情報科学作品一覧

  • アルゴリズムイントロダクション 第3版 総合版:世界標準MIT教科書
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 世界標準 MIT 教科書!! 原著は,計算機科学の基礎分野で世界的に著名な4人の専門家がMITでの教育用に著した計算機アルゴリズム論の包括的テキストであり,その第3版.前版までで既にアルゴリズムとデータ構造に関する世界標準教科書としての地位を確立しているが,より良い教科書を目指して再び全面的な記述の見直しがなされ,それを基に新たな章や節の追加なども含めて,大幅な改訂がなされている. 単にアルゴリズムをわかりやすく解説するだけでなく,最終的なアルゴリズム設計に至るまでに,どのような概念が必要で,それがどのように解析に裏打ちされているのかを科学的に詳述している. さらに各節末には練習問題(全957題)が,また章末にも多様なレベルの問題が多数配置されており(全158題),学部や大学院の講義用教科書として,また技術系専門家のハンドブックあるいはアルゴリズム大事典としても活用できる. 本書は,原著の第1~35章,および付録A~Dまでの完訳総合版である.また巻末の索引も圧巻で,和(英)‐英(和)という構成により,「数理用語辞典」としてもまことに有用である.
  • ヒトの耳 機械の耳
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 聴覚系や脳が音を処理する理論をモデル化し、それをコンピュータや機械で活用する方法を解説した書。機械聴覚の土台となる基礎科学と、効率的なシステム構築法について詳解。補聴器や音楽情報検索、自動音声認識など、機械学習分野への応用についても解説。
  • AI事典 第3版
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIはいまや,さまざまな研究の根幹をなしており,関わる分野も多岐にわたる。本書は,人工知能(AI)研究を牽引する代表的な研究者が編・著を務め,各研究カテゴリーの最前線で活躍する100余名の気鋭の研究者が執筆を手掛けた事典である。  コンセプトは「執筆者の主観を軸に,読者が興味を持って面白く読める内容にすること」。従来の主要テーマのほか,ディープラーニング,AIにおける論争,汎用人工知能など,いま外せないトピックスを幅広く解説する。  AI研究者はもちろん,工学,理学,脳科学,医学,薬学,農学,社会学,哲学など,すべての分野の学生・研究者の未来に影響を与える,ターニングポイントとなる書!!
  • 緊急事態のための情報システム 多様な危機発生事例から探る課題と展望
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 緊急事態は情報が「カギ」になる! 3.11の東日本大震災時に経験したように、緊急事態(災害時)には日常とはまったく違う情報システムが必要となる。それは、いわゆる情報系だけではなく、人的リソース、行政活動、ボランティアなど様々なことが複合的に絡み合う形で動的に変化しながら形成されていく。 本書は、米国を中心にこれらについて研究された成果が整理されてまとめられている数少ない邦訳書である。実践的なケーススタディが多数盛り込まれており、我国の今後の取組みへ向けての貴重な指針となろう。
  • 機械学習
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 原著は中国の数多くの大学や高専で使われている機械学習の標準教科書にして、2016年の刊行以来2020年11月までの発行数が54万部を超えるベストセラー書籍。  本書は大まかに基礎,具体的手法、先進的理論からなり、少ない数学的知識で読めて各章が短いという教科書的配慮がなされている。「スイカを切らずにその良し悪しを機械学習でどう判断するか?」が本書の骨子になっており、書影に描かれたスイカは本書のトレードマークとなっている。  中国はいかにして機械学習の分野をリードするに至ったか、そのエッセンスを紐解く一冊。
  • 実践ソフトウェアエンジニアリング (第9版)
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ソフトウェアエンジニアリング・スタンダードの第9版 「ソフトウェア技術者なら、この財産を活用しない手はない」とマイクロソフト榊原彰氏よりの推薦文にあるように、その通りに期待できる内容です。 「本書は米国においての第1版が発行(1982年)されて以来、世界累積300万部を超えるベストセラーの最新刊である第9版の邦訳書です。ソフトウェア同様、改良が続けられているソフトウェアエンジニアリングの「最良の手法」を解説している書籍であり、現役のソフトウェアエンジニアならびに学生諸氏におすすめする1冊です。 原書:Roger S. Pressman, Bruce R. Maxim, Software Engineering,McGraw-Hill, 2020 著者について/まえがき/訳者まえがき 第1章 ソフトウェアとソフトウェアエンジニアリング 第1部 ソフトウェアプロセス 第2章 プロセスモデル 第3章 アジャイルとプロセス 第4章 推奨のプロセスモデル 第5章 ソフトウェアエンジニアリングの人間的側面 第2部 モデリング 第6章 プラクティスの指針となる原則 第7章 要求エンジニアリング 第8章 要求モデリングの推奨手法 第9章 設計の概念 第10章 アーキテクチャ設計の推奨手法 第11章 コンポーネント設計 第12章 ユーザエクスペリエンス設計 第13章 移動体端末におけるソフトウェアの設計 第14章 パターンに基づく設計 第3部 品質とセキュリティ 第15章 品質の概念 第16章 レビューの推奨手法 第17章 ソフトウェア品質保証 第18章 ソフトウェアセキュリティエンジニアリング 第19章 ソフトウェアテスト―コンポーネントレベル 第20章 ソフトウェアテスト―統合レベル 第21章 ソフトウェアテスト―移動体端末と特定ドメインに対するテスト 第22章 ソフトウェア構成マネジメント 第23章 ソフトウェアメトリクスと分析 第4部 ソフトウェアプロジェクトのマネジメント 第24章 プロジェクトマネジメントの概念 第25章 実行可能で役立つソフトウェア計画 第26章 リスクマネジメント 第27章 ソフトウェアサポート戦略 第5部 先端的な話題 第28章 ソフトウェアプロセス改善 第29章 ソフトウェアエンジニアリングの新興トレンド 第30章 おわりに 付録/参考文献/索引/訳者プロフィール
  • 情報処理技術遺産とパイオニアたち
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンピュータ発展史に語り継がれる人物と技術的遺産を集約! 本書は、情報処理学会60周年記念事業の一環として企画された。第1部『情報処理技術遺産』と第二部『オーラルヒストリー』の2部構成となっている。 第1部では、コンピュータ技術の発展の歴史を示す具体的事物・資料であることを認定する『情報処理技術遺産』において、2008年〜2019年間に認定された各遺産の情報108件、分散コンピュータ博物館10件を収載している。 第2部では、日本の情報処理技術に多大な影響を与えたパイオニアたち23名を紹介する連載記事「古機巡礼/二進伝心:オーラルヒストリー」を再編している。 本書は、我が国のコンピュータ関連の歴史を紐解く上でも重要なレガシーとして位置づけられる。情報処理分野に携わる方々にとって手元に置いておくべき、高価値な一冊。
  • DEOS 変化しつづけるシステムのためのディペンダビリティ工学
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 変化し、長期運用するシステムの信頼性を確保する! 本書は、現代社会において、変化しつつ長期的に運用される巨大で複雑な複合システムに対し、いかにしてその不具合を減らし、重大事故を防ぎ、信頼性を保ちつつ運用を継続していくかについて体系的に議論した初めての技術書である。機能や構造、その境界が変化するシステムは通常「オープンシステム」と呼ばれる。我々はこのための技術体系を「オープンシステムのためのディペンダビリティ工学」、英文で“Dependability Engineering for Open Systems”、その略称をDEOS(デオス)と呼んでいる。システム開発・保守・運用に従事する技術者、研究者に必携の書である。
  • Splunkユーザーのためのデータ分析実践バイブル SPLとMLTKを駆使した前処理から機械学習の手続きまで
    -
    あらゆるデータの収集・検索・分析・可視化ができる データ分析プラットフォーム×機械学習を目的別に徹底解説 本書は、Splunkを使ったデータ分析の解説書です。 効率的な前処理から機械学習までを扱い、 Splunk上で機械学習を実現するMLTKを丁寧に解説しています。 各章は機械学習の概念に始まり、データ分析をする上で必要な基礎知識、 Splunkを用いたデータの可視化、データ加工方法の紹介から 実際にサンプルケースを用いた分析とその解説で構成されています。 Splunkを用いてデータ分析・機械学習に取り組みたい人には必読の1冊です。 【こんな方にお勧めします】 ・Splunkを使っているが、SPLの書き方に困っている方 ・Splunkでの効果的なデータの可視化の方法を知りたい方 ・Splunkでの機械学習の方法を知りたい方 【目次】 第1章 Splunkについて 第2章 機械学習の流れ 第3章 Splunk・MLTKによる機械学習 第4章 Splunkへデータ登録するまでの基本的な手続き 第5章 特徴量を生成するための前処理と手法 第6章 Splunkによる特徴量評価 第7章 機械学習の実演 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • 並行システムの検証と実装
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 並行システムとは、マルチコアCPUを備えるPCやスマホのほか、組込み、スマートグリッドの処理にも欠かせないシステムである。 本書は、その基礎理論(プロセス代数)であるCSPを用いた並行システムの構築方法や検証、実装の方法を概説する。ソフトウェア開発者を中心に、並行プログラミングに挑戦したい人への一冊。
  • サイバネティックス運動 〈情報的世界観〉成立の理路
    NEW
    -
    N・ウィーナーから始まったサイバネティックスは,認知科学,政治学,哲学などを巻き込んで世代を超え展開し,「情報」という視点から世界を書き換えていった.生成AIに至るコンピュータの進化を用意するとともに,生命とは何かという問いに答えようとした巨大な思想運動――その全容をあますところなく描き出す.

