブリックブロックチェーンへのデプロイ 5.6 テストの記述 5.7 TypeScriptを用いた開発 第6章 NFTの規格ERC-721について 6.1 実装すべき関数 6.2 2種類の移転関数 6.3 2種類の委任 6.4 実装すべきイベント1 6.5 トークンのメタデータについて 6.6 トークンを列挙できるようにするERC721Enumerable 6.7 発展的な内容 第7章 IPFS上のアートNFT 7.1 IPFSについて 7.2 Pinataへのアップロード 7.3 コントラクトの作成 7.4 トークンの発行 7.5 NFT売買サービスでの確認 第8章 チケットトークンの実装 8.1 設計について 8.2 チケットコントラクトの開発 8.3 フロントエンドの開発 8.4 バックエンドの開発 8.5 動作の確認 8.6 発展的な検討事項 第9章 ジェネラティブNFTの実装 9.1 設計について 9.2 コントラクトの開発 9.3 メタデータ生成ロジックとバックエンドの準備 9.4 フロントエンドの準備 9.5 動作の確認 9.6 テストネットでの実験 付録 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 メタバースを形造る技術を徹底的に解説した、いまだかつてない書! 「メタバース」は、VR・AR・MRなどの技術を駆使して、仮想空間上に設けられた環境上でさまざまな形のエンターテインメント、コミュニケーション、ビジネス(例えば、アパレル/不動産/建設/小売業/観光/広告/医療/製造業/金融など)を展開する概念で、ここ数年でバズワード化しています。 本書は、メタバースの概念が生まれてきた背景・経緯やその目指すところをはじめ、メタバースを実現するための種々の要素技術・仮想化技術やその原理・応用と魅力を取り上げて、具体的に解説した書籍です。 1章 メタバース/VRとは 1.1 VRの歴史 1.2 VR/AR/MRとは 1.3 メタバースの歴史 1.4 メタバースロードマップ 1.5 メタバースとは 1.6 ソーシャルVRとメタバース 1.7 デジタルツインとメタバース 1.8 NFTとメタバース 1.9 アバタとメタバース 参考文献 2章 メタバース/VRを構成する基礎技術 ~感覚・提示~ 2.1 視覚ディスプレイ 2.2 聴覚ディスプレイ 2.3 体性感覚ディスプレイ 2.4 嗅覚・味覚ディスプレイ 2.5 前庭感覚・移動感覚ディスプレイ 2.6 感覚間相互作用 2.7 内受容感覚・内臓感覚 2.8 錯覚を応用した情報提示技術 2.9 物理量と感覚量の関係 参考文献 3章 メタバース/VRを構成する基礎技術 ~計測・表現~ 3.1 物理世界のセンシング 3.2 情報世界のモデリングとレンダリング 3.3ネットワーク・サーバ技術 参考文献 4章 メタバース/VRと身体 4.1 アバタと身体 4.2 サイバーシックネス・VR酔い 4.3 身体と環境の相互作用 4.4 体験する姿勢と状態の効果 参考文献 5章 メタバース/VRを使った産業応用 5.1 メタバースの産業応用 5.2 教育訓練 5.3 デジタルツイン 5.4 エンターテインメント 5.5 イベント・パブリックビューイング 5.6 バーチャルマーケット 5.7 広告・マーケティング 5.8 メタバースで生まれるビジネス 5.9 その他 参考文献 6章 メタバース/VRの今後の展望 6.1 時空間を超えるメタバース 6.2 意識を超えるメタバース 6.3 橋渡しするメタバース 6.4 基盤化するメタバース 6.5 メタバースのUI 6.6 メタバースの課題 参考文献
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Amazon社のAlexaやマツコロイドなど、人との対話を通して仕事をこなすコンピュータ内蔵システムやロボットが活躍している。 私たちが日常使う言語(自然言語)を、AIを用いてコンピュータに組み込むための技術「自然言語処理」を集めた本シリーズの第5巻『対話システムの作り方』では、様々な実例を通して対話システムを体系的に紹介していく。マツコロイドの制作にも関わった著者が、対話というものの本質から目的に沿った対話システムの作り方まで、幅広く解説する。対話システムの導入書!