    試し読み

    フォロー
  • カオスニューロ計算
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 思考や記憶など,脳の活動を担うニューロンの状態変化を情報処理システムと捉える新しい計算方式「カオスニューラルネットワーク・モデル」を解説。この計算方式では「アルゴリズムによる計算」ではなく,ダイナミクス—多数素子による超並列処理—により計算を行う。従来のコンピュータが“苦手”としている最適化問題などを解かせることで,その有用性や可能性を論じる。先進的な計算機科学に興味を持つ学生,研究者が対象。
  • 可逆計算
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 可逆計算には、どの時点の状態をとっても直前の時刻の状態を唯一に決められるという性質がある。 ファインマンがその方向性を論じて以来、本格的な研究が始まった。量子コンピュータとも大変親和性があり、計算システムの全く新しい概念を提供する。 読者は、学生・研究者。
  • DNAナノエンジニアリング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 本巻は、DNAナノエンジニアリングについて、基礎から最先端の研究までを解説。読者は、情報科学、材料科学、生命科学、システム工学等の学生・研究者である。
  • 光計算
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 第1巻『光計算』は光物理現象を演算系とする情報処理を考え、光を用いる計算ならではの独自計算方式やアイデアを取り上げ、その基本概念や手法を説明。応用例も紹介する。
  • バージョン8&9両対応! Red Hat Enterprise Linux完全ガイド
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 レッドハットのエンジニアが直伝! 導入からシステム管理コンテナー構築まで完全網羅。 サーバー向けLinux分野で圧倒的なシェアを誇る米Red Hat社の商用Linuxディストリビューション「Red Hat EnterpriseLinux(RHEL)」解説書の決定版。 2022年5月にリリースされた最新バージョン9だけでなく、いまだ多数のユーザーが利用しているバージョン8についても完全対応。 すぐに移行せず、しばらく8を使おうと考えている人にも役立ちます。 RHELの導入方法から各種サーバーのインストール方法や設定・管理方法、運用に役立つコマンドやツールの利用方法などを豊富なコマンド実行例と共に解説。 本書を片手にサーバーの管理や運用に必要な作業をすぐ試せる構成になっています。 セキュリティやコンテナ技術、仮想化技術など今どきのサーバー管理者に必須の技術要素についてもしっかりと学べます。 さらに、RHELを運用する際に起こりがちなトラブルの対処法や、RHELでサーバーを安定的に運用し続けるために欠かせない メンテナンスに関する知識なども70ページ以上のページを使って詳しく紹介しています。RHELを初めて触る人から既にサーバーを運用している人まで、 RHELの導入・管理・運用に欠かせない情報を網羅的に掲載しています。
  • データプラットフォーム技術バイブル ~要素技術の解説から実践的な構築法、利活用まで~
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 DX・AI時代における技術の本質を掴む!データ基盤技術の叡智とビジネス活用を徹底解説 ★大規模プロジェクトを複数手掛ける著者2名が執筆! ★500ページ超のボリュームで包括的に解説! 近年、データ活用の重要性が高まる一方で、適切な技術を選んで効果的に活かすことは容易ではありません。データ基盤の構築手段は多様化しているため、どの技術をどのように組み合わせるべきか迷う場面も多いでしょう。 本書は、ビジネスの成長に不可欠な「データプラットフォーム」の構築と活用について解説する一冊です。ユーザー行動やセンサーログなどのデータを収集・整理し、ETL処理やELT処理を経て価値ある情報に変換し、意思決定に活かす方法を紹介します。データ品質の維持や、効率的な分析手法についても詳しく解説しています。 DX(デジタルトランスフォーメーション)が進むなか、データとデジタル技術の役割はさらに重要になっています。本書では、Apache Sparkをはじめとする技術の選定や活用方法、設計の考え方を詳しく解説。最新技術だけでなく、将来の変化にも対応できる普遍的な知識を提供します。データを活用してビジネスの競争力を高めたい方、最適なデータ基盤を構築したい方は、本書を通じてデータプラットフォームの理解を深め、より効果的な活用を目指しましょう。 <本書で紹介する要素技術・原則(一部)> ・ログ転送:Fluentd ・アーキテクチャパターン:CQRS+ES、Delta、Kappa、Lambda、Lakehouse、メダリオンアーキテククチャ ・データフォーマット:Apache Hudi、Apache Iceberg、Delta Lake ・データレイク:Apache Spark、Databricks ・データウェアハウス:Amazon Redshift、Google BigQuery、Snowflake、Treasure Data ・ストリーミング:Amazon Kinesis、Apache Kafka ・ジョブスケジューラ:Apache Airflow、Digdag ・ETL処理:Apache Spark、Embulk ・ELT処理:dbt ・BIツール:Metabase、Redash ・データサイエンス:A/Bテスト、LLM、MLflow ・設計開発:データメッシュ、ドメイン駆動設計(DDD)、RDRA ・法則・原則:DIKWモデル、SOLID原則、YAGNI原則 Chapter 1 データプラットフォーム概論 Chapter 2 データプラットフォームの構成要素 Chapter 3 ログ転送 Chapter 4 データ変換・転送(バッチ編) Chapter 5 データ変換・転送(ストリーミング編) Chapter 6 データプロビジョニング Chapter 7 データマネジメントを支える技術 Chapter 8 要件分析 Chapter 9 データプラットフォームの構築 Chapter 10 データプラットフォームの改善 <著者> 島田 雅年(Masatoshi Shimada) インターネット広告、動画メディア、リテール、金融、官公庁など、さまざまな業界のプロダクト設計や開発に従事。得意分野は、組織内のデータを整理して、企業価値の向上を目的とするビッグデータ処理基盤構築。データ活用の現場では、営業職などのビジネス職域における多彩な課題が存在するケースが多く、円滑なデータ提供を支えるデータプロビジョニングシステムの構築はもちろん、組織構築や教育支援などのコンサルティングも手掛ける。 藪本 晃輔(Kosuke Yabumoto) 10年以上にわたりインターネット広告のプロダクト開発に従事。大量のトラフィックを処理する広告配信システムをはじめ、データ管理システムや広告効果計測ツール、媒体収益化など、さまざまなインターネット広告関連プロダクトにて、プロジェクトマネージャーや開発責任者を歴任。ロケーションデータを活用したインターネット広告事業を展開する株式会社ジオロジックではCTOに就任し、データプラットフォーム構築を中心に、エンジニアリングマネージャーから設計・開発まで幅広く担当。現在はスマートニュース株式会社にて、エンジニアリングマネージャーとして広告システムの開発に従事。 <編集者> 丸山 弘詩(Hiroshi Maruyama) 書籍編集者。早稲田大学政治経済学部経済学科中退。佐賀大学大学院博士後期課程編入(システム生産科学専攻)、単位取得の上で満期退学。大手広告代理店勤務を経て現在は書籍編集に加え、さまざまな分野のコンサルティングや開発マネジメントなどを手掛ける。著書に『スマートフォンアプリマーケティング 現場の教科書』(マイナビ出版)など多数、編集書籍に『ブロックチェーンアプリケーション開発の教科書』『ビッグデータ分析・活用の ためのSQLレシピ』(マイナビ出版)など多数。 ※この商品は固定レイアウト型の電子書籍です。 ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 ※お使いの端末で無料サンプルをお試しいただいた上でのご購入をお願いいたします。
  • AI・量子コンピュータにかかわるリスク管理 ―セキュリティからガバナンスヘ―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 これからのシステムリスク管理の常識をわかりやすく解説 本書は、AIと量子コンピュータが当たり前になる、これからのITシステムのリスク管理について、基本からわかりやすく解説した書籍です。特に、リスク管理を有効に機能させるために重要な考え方や具体的な手法についても詳しく解説しています。 今後、AIや量子コンピュータのもたらす技術革新にかかわるリスク管理能力の欠如は、あらゆる組織にとって致命的なウィークポイントになります。しかし、革新的な技術のもたらすリスクを網羅的に洗い出すことは難しいのが実情です。また、それらのリスクにより生じる損害の大きさや、損害がどの程度の可能性で発生するのかが不明瞭であることも多く、従来からのプロジェクトごとでのリスク管理手法がうまく適用できません。 そのようなリスクをうまく管理するために組織に必要となる、重要なITガバナンスについてまとめています。 第1章 ITシステムにおけるリスクと新技術 第2章 量子コンピュータが暗号にもたらすリスク 第3章 AIの発展と規制 第4章 AIシステムにおけるリスク管理 これからのリスク管理とガバナンス
  • コンピュータ理論の起源[第1巻]|チューリング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンピュータ理論の古典に学ぶ! 本シリーズは,「コンピュータ理論の起源」を当時の原典に探る試みとして,現在もコンピュータ理論の古典と呼ばれる,チューリングとフォン・ノイマンの論文を紹介する。 第1巻である本書には,チューリングのコンピュータに関わる重要な論文4編の完訳と,それぞれの論文に対し,内容を的確に理解するための時代背景を含めた詳細な解説が収められている。 コンピュータ理論に興味のある読者はもちろん,コンピュータに携わる読者には必携の書である。
  • ソフトウェア工学の基礎 32
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2025年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
  • ソフトウェア工学の基礎 31
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2024年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
  • 量子コンピュータシステム  ―ノイズあり量子デバイスの研究開発―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 従来のコンピュータシステムの視点から量子コンピュータシステムをとらえた他に例をみない解説書.実用化に向けて急速に進化する量子コンピュータシステムの全容と課題がわかる.  本書は,従来のコンピュータシステムの視点から量子コンピュータシステムをとらえた,他に例をみない解説書です.本書の著者の1人のFrederic T. Chong氏は,コンピュータアーキテクチャの世界的な研究者でありながら,いち早く量子コンピュータシステムの研究に取り組み,多くの先駆的な成果を上げており,その知見を活かして,現在のノイズのある量子コンピュータシステムの全容と課題を本書にコンパクトにまとめています.  また,多種多様な観点より参考文献が豊富にあげられており,本書で量子コンピュータの現在の全体像を押さえ,必要に応じて参考文献を頼りに深掘りしていくことで,これからの量子コンピュータの研究開発者に求められる素養が身につけることができます.  黎明期とはいえ,量子コンピュータは実用化に向けて急速に進化しており,これから量子コンピュータにかかわる研究者,技術者,学生にとってエキサイティングな時代が到来することは間違いありません.従来のコンピュータがたどった経緯を振り返れば,量子コンピュータの黎明期にあたるいまこそ,その基礎固めに最適な時期といえます.ぜひ本書を一読してみてください. 第I部 量子コンピュータの基礎 第1章 量子計算の起源と現在 第2章 量子計算と古典計算 第3章 量子アルゴリズムとアプリケーション 第II部 量子コンピュータシステム 第4章 量子コンピュータシステムの最適化 第5章 量子プログラミング言語 第6章 量子回路の合成とコンパイル 第7章 マイクロアーキテクチャとパルスコンパイル 第8章 ノイズ緩和と誤り訂正 第9章 量子計算の古典シミュレーション 第10章 量子コンピュータシステムのこれから
  • ソフトウェア工学の基礎 29
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2022年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
  • 量子探索 量子ウォークが拓く最先端アルゴリズム
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は量子ウォークを用いる探索問題について、基礎的事項から具体的計算まで丁寧に解説する。 量子ウォークとは確率論におけるランダムウォークの量子版である.従来のランダムウォークでは見られない特異な挙動を示すことから、最先端の研究対象として注目を集めている。また、その探索アルゴリズムは、量子コンピュータにも応用可能とされ大変注目されている.量子系の計算科学に関心のある多分野の読者必携の書である。
  • 基礎からわかる時系列分析―Rで実践するカルマンフィルタ・MCMC・粒子フィルタ―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 時系列データとは気温や株価のように時間順に得られる系列データを指します。時系列データの分析方法にはさまざまありますが、本書では確定的な方法と確率的な方法を解説します。確定的な方法については移動平均法に基づく方法、確率的な方法については、状態空間モデルに基づく方法を取り上げ、これらの解説と合わせてどのようにコードに落とし込むかについても丁寧に解説します。初めて時系列分析を試みる方はもちろん、応用的な手法についても取り上げているのですでに時系列分析に携わっている方にも興味を持っていただける内容になっています。
  • 人工知能と法律
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 民事裁判におけるIT化法案(「民事訴訟法等の一部を改正する法律」)が成立したことをきっかけに、IT技術および人工知能技術の導入が急速に発展してきている。 本書ではまず第1部で「人工知能と法」分野の歴史、次に法律における推論についての基礎的な知識を説明する。第2部では法律への具体的な人工知能の技術の詳細について紹介を行っている。現在の法学に対する人工知能の到達点と、今後の日本の社会像が見えてくる充実の一冊。
  • React Native+Expoではじめるスマホアプリ開発
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 JavaScriptによるネイティブアプリ開発の現場のノウハウ、教えます! 「React Native」は、Facebookが開発しているスマートフォンアプリ向けの開発環境で、2015年3月にオープンソースとして公開されました。ほとんどのコードをJavaScriptで記述でき、スマートフォンのAndroidとiOSに両対応したネイティブアプリの開発が可能です。名前からもわかるように、同じくFacebookが開発したUI用のライブラリであるReactをベースの技術としており、コンポーネントを組み合わせてUIを構築できます。Facebookは、自社や傘下のInstagramのスマートフォンアプリ開発にReact Nativeを利用しています。 Reactをベースにし、JavaScriptで開発を行えるため、Web系の開発者がスマートフォンのネイティブアプリ開発を始めるには、React Nativeは最適なプラットフォームといえるでしょう。 また、「Expo」は、React Nativeによる開発・アプリ配布を支援するためのツールとサービスです。本書では、開発環境としてExpoを使って解説しています。 本書では、ある程度、Web開発の知識があり、これからスマートフォンのネイティブアプリ開発に取り組もうという人に向けて書かれています。 【各章の内容】 ●第1章 React Nativeの概要、および、その開発支援ツールである「Expo」と「Create React Native App(CRNA)」について説明しています。 ●第2章 React Nativeに必要となるnode.js、そしてExpoの導入について説明しています。 ●第3章 Androidエミュレータ/iOSシミュレータの導入と、デバッグ環境などの具体的な利用方法を解説します。また、実機での動作確認方法にも触れています。 ●第4章 TODOアプリの開発を通してReact Nativeの基本を学んでいきます。 ●第5章 Flexboxレイアウトを学ぶために、逆ボーランド電卓を作成します。 ●第6章 統一的なUIを持ったアプリの作成を可能にする「UIライブラリ」を使ってTODOアプリを拡張します。 ●第7章 Fluxアーキテクチャを使って、TODOアプリを書き直してみます。 ●第8章 トイレマップとGPSロガーの2つのアプリを通して、ライブラリの利用、GPSやカメラといったスマートフォン機能の使い方など、本格的で実践的なReact Nativeプログラミングについて学びます。 ●第9章 アプリ内でWebページを表示するための「WebView」を使ったプログラミングを解説しています。 ●第10章 React Native CLIを使ったネイティブモジュールを使った開発について解説しています。 ●第11章 Google Play/App Storeでの配信について説明しています。 ●第12章 意外とハマるポイントでもあるReact Native/Expoのバージョンアップについて解説しています。 ●付録 tvOS/Windowsに対応したアプリの対応方法を解説しています。
  • 大規模言語モデルへのアプローチ ―機械翻訳における文例を用いた文解析木発生方式―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 もう一つのLLM ―大規模言語モデルの一手法―  解析木を中間データとする機械翻訳方式は,原言語解析木発生,原言語解析木から目的言語解析木への言語変換,目的言語解析木から目的言語文発生という縦続する3つの処理から構成される.このうち原言語文解析木発生処理は,方式が原言語文を理解することに相当し,処理誤りの9割がこの処理で発生するといわれている.  本書の「文例を用いた文解析木発生方式」は,この原言語解析木発生動作を行うものであり,既存の機械翻訳方式KATEの解析木発生部分をベースとして,これに多数の文例文とその句構造解析結果である文例解析木の対を用いるための改良を加えた方式である.この方式は,大量の言語データを用いる点において大規模言語モデル(LLM)の一種といえる.  「文例を用いた文解析木発生方式」は,1つのデータ対の効果が大きいことにより,学習データの枯渇の影響を受けにくいという利点が得られる.本書の後半で通常のニューラルネットワークを用いた単語列間変換(seq2seq)方式との共同動作の構想を示している.同一入力に対して「文例を用いた文解析木発生方式」とニューラルネットワークを用いたseq2seq変換方式という動作機構の全く違う2つの方式の出力間の共通部分を得ることにより,信頼度の高いデータ対を獲得し,それを新しいデータ対として用いることにより,両方式に対してより信頼性の高いデータ対の自動取得が可能となることが期待される. Ⅰ編 文解析木発生方式 序章 まえがき 1章 機械翻訳における文例を用いた文解析木発生方式の構成 2章 共通単語列の検出 3章 文例排他木の作成 4章 一時排他木木値算出 5章 上位被覆 6章 解析木発生 7章 禁止木非含有判定 8章 文解析木発生方式各部分の役割 9章 機械翻訳における文例を用いた文解析木発生方式の動作実験 10章 ニューラルネットワークを用いた単語列間変換との結合動作に関する構想 11章 ニューラルネットワーク単語列間変換による翻訳に対する1つの提案 12章 Ⅰ編のまとめ Ⅱ編 文解析木発生方式のアルゴリズム A. Ⅱ編の構成 B. 一時排他木木値ユニットを除く一時排他木発生モジュール C. 一時排他木木値ユニット D. 上位被覆モジュール E. 最大木値木発生ユニット F. 解析木発生モジュール G. ニューラルネットワークを用いた単語列間変換との共同動作 H. ニューラルネットワーク単語列間変換による翻訳に関するアルゴリズム
  • LLM本番システム構築ノウハウ 基礎から実装・運用の方法、アプリ構築の実例まで
    完結