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 電力網や物流、サプライチェーン、インターネットやSNSの流行など、現代社会は複雑に絡み合ったネットワークによって支えられていると言っても過言ではありません。このようなつながり構造を、物理学やコンピュータ科学あるいは社会学を基礎として解析していくのがネットワーク科学です。本書は複雑ネットワークの最適化に費やしてきたこれまで研究成果をできるだけ包括的に紹介しつつ、創世記からの進展も分かるように編集された貴重な1冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 民事裁判におけるIT化法案(「民事訴訟法等の一部を改正する法律」)が成立したことをきっかけに、IT技術および人工知能技術の導入が急速に発展してきている。 本書ではまず第1部で「人工知能と法」分野の歴史、次に法律における推論についての基礎的な知識を説明する。第2部では法律への具体的な人工知能の技術の詳細について紹介を行っている。現在の法学に対する人工知能の到達点と、今後の日本の社会像が見えてくる充実の一冊。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Windows 11でのコンピュータ操作、Accessを含めたOffice 2021活用など基礎を学べる1冊。 本書は、パソコンやインターネットを使用するうえで身につけておくべき情報リテラシーの習得を目標としています。 好評の『情報リテラシー教科書』最新版となる本書は、機能・インターフェースが一新されたWindows 11とOffice 2021、Access 2021に対応しています。 キーボードでの入力やマウスの扱い方などの初歩的なPC操作から始めて、コンピューターやネットワークの基礎的な知識を学んだのち、Microsoft Officeのソフト(Word、Excel、PowerPoint、Access)の操作法を学んでいきます。 レポート作成、プレゼンテーション、データ処理、グラフ作成、データベース処理などを解説しつつ、私たちにとって不可欠な存在になりつつあるクラウドコンピューティングや人工知能(AI)の話題にもコラムなどで触れています。 イントロダクションにはマンガページを設けるなど、学生の学習意欲を沸かせるように工夫を凝らしています。苦手意識のある方でも、情報基礎がしっかり身につく一冊です。 第1章 パーソナルコンピュータの基礎 第2章 インターネット利用 第3章 Microsoft Word 第4章 Microsoft Excel 第5章 Microsoft PowerPoint 第6章 Microsoft Access
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Windows 11でのコンピュータ操作、Office 2021活用などの基礎を学べる1冊。 本書は、パソコンやインターネットを使用するうえで身につけておくべき情報リテラシーの習得を目標としています。 好評の『情報リテラシー教科書』最新版となる本書は、機能・インターフェースが一新されたWindows 11とOffice 2021に対応しています。 キーボードでの入力やマウスの扱い方などの初歩的なPC操作から始めて、コンピューターやネットワークの基礎的な知識を学んだのち、Microsoft Officeのソフト(Word、Excel、PowerPoint)の操作法を学んでいきます。 レポート作成、プレゼンテーション、データ処理、グラフ作成などを解説しつつ、私たちにとって不可欠な存在になりつつあるクラウドコンピューティングや人工知能(AI)の話題にもコラムなどで触れています。 イントロダクションにはマンガページを設けるなど、学生の学習意欲を沸かせるように工夫を凝らしています。苦手意識のある方でも、情報基礎がしっかり身につく一冊です。 第1章 パーソナルコンピュータの基礎 第2章 インターネット利用 第3章 Microsoft Word 第4章 Microsoft Excel 第5章 Microsoft PowerPoint
-
-機械学習システムを実用化する 設計・開発・運用ノウハウが満載 【本書の概要】 本書は前著『AIエンジニアのための機械学習システムデザインパターン』(ISBN 978-4798169453 )では触れられなかった、 機械学習システムを構築する上で実際に発生する課題を想定し、 動いているシステムやワークフローに機械学習を組み込む方法を解説した書籍です。 特にニーズの高い以下の機械学習システムの例を用意しています。 ・需要予測システム ・違反検知システム 【本書で学べる内容】 本書を読むことで、ケーススタディとして機械学習を実用化するための、 ・課題設定 ・ワークフロー設計 ・システム開発 ・チーム設計 を学ぶことできます。 