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 現場で使えるLLMを構築、本番環境に展開!成功へ導くための包括的なガイド本書では、大規模言語モデル(LLM)を実装し、本番環境にデプロイするためのノウハウを解説。LLMの基礎概念から、実装、デプロイ、運用、管理における複雑な課題とその解決策まで、包括的に取り上げます。まず、LLMの可能性と限界、そして自社構築か既存サービスかの判断基準などから説明。また、運用(LLMOps)に関しては、ダウンロード時間、デプロイ時間、レイテンシー、GPU管理、トークン制限、ハルシネーション、バイアスといった具体的な課題への対策を詳しく解説。データエンジニアリングの重要性にも触れ、成功に不可欠なデータ準備、評価指標、クリーニング、前処理を説明。トレーニングとファインチューニングのほか、効果的なプロンプトエンジニアリングについても具体的に紹介。さらに、Llamaの再実装、Raspberry Piというエッジデバイスへのデプロイ、AIコーディング拡張機能の構築など、読者が自らの手で動かせるようなサンプルプロジェクトを説明します。本書は、LLMの可能性を最大限に引き出し、実際に機能する製品に変えるために必携の一冊となっています。※ 本書は『LLMs in Production: From language models to successful products』(Manning Publications)の翻訳書です。※本書の内容はPythonとPyTorchの知識があることが前提となっています。【章構成】第1章 言葉の覚醒:なぜLLMは注目を浴びたのか第2章 LLM:言語モデリングの本質を探る第3章 LLMOps:LLM向けのプラットフォームを構築する第4章 LLMのためのデータエンジニアリング:成功へのステップ第5章 LLMの訓練:生成モデルの作り方第6章 LLMサービス実践ガイド第7章 プロンプトエンジニアリング:プロンプトの魔術師になる第8章 LLMアプリケーションの構築:インタラクティブな体験を作り出す第9章 LLMプロジェクトの作成:Llama 3を再実装する第10章 AIによるコーディング支援プロジェクト:この機能がもっと早くほしかった第11章 Raspberry Piでのデプロイ:限界に挑戦第12章 本番環境は絶えず変化する:物語はまだ始まったばかり
  • 医療健康データの取扱説明書 ―IT技術者が知っておくべき要点―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 医療健康情報に関するデータを適切に取り扱うための知識をわかりやすく整理! IT技術者を主要読者対象として、医療健康情報を高度に活用するための、医療倫理にもとづくELSI(Ethical, Legal, Social Implications)、ならびに、関係法令等についてわかりやすく解説した書籍です。 医療健康情報の活用の歴史やポイント、および、医療健康情報を扱う研究者・技術者ならば当然抑えておくべき倫理的配慮、ならびに活用事例や課題についてまとめています。 人の医療健康にかかわる分析や、生成AIとの連携など、今後の発展や方向性に興味がある方にもお勧めです。 第1章 医療におけるDX~なぜ、医療機関で情報処理技術者が必要とされるのか?~ 第2章 医療機関の現状と課題 第3章 医療健康情報の利活用の現状と課題 第4章 医療保健情報を取り巻く法制度と解説 第5章 匿名加工医療情報、仮名加工医療情報の利活用
  • データサイエンス教本(第2版) ―Pythonで学ぶ統計分析・パターン認識・時系列データ分析・深層学習―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonでデータサイエンスの理論と実践を学ぶ  データサイエンスは、「データを科学的に扱う」学問分野です。近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。  本書は、データサイエンスの基礎となる統計分析からパターン認識(機械学習)、時系列データ分析、深層学習などを、Pythonを使って実際に分析しながら学ぶものです.  データの取り扱い、確率・統計の基礎といった基本的なところから、パターン認識、深層学習といった統計・機械学習手法、時々刻々と変化する時系列データの分析などの解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。  Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。  第2版にあたっては深層学習を大幅に拡充し、自然言語処理、生成系(AutoEncoder、GAN)などの近年重要視されるテーマを取り上げました。 1章 はじめに 2章 データの扱いと可視化 3章 確率の基礎 4章 統計の基礎 5章 回帰分析 6章 パターン認識 7章 時系列データ分析 8章 深層学習の基礎 9章 深層学習による画像処理 10章 深層学習による自然言語処理 11章 生成系深層学習 12章 深層強化学習 索引
  • 詳解セキュリティコンテスト
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 情報セキュリティ技術を競うコンテスト:CTF(Capture the Flag)について技術的な背景の解説を通し実践的に学んでいく一冊です。現代CTFにおいて主流である4ジャンルを解説します。 ・Web(Webアプリケーションへの攻撃) ・Crypto(暗号解読) ・Reversing(バイナリ解析) ・Pwnable(低級プログラムの掌握) 各Part冒頭には必要な基礎知識の説明を用意、幅広くかつ丁寧に解説しますので現代CTFの傾向が理解できるとともに、競技を楽しむための足腰を鍛えることができます。 「問題をどのような目線で分析するか」「どのような時に、どの解法を検討するか」といった問題と向き合う際の思考法への言及にも注目してみてください。 情報セキュリティの技を磨く足掛かりに。 CTFに臨むための技術を理論と実践で身に付けよう Part 1 準備 1章 CTF入門 2章 実習環境の準備 3章 問題環境の構築 4章 Python入門 Part 2 Web 5章 WebセキュリティとCTF 6章 Webの基礎知識 7章 ディレクトリトラバーサル 8章 XSS 9章 SQLインジェクション 10章 SSTI 11章 SSRF 12章 XXE Part 3 Crypto 13章 暗号について 14章 環境構築 15章 ハッシュ関数 16章 共通鍵暗号 17章 初等整数論 18章 RSA暗号 19章 ElGamal暗号 20章 その他の公開鍵暗号 21章 乱数 22章 練習問題 Part 4 Reversing 23章 Reversingを始める前に 24章 アセンブリ言語 25章 アセンブリを読んでみよう 26章 静的解析に触れてみよう 27章 動的解析を組み合わせよう 28章 より発展的な話題 29章 実践問題の解答 Part 5 Pwnable 30章 導入 31章 シェルコード 32章 スタックベースエクスプロイト 33章 共有ライブラリと関数呼び出し 34章 ヒープベースエクスプロイト 35章 仕様に起因する脆弱性 36章 実践問題の解法 付録A ASCIIコード 付録B Linuxシステムコール(x86_64) 付録C 主要な定数値一覧
  • Pythonによるバイオデータ解析入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 バイオのデータもPythonで! 生物学に関わる理解・研究では、コンピュータによるデータ処理が欠かせないものとなってきています。生物学の扱う系はもともと非常に複雑で雑音が多く、統計的な解析が広く使われてきましたが、特に最近のDNA/RNA解析ではいわゆる次世代シーケンサ(NGS)が大量のDNA配列データを生み出してそれを整理しなければならないなど、コンピュータによるデータ処理が必須になっています。  本書は、生物学分野において行われる、さまざまなデータ解析処理について、Pythonを用いて行う方法を解説し、理解することを目的としています。従来、簡単な処理はExcelを使ったり、RやSPSSなどの統計処理を主目的とする言語・ソフトウェアパッケージが用いられてきました。そのなかで本書は、比較的新しく、機械学習やデータ分析に優れたプログラミング言語であるPython を使って、初歩的なデータ処理をどのように行えばよいのかを紹介しています。 第 1 章 バイオデータ処理 第 2 章 プログラムを動作させるための知識 第 3 章 Pythonによる入力・出力データ加工のためのプログラミング 第 4 章 Pythonからバイオデータを扱うライブラリ 第 5 章 可視化のためのライブラリ 第 6 章 統計処理に便利な汎用の統計パッケージ 第 7 章 変異解析・発言解析の流れの例
  • 現場で使える!NumPyデータ処理入門 機械学習・データサイエンスで役立つ高速処理手法
    -
    機械学習・データサイエンスで役立つ高速処理手法 【本書の概要】 ビッグデータを扱う機械学習の現場では、Pythonの高機能で利用しやすい数学・科学系ライブラリが急速に広まってきています。 本書は、機械学習・データサイエンスの現場でよく利用されているNumPyの基本から始まり、 現場で使える実践的な高速データ処理手法について解説します。 特に、現場でよく扱う配列の処理に力点を置いています。 最終章では機械学習における実践的なデータ処理手法について解説します。 【NumPy(ナンパイ)とは】 NumPyは、機械学習・データサイエンスの現場で扱うことの多い多次元配列(行列やベクトル)を 処理する高水準の数学関数が充実しているライブラリです。 Python単体では遅い処理であっても、C言語なみに高速化できるケースもあり、 機械学習・データサイエンスの分野におけるデータ処理に欠かせないライブラリとなっています。 【対象読者】 機械学習エンジニア、データサイエンティスト 【著者紹介】 吉田拓真(よしだ・たくま) データサイエンス関連のサービスを提供する株式会社Spot 代表取締役社長。 Webメディア『DeepAge』編集長。 尾原 颯(おはら・そう) 東京大学工学部機械工学科所属。 大学ではハードウェア寄りの勉強が多め。 趣味はアカペラとテニス。基本的に運動が好き。最近、ランニングを始める。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • UPPAALによる性能モデル検証
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 UPPAALは,モデル検査ツールとしては比較的利用が容易ではあるが,実際の開発には多くのハードルがある.本書では,そのようなハードルを乗り越えるために必要な,UPPAALツール,時間オートマトン,検証したい性質を記述するための時間時相論理に関する知識,および実際の開発で検証の対象となるUML設計仕様のUPPAALによるモデル化方法など,具体的事例も交えてノウハウを解説している.