【対象読者】 AI エンジニア、システムエンジニア 【目次】 第1章 課題、チーム、システム 第2章 需要予測システムを作る 第3章 動物画像アプリで違反検知システムを作る 第4章 動物画像アプリの検索に機械学習を活用する 【著者プロフィール】 澁井 雄介(しぶい・ゆうすけ) Launchable Inc所属。 MLOpsエンジニア、インフラエンジニア、バックエンドエンジニア、Androidエンジニア、ネコ2匹の飼い主。家に猫用ハンモックが4台ある。 本業でDeveloper ProductivityのためのMLOps・データ基盤を開発しつつ、MLOpsコミュニティの運営や副業に精を出している。 過去にはSIer、外資ソフトウェアベンダー、スタートアップで新規プロダクトの起ち上げ、大規模システム運用、チームマネジメントに従事。 前々職のメルカリにて機械学習をシステムに組み込むデザインパターンを執筆、公開。 ・GitHubで「mercari/ml-system-design-pattern」と検索 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層学習(ディープラーニング)の全体像が理解できる一冊。 日々進化し続ける深層学習技術の基礎をなす知識や考え方を体系的に,応用を俯瞰的にまとめた教科書。 本書は、人工知能(AI)技術の一つである深層学習(ディープラーニング)の全体像を体系的にまとめた教科書です。 SNS、スマートスピーカー、画像診断、自動運転、……などなど、身のまわりには深層学習の技術や手法が広く応用されています。このことからもわかるように、深層学習は今日に至るまでさまざまな場面で成功を収めていますが、その技術や手法は、今現在も、非常に速いスピードで進歩し続けています。「以前は当たり前のように利用されていた技術が、ある日突然、それを上回る別の技術に置き換えられた」ということも十分にあり得ます。しかし、そのような深層学習技術の基礎には、普遍的かつ不変的な知識や考え方があります。 本書は、現代の深層学習の技術や手法を理解するうえで基礎となる知識や考え方を、必要に応じて数式を用い、詳細に解説しています。また、代表的な応用例として、画像、音声、自然言語の処理を俯瞰的に解説し、深層学習の全体像が理解できるように構成しました。論文や国際会議等で深層学習技術の最新動向を追うためのベースは、本書で十分に学ぶことができます。 第1章 序論:深層学習登場の前と後 1.1 パターン認識とは 1.2 パターン認識の困難さと深層学習による成功 1.3 深層学習と従来のパターン認識手法の違い 第2章 深層学習以前のパターン認識手法 2.1 深層学習以前のパターン認識の概略 2.2 特徴抽出 2.3 機械学習・パターン認識手法 2.4 クラスタリング 2.5 評価指標 演習問題 第3章 深層学習ネットワーク 3.1 深層学習のアイディア 3.2 パーセプトロン 3.3 多層パーセプトロン 3.4 深層学習ネットワークにおける基本レイヤ群 3.5 基本ネットワーク構造 演習問題 第4章 ネットワークの学習 4.1 深層学習ネットワークの学習の基本的アイディア 4.2 誤差関数 4.3 確率的勾配降下法 4.4 誤差逆伝播法 4.5 畳込み層の学習 4.6 学習の実際 4.7 学習した畳込みフィルタの例 演習問題 第5章 学習のための技術 5.1 学習パラメータの初期値 5.2 学習率の設定 5.3 データ拡張 5.4 ドロップアウト 5.5 入力データの正規化 5.6 モデルアンサンブル 5.7 事前学習とファインチューニング 5.8 中間信号の画像特徴量としての利用 5.9 距離学習 5.10 マルチタスク学習 5.11 自己教師学習 5.12 ネットワークを小さくする工夫 演習問題 第6章 系列データへの対応 6.1 再帰型ネットワーク 6.2 1次元畳込み 6.3 Transformer 演習問題 第7章 画像認識への適用 7.1 主な画像認識ネットワーク 7.2 画像認識ネットワーク内部の可視化 7.3 物体検出 7.4 領域分割 7.5 人物姿勢推定 7.6 動画認識 演習問題 第8章 画像生成・変換への適用 8.1 エンコーダ・デコーダ型ネットワーク 8.2 オートエンコーダ 8.3 深層生成モデル 8.4 画像変換 8.5 画像最適化による画像変換 演習問題 第9章 音声処理への適用 9.1 音声認識ネットワーク 9.2 音声合成ネットワーク 演習問題 第10章 自然言語処理への適用 10.1 単語ベクトル 10.2 系列変換モデル 10.3 事前学習モデル 演習問題 第11章 マルチモーダル学習 11.1 マルチモーダル・クロスモーダル 11.2 画像と言語ル 11.3 画像・映像と音声 演習問題 演習問題略解 参考文献
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2022年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 丁寧な解説と豊富な演習問題により、量子計算のアルゴリズムと計算量理論について一から理解できる 量子計算のアルゴリズムと計算量理論について、一からわかりやすく解説した書籍です。 現在、大きな注目を集めている量子コンピュータによる計算(量子計算)は、従来のコンピュータによる計算(古典計算)と比べて、いわゆる指数関数的な高速化を実現することがあります。 その一方で、この高速化は量子力学の基礎原理をもとにしており、アルゴリズムと計算量理論の分野の言葉で記述されるものです。したがって、この高速化の現象を正しく理解するには、量子力学特有の重ね合わせの原理とエンタングルメントをはじめとした量子計算のアルゴリズム、および、計算量理論をひと通り理解する必要があります。 本書は、線形代数と離散数学の基本的な知識のみを前提として、量子計算の原理について初学者向けに丁寧な解説を行っています。 数多くの例題と演習問題を収載しており、読者自ら手を動かしながら学ぶことができます。 第1章 計算理論の基礎事項 1.1 文字列,計算問題 1.2 ブール回路 1.3 二進列に対する演算 1.4 計算量クラス 1.4.1 P, NP, EXP 1.4.2 多項式時間帰着とNP完全問題 1.4.3 オラクル 1.4.4 乱択アルゴリズムと計算量クラス 第2章 ブラケット記法と量子計算でおなじみの行列 2.1 ベクトル 2.2 行 列 2.3 量子計算でよく出現する行列 2.3.1 ユニタリ行列 2.3.2 正規行列,エルミート行列 2.3.3 射影行列 2.3.4 半正定値行列 第3章 量子情報の基礎 3.1 量子ビット,量子状態 3.1.1 量子ビット,量子状態の測定 3.1.2 量子ビットの幾何的描像 3.1.3 量子ビット,量子状態の時間発展 3.1.4 量子ランダムアクセス符号 3.1.5 量子鍵配送 3.2 複数の量子ビット 3.2.1 テンソル積 3.2.2 複数の量子ビットからなる量子状態 3.2.3 複数の量子ビットの時間発展および測定 3.2.4 部分系の測定 3.2.5 CHSHゲーム 3.2.6 量子テレポーテーション 3.3 観測量 3.4 混合状態 3.4.1 1量子ビットと密度行列 3.4.2 部分トレースと混合状態 3.5 POVM 3.5.1 3ビット量子ランダムアクセス符号 3.5.2 2値POVM の実現方法 3.6 発展的な概念 3.6.1 トレース保存完全正値写像 3.6.2 近似と距離 第4章 量子回路 4.1 基本ゲート,量子回路 4.2 古典計算vs量子計算 4.3 量子計算の計算木 4.4 万能量子ゲート集合 4.5 よく使用される量子回路 4.5.1 量子回路のワイヤの交換 4.5.2 量子アダマール変換と一様重ね合わせ状態の生成 4.5.3 量子フーリエ変換 4.5.4 アダマールテスト 4.5.5 SWAPテスト 4.6 空間的制約が課された量子回路 第5章 量子アルゴリズム 5.1 Deutsch?Jozsaの量子アルゴリズム 5.2 Groverのアルゴリズム 5.2.1 量子計算に古典アルゴリズムを組み込む 5.2.2 量子振幅増幅 5.3 Simonのアルゴリズム 5.4 位数発見アルゴリズム 5.5 量子特有の問題に対する量子アルゴリズム 5.5.1 位相推定 5.5.2 量子シミュレーション 5.6 その他の量子アルゴリズム 5.7 通信を含む計算問題に対する量子プロトコル 第6章 量子計算量クラス 6.1 Pの量子版:BQP 6.1.1 BQPとNPの関係 6.1.2 BQPを含む古典計算量クラス 6.2 NPの量子版:QMA 6.3 量子対話型証明 6.4 量子多証明者対話型証明 付録 A.1 群と体 A.2 オーダ記法 A.3 チューリング機械 A.4 非決定性チューリング機械 A.5 確率チューリング機械 A.6 PSPACEとEXP
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 原著は中国の数多くの大学や高専で使われている機械学習の標準教科書にして、2016年の刊行以来2020年11月までの発行数が54万部を超えるベストセラー書籍。 本書は大まかに基礎,具体的手法、先進的理論からなり、少ない数学的知識で読めて各章が短いという教科書的配慮がなされている。「スイカを切らずにその良し悪しを機械学習でどう判断するか?」が本書の骨子になっており、書影に描かれたスイカは本書のトレードマークとなっている。 中国はいかにして機械学習の分野をリードするに至ったか、そのエッセンスを紐解く一冊。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Microsoft Officeを活用して情報リテラシーを身につけるテキスト。基本的な文書作成・表計算・プレゼン資料の作成から、データベース、HTMLまで、重要な項目を精選して解説。実践的な例題を手順に沿って丁寧に解説。