  • VDM++による形式仕様記述
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 明確な仕様の記述と検証を行わずして、抵当な開発を行うことは出来ない! ソフトウェア開発では、上流工程を自然言語で表現する。このため論理的不一致などがおき、手戻りが発生する。これを解決する方法として考えられたのが、数学を用いた形式手法である。本書は、この手法の一つであるVDMとオブジェクト指向記述言語VDM++について実践的に解説する。
  • 要求工学概論
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 品質向上に貢献する、要求獲得技法を詳解! ソフトウェアが社会に浸透すると供に、ソフトウェア開発の上流工程ではビジネスや運用環境の変化に即した要求の獲得・仕様化・確認・管理が求められている。要求工学では曖昧で変化しやすい要求を工学的に扱うことで、品質の高い要求仕様書を効率的に作成する各種の手法が開発されている。本書は、要求工学の基礎知識の理解と習得に役立つ1冊である。
  • ソフトウェア科学基礎
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 オープンソースの広がりにより、多様な機能を実現することは以前と比較すると驚くばかりに容易になっている。しかし、このような開発法ではスケーラビリティと高信頼性を同時に保証することはできない。機能の実現や追加が比較的安易にできる時代になったからこそ、成長し続けるシステム全体の正常な動作を保証しうる開発検査手法の必要性が増している。 本書では、優れた開発者として最先端の理論やツールと使ってソフトウェア開発をするために必要な基礎知識である、論理学、並行システム、オートマトン、モデル検査のアルゴリズムや実装技術、モデル検証ツールをまとめて解説する。
  • SPIN モデル検査:検証モデリング技法
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 社会の様々なところにソフトウェアが組み込まれる中、従来その信頼性を確保するための手法であったテスト手法は、時間やコストなどの面で開発の現状に追いつけない状況にある。そのテスト手法に代わるものとして注目されてきているのが形式的手法による検証(モデル検査法)であり、その中の一つがSPINである。本書はSPINの基礎から実際の利用方法までを具体的に解説する日本で初めての書籍である。
  • Event-B:リファインメント・モデリングに基づく形式手法
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 論理的なバクを発生させない形式手法!!Event-Bは、パリ地下鉄、ニューヨーク地下鉄、バルセロナ地下鉄、ドゴール空港のシャトルの無人運転を成功に導いた、J.R.アブリエル氏が考案した新しい形式仕様言語である。Event-Bは、仕様記述の単位をイベントとし、基礎となる集合論などはBメソッドの考え方を継承する。本書は、Event-Bの入門書である。また実際に利用するための仕様構築統合環境として、RODINプラットホームの利用方法を解説する。具体的に学べるよう図書館の事例や、組込みとして自動車のドアロック・システムを紹介している。形式手法や、形式仕様言語を学ぶ技術者や研究者には最適の書である。
  • “巧みさ”とロボットの力学 プレミアムブックス版
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ロボットが“巧みさ”を手に入れるには? 冗長自由度系の不良設定性から“巧みさ”の力学的原理に迫る 人が日常的に何気なく行っている、目標物に向けて手を伸ばしたり、物を掴んだりするような巧みな動作。 それを多関節・多自由度なロボットで実現するには、その動作を生み出す「プログラム(計算式)」を用意しなければなりません。そして、そのプログラムを記述する時に、逆運動学の不良設定性が問題となります。 この問題をいかに解消するか? それがロボットで「巧みさ」を実現するための鍵となります。 本書では、ロボットが自然にこの問題を解消するための、数学的道筋に言及し、「巧みさ」の源泉を探ります。 本書は『"巧みさ"とロボットの力学』(2008年5月刊行)をプレミアムブックス版として復刊したものです。内容は変更されていませんので、ご了承ください。
  • 発見・創発できる人工知能 Otter:論理パズルからのアプローチ
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ライバルはディープラーニング!!  OTTERは、数学における定理やパズルの解法の証明を支援するソフトウェアで、述語論理を用いて解を導き出す。医療・金融システムの安全性構築、ウイルス検知などにも適用され、欧米では近年、高い評価を受けている。最大の特徴は、ユーザが与えた不完全な論理(情報)であっても、自動的に正しい推論を行うことができる点にある。  統計的論理を用いる機械学習等に手詰まり感のある中、OTTERには推論を通して新しい解を導き出す“創発的機能”があり、注目のAI技術である。  本書は、OTTERが得意な論理パズルを具体的な解法プログラムとともに紹介しながら、自動推論・定理証明の方法を解説する。人工知能の研究者・技術者、必読必携の書である。
  • 実践GAN 敵対的生成ネットワークによる深層学習
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 GAN(Generative Adversarial Networks):敵対的生成ネットワークは機械学習技術の一種で、2つの分離したニューラルネットワークを使い実物と区別が付かないほどリアルな画像を生成することを可能とします。 本書はGAN:敵対的生成ネットワークを学びたい方のために入門から実装まで、理論を交えつつ解説していきます。本書全体を通じてJupyter Notebookを使い、実装はPython、Kerasで行っていきます。 機械学習とニューラルネットワーク、Pythonプログラミングについてある程度の経験がある方を主な対象読者としており、数学に関しては最小限のものに絞って解説します。 本書の目的は、GANが達成してきたことを理解するための知識と道具を提供し、そこから新しい応用を見つけ作り出す力をつけていただくことです。GANは多くの可能性に満ちていますから、意欲的な方々であれば学術界・実世界に大きなインパクトを与えられることでしょう。 Part 1 GANと生成モデル入門 Part 2 GANの発展的な話題 Part 3 ここからどこへ進むべきか
  • 生成AIによるソフトウェア開発 ―設計からテスト,マネジメントまでをすべて変革するLLM活用の実践体系―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 生成AIおよびエージェントが拓くソフトウェア開発新時代 - 学会監修による全工程網羅の体系、事例、動向  本書は、情報処理学会ソフトウェア工学研究会の監修のもと、生成AI・LLM・エージェントをソフトウェアの設計からテスト、運用・保守にいたる全工程、さらにはマネジメントにまで組み込むための実践的な体系をまとめた一冊です。表面的な技術の流行にとらわれず、事例や研究動向を交えながら、社会や産業における新たな方向性を解説しています。  生成AIは、従来の自動化ツールでは困難だった多様で複雑なタスクを、思考のプロセスをともない、人と自然に対話するように遂行できます。これにより、顧客の声を的確に反映し、価値を継続的に高め、効率的かつ信頼性の高い開発と運用が可能になります。本書を通じて、従来の常識を超えたAI時代の開発のあり方を体得してください。 Chapter 1 生成AIの仕組み Chapter 2 生成AIによるソフトウェアの要求 Chapter 3 生成AIによるソフトウェアの設計 Chapter 4 生成AIによるプログラムの実装 Chapter 5 生成AIによるソフトウェアのテスト Chapter 6 AIエージェントによるソフトウェア開発の自動化 Chapter 7 生成AIの評価 Chapter 8 生成AIを活用したプロセスとマネジメント Chapter 9 生成AIによるソフトウェア産業の将来
  • LLMとハルシネーション ―基礎と対策―
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 はたしてなぜ生成AIは嘘をつくのか? ハルシネーションの原理とその対策を一からわかりやすく解説  生成AIを利用する際に最も厄介な問題となるのがハルシネーション(hallucination)です.ハルシネーションは幻覚とも呼ばれる現象で,一見もっともらしいのに,まったく正しくない文章が生成されることをいいます.これによって,実際にはありもしない発言や事実が大量につくり出され,SNSなどで拡散されて私たちの社会や認識を大きくゆがめてしまっています.これからの情報系エンジニアにとって,ハルシネーションの対策に必要な知見やスキルは非常に重要です.  本書では,ハルシネーションに挑むための土台となるべき自然言語処理や機械学習の基礎的な知識や,「言語の正しさ」に関する基本的な知見から解説しています.そして,これまで研究されてきたハルシネーションの検出方法や,LLMの学習方法および構造の改善,RAGや外部モデルの利用によるハルシネーション対策について解説しています. AI関連の技術は日進月歩で進歩していますが,エンジニアにとって重要なことは流行に乗り遅れないことより,少しずつ自分の引き出しを増やしていくことであると考えられます.この観点から,本書では「スタンダードな手法への手っとり早い入門」という以上の価値を提供できるように心がけています. Chapter 1 自然言語処理の基礎 1.1 自然言語処理とは 1.2 トークン化と分散表現 1.3 言語モデル 1.4 自然言語処理の評価指標 1.5 言語の研究の歴史 Chapter 2 統計学と機械学習の基礎 2.1 帰 納 2.2 統計的推測 2.3 強化学習 2.4 さまざまな生成AI Chapter 3 TransformerとLLM 3.1 Transformer登場の背景 3.2 Transformerの内部構造 3.3 学 習 3.4 TransformerによるLLM 3.5 ChatGPT 3.6 さまざまな大規模言語モデル Chapter 4 ハルシネーションの基礎 4.1 ハルシネーションとは 4.2 事実性/忠実性 4.3 内在型/外在型 4.4 文や知識の正しさとは 4.5 ハルシネーションの発生源 4.6 ハルシネーションの検出と評価 4.7 ハルシネーションに関する評価ベンチマーク Chapter 5 ハルシネーションの抑制 5.1 学習データの改善 5.2 デコーディング方法の改善 5.3 モデル構造の改良 5.4 プロンプトエンジニアリング Chapter 6 外部知識活用にもとづく生成 6.1 検索を組み合わせた生成 6.2 疎ベクトル検索 6.3 密ベクトル検索 6.4 知識データベース 6.5 RAGの発展的な話題 6.6 ツール拡張生成
  • 改訂新版 Google Cloudではじめる実践データエンジニアリング入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆BigQuery徹底活用!◆ 2021年2月に刊行した「Google Cloudではじめる実践データエンジニアリング入門」の改訂版です。改訂版の刊行までにデータ基盤に求められる要件は変化し、本書ではその間に進化を続けたGoogle Cloudの各サービスの情報をまとめています。 - Google Cloudの新サービスの反映:Dataform、Dataplex、BigLake、Datastream、Vertex AI、Geminiなど - 各種Google Cloudの新機能のアーキテクチャへの反映:BigQuery、Dataflow、Pub/Sub、Cloud Coposer、Lookerなど データエンジニアリングの業務について一般的な知識を整理しつつ、Google Cloud 上でどのように構築するのかを、実践経験豊富な著者陣の現場のノウハウとともに説明します。 ■こんな方におすすめ - すでにソフトウェアコードはある程度かけるが、実践的にデータエンジニアリングへの入門をしたい方 - SQL を利用した分析を行っているが、データ基盤がどういう形なのか興味がある方 - すでにGoogle Cloud をデータ基盤として利用しているが、自社の設計について体系的に理解したい方、より良くする方法を探している方 ■目次 第1章 データ基盤の概要 第2章 データウェアハウスの概念とBigQueryの利用方法 第3章 データウェアハウスの構築 第4章 レイクハウスの構築 第5章 ETL/ELT処理 175 第6章 ワークフロー管理とデータ統合 222 第7章 データ分析基盤におけるセキュリティとコスト管理の設計 第8章 BigQueryへのデータ集約 第9章 ビジネスインテリジェンス 第10章 リアルタイム分析 第11章 発展的な分析 - 地理情報分析と機械学習、非構造データ分析
  • 深層学習による画像認識の基礎
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 CNNとViTによる画像認識を本格的に学ぶために! 本書は、深層学習(ディープラーニング)に基づく2つの技術、畳込みニューラルネットワーク(CNN)とVision Transformer(ViT)を通して、画像認識の基礎を実践例とともに解説するものです。 画像認識技術は、顔認証や異常検知など、現代社会に欠かせない技術として広く応用されており、研究開発も盛んに行われています。本書では、確かな理解のもとに画像認識技術の研究開発が可能となるよう、前半において理論的な基盤(深層学習の基本事項、畳込みニューラルネットワーク(CNN)、Vision Transformer(ViT))を、紙数を割いてわかりやすく解説していきます。また後半では、画像認識の基本的手法である物体検出と領域分割、学習データの大規模化に欠かせない自己教師あり学習を実例とともに解説し、最終章では今後ますます重要になると見込まれるVision and Languageのマルチモーダル処理を詳細に扱います。 全体を通して、擬似コードなどでアルゴリズムを把握できるようにしたほか、Python(PyTorch)のサンプルコードも用意し、読者自身が手を動かして画像認識を実践することができるようにしました。 第1章 画像認識の概要 第2章 深層学習の基礎 第3章 畳込みニューラルネットワーク 第4章 Vision Transformer(ViT) 第5章 物体検出 第6章 領域分割 第7章 自己教師あり学習 第8章 画像と自然言語
  • ソフトウェア工学の基礎 30
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2023年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
  • ゲームAI研究の新展開
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ゲームAI研究の「これまで」と「これから」を第一線の研究者がわかりやすく解説  本書は,ゲームAI研究の「これまで」と「これから」を第一線の研究者がわかりやすく解説した書籍です.  ゲームAI研究は従来より,AIの社会実装における重要な示唆を与えるものとして大きな役割を果たしてきました.特に近年,深層学習の登場により注目を集める分野になっています.しかし,すべての情報を得られない不完全情報ゲームや実環境の外乱が結果を大きく左右するスポーツ等の不確定ゲーム,コミュニケーションがゲームの勝敗に大きな影響を与えるコミュニケーションゲームなど,まだまだ多くのゲームで人間を超えるゲームAIをつくることが困難な分野もあります.さらに,AlphaGoZeroが人間のプロを超越したとされる完全情報ゲームの囲碁でも,囲碁AIが陥ってしまう穴が見つかっています.  また,人間を超越したゲームAIが人間と共存するために求められる人間らしさや楽しさの理解,これからのデジタルゲームに求められるゲームデザインとゲームAI,ゲーム体験の評価手法および人間の認知機能の理解なども課題として残されています.  本書は,これまでのゲームAI研究の理解の上に,これからゲームAI研究をする人にとってヒントとなるエッセンスの詰まった必読書です. CHAPTER 1 ゲームと知能研究 1.1 知能研究におけるゲーム 1.2 ゲーム研究のメインストリーム 1.3 ゲーム研究の残された課題 CHAPTER 2 不完全情報ゲーム 2.1 CFR 2.2 ガイスター 2.3 大貧民 2.4 ポーカー 2.5 不完全情報ゲームのゲームAIの可能性 CHAPTER 3 不確定ゲーム 3.1 バックギャモン 3.2 バックギャモンのゲームAI 3.3 ゲームAIの評価の可視化 CHAPTER 4 コミュニケーションゲーム 4.1 ゲームにおける社会的相互作用 4.2 Hanabi 4.3 人 狼 CHAPTER 5 実環境のゲーム 5.1 カーリング 5.2 測定データの処理 5.3 研究事例 5.4 実環境で人間プレイヤを支援する技術 5.5 実戦運用と課題 5.6 ミニ四駆AI 5.7 ミニ四駆AIの技術と課題 CHAPTER 6 ゲームデザイン 6.1 ゲームにおけるゴール 6.2 ルール設定 6.3 ゲームデザインの表現 6.4 レベルデザイン 6.5 難易度の調整 CHAPTER 7 メタAIとプロシージャル コンテンツ ジェネレーション 7.1 メタAI,PCG,機械学習 7.2 メタAIとは 7.3 アルゴリズムによるPCG 7.4 機械学習を用いたPCG 7.5 学習を含んだMCS-AI動的連携モデル CHAPTER 8 人間らしさと楽しさの演出 8.1 人間らしさのさまざまな側面 8.2 ゲームの要素とAI技術 8.3 ゲームAIに求められる人間らしさ 8.4 人間プレイヤの人間らしさ 8.5 人間らしさの実装方法 8.6 人間プレイヤの感じ方のモデリング 8.7 実例(FPS,スーパーマリオブラザーズ,囲碁,不確定ゲーム) CHAPTER 9 ゲーム体験の評価 9.1 AlphaZero以後のゲームAI研究 9.2 主観的事項の評価・計測手法 9.3 楽しさの評価 9.4 今後の課題 CHAPTER 10 人間の認知機能とスキルアップの原理 10.1 スキルアップの原理 10.2 熟達にともなう潜在化と自動化 10.3 熟達者の認知特性の実例 10.4 熟達者の脳 CHAPTER 11 認知研究とAIの人間への影響 11.1 ゲームと認知研究 11.2 ゲームの認知科学的研究 11.3 生体データの計測と解析 11.4 ゲームによる学習支援 11.5 人間を超えるゲームAIの反響 11.6 将棋界に起こった変化と邂逅 11.7 囲碁AIが囲碁界に与えた影響 11.8 eスポーツとゲームAI 11.9 人間の知を超えたゲームAIとその応用
  • 徹底解説 NFTの理論と実践