スマホ中心利用でパソコンが苦手な方に向け、キーボード入力の基礎やPCメールの使い方も解説。オリジナルキャラクターが重要ポイントを視覚的に誘導。情報教育の教材や自学自習のテキストに。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 音声対話システムの理論と実装を網羅! Python言語による音声対話システムの実装方法を詳しく解説. 本書は,人間の言葉を理解し,適切に応答するシステム(=音声対話システム)の理論をわかりやすく網羅した書籍です.合わせて,Python言語による音声対話システムの実装方法を詳しく説明しており,基礎を理解しながら実践に即した知識を身につけることができます. 音声対話システムの実用化・普及が進む中で,さまざまな課題が明確化され,取り組みが進められています.また,少子高齢化が進み,働き手が不足している社会状況から,音声対話システムに対する社会の期待は今後ますます高まっていくと予想されています. 今後,音声対話システムの研究開発に携わる方に必携の書籍です. 第1章 音声対話システムの概要 第2章 音声対話システムの分類 第3章 音声認識 第4章 言語理解 第5章 対話管理 第6章 end-to-endモデルによる応答生成 第7章 応答文テキストの音声合成 第8章 音声対話システムの評価 第9章 人間らしい対話を実現するための要素技術 第10章 音声対話システムの未来 付 録 Dialogflow ESによる実装
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 いま必要とされるデータサイエンスの素養がしっかり身につく一冊。 さまざまな場面で入手できるデータを価値に転換することが、データサイエンスの目的です。データサイエンスという言葉は、ビジネスやアカデミーを問わず、いまや多くの場面で聞かれるようになり、それだけ重要性が高まっている概念といえます。本書は、データサイエンスを理解し実践したいと考えている方に必要とされる、データサイエンスの素養がしっかり学べる一冊です。 データサイエンスは、統計的、計算的、人間的という3つの視点の有機的結合という一面があるといわれます。本書では、データ分析に必要な統計学や関連する数学を丁寧にフォローし、確率・統計的な考え方が自然に身に付くよう配慮しました。また、データを適切に処理するための計算法は、プログラミング言語としてRを用いつつ、近年注目度の高い機械学習を含む具体例を通して納得しながら理解できる構成です。さらに、データの前処理から分析結果のプレゼンテーションまでの過程には人間が関わるという観点で、データを取り扱ううえで心がけるべき倫理的側面も扱いました。 なお、本書は「数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム」、「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に準拠した授業の副読本・参考書としてもご利用いただけます。 第1章 イントロダクション 第2章 Rの基礎 第3章 データの記述・可視化 第4章 関連と因果,データ分析における注意事項 第5章 データ倫理 第6章 確率 第7章 確率分布 第8章 標本分布と中心極限定理 第9章 点推定・区間推定・仮説検定・p値 第10章 機械学習の基礎 第11章 回帰モデル 第12章 分類 第13章 ベイズ線形モデル 第14章 決定木とアンサンブル学習 第15章 スパース学習 演習問題略解 参考文献
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 レッドハットのエンジニアが直伝! 導入からシステム管理コンテナー構築まで完全網羅。 サーバー向けLinux分野で圧倒的なシェアを誇る米Red Hat社の商用Linuxディストリビューション「Red Hat EnterpriseLinux(RHEL)」解説書の決定版。 2022年5月にリリースされた最新バージョン9だけでなく、いまだ多数のユーザーが利用しているバージョン8についても完全対応。 すぐに移行せず、しばらく8を使おうと考えている人にも役立ちます。 RHELの導入方法から各種サーバーのインストール方法や設定・管理方法、運用に役立つコマンドやツールの利用方法などを豊富なコマンド実行例と共に解説。 本書を片手にサーバーの管理や運用に必要な作業をすぐ試せる構成になっています。 セキュリティやコンテナ技術、仮想化技術など今どきのサーバー管理者に必須の技術要素についてもしっかりと学べます。 さらに、RHELを運用する際に起こりがちなトラブルの対処法や、RHELでサーバーを安定的に運用し続けるために欠かせない メンテナンスに関する知識なども70ページ以上のページを使って詳しく紹介しています。RHELを初めて触る人から既にサーバーを運用している人まで、 RHELの導入・管理・運用に欠かせない情報を網羅的に掲載しています。