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 NFTを仕組みとコードで知り尽くす!  NFTは、ブロックチェーン技術における最大のトレンドです。唯一無二のデジタルトークンとして、アートはもちろん、メタバースの不動産、チケット機能など、様々な応用があります。本書は、NFTについて基礎から応用まで深く学べる、実践的なガイドです。暗号通貨の歴史やブロックチェーンの基本概念、そしてスマートコントラクト設計やデプロイ方法など、理論と実践の双方を広くカバーします。すぐにデプロイできる多数のサンプルも紹介、NFTやDeFiの開発に興味ある方は必読の一冊です。この本を手に取って、NFTの深い世界に飛び込んでみてください! はじめに 第1章 NFTの全体像  1.1 NFTとは  1.2 NFTが誕生するまで  1.3 NFTの様々な事例  1.4 Fungibility?代替可能性とは  1.5 ブロックチェーンとNFT  1.6 NFTのエコシステム 第2章 NFTを体験する  2.1 ウォレットの準備  2.2 ETHの購入と出庫  2.3 NFTの購入  2.4 NFTの発行と販売. 第3章 NFTを支える技術  3.1 ブロックチェーンの設計思想と仕組み  3.2 BitcoinとEthereum  3.3 ブロックチェーンノードとNode as a Service  3.4 メインネットとテストネット  3.5 ブロックチェーンエクスプローラ  3.6 スマートコントラクト  3.7 Ethereum上のスマートコントラクト  3.8 コンテンツのホスティング  3.9 Dappsフロントエンドとweb3.js 第4章 最初のトークン:Hello NFT  4.1 事前準備  4.2 NFTコードの作成  4.3 ローカル環境でのテスト  4.4 パブリックブロックチェーンへのデプロイ  4.5 フロントエンドの実行  4.6 コントラクトコードのアップロード 第5章 スマートコントラクト開発に役立つ知識  5.1 Solidity言語について  5.2 Ownableによる管理用の関数の実装  5.3 アップグレード可能なコントラクト  5.4 ガスの節約  5.5 パブリックブロックチェーンへのデプロイ  5.6 テストの記述  5.7 TypeScriptを用いた開発 第6章 NFTの規格ERC-721について  6.1 実装すべき関数  6.2 2種類の移転関数  6.3 2種類の委任  6.4 実装すべきイベント1  6.5 トークンのメタデータについて  6.6 トークンを列挙できるようにするERC721Enumerable  6.7 発展的な内容 第7章 IPFS上のアートNFT  7.1 IPFSについて  7.2 Pinataへのアップロード  7.3 コントラクトの作成  7.4 トークンの発行  7.5 NFT売買サービスでの確認 第8章 チケットトークンの実装  8.1 設計について  8.2 チケットコントラクトの開発  8.3 フロントエンドの開発  8.4 バックエンドの開発  8.5 動作の確認  8.6 発展的な検討事項 第9章 ジェネラティブNFTの実装  9.1 設計について  9.2 コントラクトの開発  9.3 メタデータ生成ロジックとバックエンドの準備  9.4 フロントエンドの準備  9.5 動作の確認  9.6 テストネットでの実験 付録 索引
  • ハンズオンで分かりやすく学べる Google Cloud実践活用術 データ分析・システム基盤編
    -
    クラウドのサービスが高度化を続けています。素の仮想コンピューターに一からシステムを構築するというのはもはや時代遅れ。用意されたさまざまなサービスを組み合わせて短期間で目的のシステムを構築することが重要になっています。  Google Cloud(旧名称Google Cloud Platform=GCP)にはさまざまなサービスがあり、これらを活用することで、開発・運用・保守の短縮化・低コスト化・安定化が可能です。本書はGoogleの監修を受けており、2巻構成でGoogle Cloudの「AI・機械学習」「ビッグデータ」「コンテナ」の機能と使い方を解説します。本巻ではこの中で「ビッグデータ」と「コンテナ」に焦点を当てます。  ビッグデータを管理するBigQueryは従来のデータベースと異なり、インデックスを作る必要がないのが特徴。データ分析に力を発揮します。コンテナを管理するオーケストレーション・ツールではGoogleが開発したKubernetesが業界標準となっていますが、Google CloudではKubernetesを使いやすくするGoogle Kubernetes Engine(GKE)を用意しています。  本書ではハンズオンでこれらを学習できます。データはGoogleが用意しているものを使っているので、実際に試すのも容易です。
  • 医療AIとディープラーニングシリーズ 2021-2022年版 標準 医用画像のためのディープラーニング-実践編-
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 医用画像におけるディープラーニング(Deep Learning)をまとめた本格的なシリーズ  初版(2019年7月発行)以降の変更点を取り込んだ最新版!  医用画像に人工知能を本格的に導入するためのわかりやすい解説書。 ・TensorFlow+Kerasで行う ・Anaconda上で環境構築する ・データはだれでも入手できるデータを使う を基本的な方針としてまとめました。  少しでもプログラミングができれば、だれでも読み込める内容になっています。 Chapter 1 環境構築 Chapter 2 データの準備/前処理 Chapter 3 Shallow network の利用 Chapter 4 畳み込みニューラルネットワークの利用 Chapter 5 画像の領域分割( U-Net) Chapter 6 動画像のシーン分割と分類 Chapter 7 画像のノイズ除去 Chapter 8 画像の超解像 Chapter 9 画像の特徴抽出 Chapter 10 画像の変換や生成 Chapter 11 評価方法
  • SPINによる設計モデル検証
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 昨今、ソフトウェアの正しさを保証するソフトウェア検証の技術が重要視されているが、その中でも特にモデル検査が脚光を浴びている。それは数理論理学などに関する知識があまりない技術者にも、ソフトウェア開発の中で利用することが可能だからであろう。本書はSPINを中心にモデル検査をいかにしてソフトウェア開発のプロセスの中に位置づけるかについて実例を通して詳説している。
  • ソフトウェアパターン
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、実際にアーキテクチャを設計するための具体的なスキルとして設計原則や開発プロセスと対応付けながら、アーキテクトの最も基本的な素養としてのソフトウェアパターンを丁寧に解説している。ソフトウェアアーキテクト育成ための理論と実践という観点でバランスのとれた書籍であり、独習書として実務家にも最適である。
  • Bメソッドによる形式仕様記述
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 仕様の段階で誤りをなくす注目の手法「Bメソッド」を実践活用するための解説書。安心安全を含めてますます高度な機能や性能が要求されるソフトウェアシステムの開発において、厳密な仕様記述を基に開発を行う形式手法に対する関心と期待が高まっている。本書は、我が国初のBメソッドの書き下ろし入門書である。実際の開発への適用を意識した実用指向の内容が、平明でわかりやすく記述されている。
  • Google Colaboratoryで学ぶ!あたらしい人工知能技術の教科書 第2版 機械学習・深層学習・強化学習で学ぶAIの基礎技術
    -
    待望の第2版! 定番のAI開発プラットフォームで 機械学習や深層学習、強化学習、転移学習の 基礎を習得 【本書の概要】 本書はUdemyで大人気の講座『AIパーフェクトマスター講座 -Google Colaboratoryで隅々まで学ぶ実用的な人工知能/機械学習-』をもとにした書籍です。 ●機械学習(回帰、k平均法、サポートベクターマシン) ●深層学習(画像識別や画像生成、RNN) ●強化学習(Cart Pole問題、深層強化学習) などのAI開発で必要となる人工知能技術について解説します。 サンプルを動かしながら、AI技術の仕組みを理解できます。 開発環境にはGoogle Colaboratoryを使用します。 【Google Colaboratoryとは】 ブラウザ上で利用できる機械学習や深層学習向けの開発環境です。 GPUを無料で利用できるので、コードの実行時間を大幅に短縮できます。 【本書ポイント】 ●機械学習・深層学習・強化学習の基礎知識を一気に学べる ●Pythonでコードを動かしながら機械学習・深層学習・強化学習の理論を学べる 【第2版の変更点】 ●Google Colaboratory環境のアップデート(2024年8月時点) ●各種ライブラリのアップデート ●データセット(住宅データ)の変更 【対象読者】 ●何らかのプログラミング経験のある方 ●機械学習・深層学習・強化学習を学ぶ意欲のある方 ●高校数学以上の数学知識のある方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • 図解 深層学習 数理で理解する基本原理
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【豊富な図と数式のコンビで、深層学習の基本原理が直感的に理解できる!】  本書では「深層学習に使用する数学」について、意味を直感的に理解できるように図を多用することで式を補完する。  第I部では深層学習についての基礎事項と次の部で使用する数学について、第II部ではニューラルネットワーク(深層学習)の中身について、第III部では深層学習の自動チューニングについてそれぞれ詳述。深層学習の実践・応用へステップアップするための基礎がじっくりと学べる、第一歩に相応しい一冊。
  • 対話システムの作り方
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Amazon社のAlexaやマツコロイドなど、人との対話を通して仕事をこなすコンピュータ内蔵システムやロボットが活躍している。  私たちが日常使う言語(自然言語)を、AIを用いてコンピュータに組み込むための技術「自然言語処理」を集めた本シリーズの第5巻『対話システムの作り方』では、様々な実例を通して対話システムを体系的に紹介していく。マツコロイドの制作にも関わった著者が、対話というものの本質から目的に沿った対話システムの作り方まで、幅広く解説する。対話システムの導入書!
  • アジャイルイントロダクション Agile開発の光と影
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 アジャイル導入のメリット最大化へ!  ソフトウェア工学分野の“大御所”バートランド・メイヤー博士の手による、アジャイル入門書にして具体的な開発手法にまで言及した一冊。アジャイルのプラス面だけでなく、マイナス面にも切り込んで紹介している点が本書の特徴である。  アジャイルができること・できないこと、世間一般のアジャイルへの誤解などを明らかにすることで、アジャイル導入のメリットの最大化を目指す。各章ともコンパクトにまとめられており、初学者でも無理なく読み進められる一方、開発現場で頻出する諸問題にも詳しいため、現場レベルでも役立つ。
  • 形態素解析の理論と実装
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 言語において意味を成す最小の要素である「形態素」の解析方法について、技術者向けにその理論や実装方法を網羅的、体系的に解説する。実装や高速化等を扱いつつ、辞書やコーパスなどの言語資源の構築・利用についてもカバー。解析ツールを「ブラックボックス」として使っている人も中身を理解したうえで拡張・改良できる道筋ができ、ひいては独自の辞書の作成を目指せるようになる。C++11を使った具体的な実装方法も掲載。 199
  • 深層学習
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 深層(多段層)ニューラルネットワークの構築は人工知能を模索する研究者にとっては、長年の課題であり夢でもあり、まさに研究対象でもあった。しかしただ単に多層化するだけでは、能力をうまく発揮することは出来なかった。近年、大きなブレークスルーがあり深層学習の手法を使うことにより、機械が自ら表現を学習出来ることが分かった。しかし、新しい手法でもあり、未解決な課題も多く存在している。 本書は、この分野の最先端の著者らが、人工知能学会誌に掲載した連載解説を、大幅に加筆再編したものである。今までの到達点、今後の課題が、具体的な研究成果と共に書かれている。深層学習の理論・応用を、自らの研究に取り込むことを考えている読者には、まさに必携必読の書籍である。
  • ディジタル情報流通システム コンテンツ・著作権・ビジネスモデル
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、ITの本質を分析し、これからのブロードバンド社会にむけた技術開発の方向を明らかにすることを目的とする。
  • 試して学ぶ Dockerコンテナ開発
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンテナ型の仮想環境を作成、実行するためのプラットフォーム、Dockerの実践解説書。 本書は、エンジニアが普段行うようなWebアプリケーション開発環境の構築を、Dockerを用いて行うにはどのようにすればよいか、またその環境をDockerで作ることによってどのように開発を効率化させることができるか、にフォーカスした内容となっています。 PHPのLaravel、Node.jsのNuxt.js、RubyのSinatraとRuby on Rails、PythonのPyTorchといった、Webアプリケーションや機械学習の領域で用いられているものを対象として取り上げました。それぞれの解説は独立したものとなっているので、読者の方が使っている言語はもちろん、経験していない言語やフレームワークを試すのにも良いでしょう。
  • 試して学ぶ スマートコントラクト開発
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、スマートコントラクトアプリケーションを事例として、パブリックなブロックチェーンを用いたスマートコントラクト開発の手法を紹介する書籍です。 スマートコントラクトプラットフォームのデファクトであるEthereumと、スマートコントラクトを開発するためのプログラミング言語Solidityを中心に取り上げ、実際にアプリケーションを開発するためのプロセスを体験することができます。 スマートコントラクトのコーディングやテスト手法はもちろん、フロントエンドやミドルウェアを含めたアプリケーション提供のための包括的な手順を説明しています。さらに、ブロックチェーンの特徴を活かすサービスデザインの取り組みも紹介します。
  • つくりながら学ぶ!PyTorchによる発展ディープラーニング
    4.3
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書ではディープラーニングの発展・応用手法を実装しながら学習していきます。ディープラーニングの実装パッケージとしてPyTorchを利用します。扱うタスク内容とディープラーニングモデルは次の通りで「ビジネスの現場でディープラーニングを活用するためにも実装経験を積んでおきたいタスク」という観点で選定しました。 [本書で学習できるタスク] 転移学習、ファインチューニング:少量の画像データからディープラーニングモデルを構築 物体検出(SSD):画像のどこに何が映っているのかを検出 セマンティックセグメンテーション(PSPNet):ピクセルレベルで画像内の物体を検出 姿勢推定(OpenPose):人物を検出し人体の各部位を同定しリンク GAN(DCGAN、Self-Attention GAN):現実に存在するような画像を生成 異常検知(AnoGAN、Efficient GAN):正常画像のみからGANで異常画像を検出 自然言語処理(Transformer、BERT):テキストデータの感情分析を実施 動画分類(3DCNN、ECO):人物動作の動画データをクラス分類 本書は第1章から順番に様々なタスクに対するディープラーニングモデルの実装に取り組むことで高度かつ応用的な手法が徐々に身につく構成となっています。各ディープラーニングモデルは執筆時点でState-of-the-Art(最高性能モデル)の土台となっており、実装できるようになればその後の研究・開発に役立つことでしょう。 ディープラーニングの発展・応用手法を楽しく学んでいただければ幸いです。
  • DETR&最新・物体検出アーキテクチャ入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Transformerを用いた代表的検出モデル「DETR」を中心に、ViT(Vision Transformer)による物体領域の検出、「CenterNet」による中心点予測型の検出、言語生成型アプローチである「Pix2Seq」、さらには「RetinaNet」などのCNN系アーキテクチャまで幅広くカバー、近年の物体検出分野の主要モデルを、比較・理解しながら習得できます。 全編にわたり、「Keras」(一部対応)と「PyTorch」の両ライブラリに対応しており、モデルの構築、推論、可視化、バックボーン(ResNet101/152)の変更や、COCOデータセットを用いた大規模推論処理の実装までを丁寧に解説しました。 画像分類のその先…「どこに、何があるのかを検出する」という実践的課題に挑むすべての人にお勧めの一冊です。 1章 開発環境について 2章 ViTモデルによる物体領域の検出(Keras) 3章 ViTモデルによる物体領域の検出(PyTorch) 4章 CenterNetによる物体領域の検出(PyTorch) 5章 DETRモデルによる物体検出(ResNet101) 6章 ResNet152をバックボーンとするDETRによる物体検出 7章 COCOトレーニングセットを使用下物体検出 8章 事前トレーニング済みDETRモデルによる物体検出 9章 Pix2Seqモデルを用いた物体検出(PyTorch) 10章 RetinaNetによる物体検出(Keras)
  • データビジュアライゼーションのためのデザイン原則 日常的に扱うデータを効果的に伝わる情報に変える
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「データを伝える力」を高める、データ実務者のためのデザイン原則 データ理解からデザインの基礎、ダッシュボード設計まで網羅した可視化の必読書 (Data Graphics Inc. 荻原和樹 推薦) データビジュアライゼーションデザインの実践に役立つ知識を体系的に解説。データの基礎知識から人間が情報をどう認識・処理するか、アクセシビリティ、色彩理論、タイポグラフィ、良いチャートの作り方、インタラクションデザイン、ダッシュボード設計まで幅広く紹介しています。 ●目次 第1部  第1章 データビジュアライゼーションの世界にようこそ  第2章 人はどのようにして情報を認識するか  第3章 データについての基礎知識 第2部  第4章 色の選択  第5章 タイポグラフィ  第6章 よいチャートの作り方  第7章 インタラクションデザイン 第3部  第8章 調査立案、デザイン設計、製作開発  第9章 トラブル対策 付録 参考資料 ●著者 ●著者 Desireé Abbott 製品分析、ビジネス インテリジェンス、科学、設計、ソフトウェア エンジニアリングの分野で10年以上の経験を持つ。 ●日本語版監修 山辺真幸 博士(政策・メディア) 情報可視化研究者。一橋大学大学院ソーシャル・データサイエンス研究科特任講師、慶應義塾大学大学院メディアデザイン研究科特任講師。複雑な大規模データのビジュアライズデザインを専門とし、手掛けた作品は、NHK、日本科学未来館などで展示されている。グッドデザイン賞、可視化情報学会賞、他受賞多数。 ●翻訳 長尾 高弘 株式会社ロングテール社長、技術翻訳者。最近の訳書として『数式なしでわかるAIのしくみ』(マイナビ出版)、『Wiring the Winning Organization 成功する組織を導く3つのメカニズム』(日本能率協会マネジメントセンター)、『scikit-learn、Keras、TensorFlowによる実践機械学習 第3 版』(オライリー・ジャパン)、『Web APIテスト技法』(翔泳社)、『継続的デリバリーのソフトウェア光学』(日経BP 社)、『Scalaスケーラブルプログラミング 第4 版』(インプレス)などがある。 ※この商品は固定レイアウト型の電子書籍です。 ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 ※お使いの端末で無料サンプルをお試しいただいた上でのご購入をお願いいたします。 ※本書内容はカラーで制作されているため、カラー表示可能な端末での閲覧を推奨いたします
  • 機械学習でできる! 細胞培養の最適化
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 細胞培養(培地最適化)へ機械学習を応用するための基礎やノウハウを解説 本書は細胞培養(培地最適化)へ機械学習を応用するための基礎やノウハウを解説した書籍です.現状,細胞培養に機械学習を応用しようとすると,情報工学や数理統計学のテキストを読む必要がありますが,これらでは情報工学や数理統計学の基本的なカリキュラムを修了していることが前提とされていて,細胞培養のエンジニアや学生が読みこなすのは大変です. また,情報工学や数理統計学において重要な基本原理の解説と研究事例の紹介がメインであり,必ずしも細胞培養に応用するうえで,「機械学習をどう利用するのか」「どうやってデータサイエンス化するのか」について,詳しく書いてあるわけではありません. 本書では,情報工学や数理統計学のノウハウがなくても,つまり,AIの素養がなくても,読者ご自身の細胞培養の定量性や再現性を高め,予測可能な結果につなげるためのヒントをまとめたものです.著者の経験をもとに,機械学習を応用する大切なポイントを解説しています. 第1章 細胞培養の基礎を押さえよう  1.1 細胞培養について  1.2 細胞培養のための培地選び   第2章 細胞培養を定量化しよう  2.1 細胞の数を計測してみよう  2.2 増える細胞の様子を数値化しよう   第3章 細胞培養をデータ化しよう  3.1 データサイエンスの基本をざっくり把握しておこう  3.2 細胞培養・培地をデータ化しよう  3.3 データ化するための自動化    第4章 細胞培養を学習分析しよう  4.1 機械学習について知ろう  4.2 細胞培養のデータでデータサイエンスを行おう 第5章 細胞培養を最適化しよう  5.1 最適化するための方法  5.2 機械学習のアルゴリズムを押さえよう  5.3 学習データを取得しよう  5.4 モデルを訓練しよう   第6章 アクティブラーニングを活用しよう  6.1 アクティブラーニング   6.2 応用と展望
  • 改訂新版 前処理大全~SQL/pandas/Polars実践テクニック
    -
    【データ加工の技とモダンなコードで織りなすAwesomeな実践知識を厳選!】  BigQuery、Pandas、Polarsを使った実用的なモダン前処理を学びましょう!  データ分析において前処理が重要かつ多くの時間をとられる業務であることは広く知られてきました。同時に前処理を実現するためのライブラリは大きく改善されてきています。また、機械学習モデルの進化によって、求められる前処理の内容も変わってきています。本書は、初めて学ぶ方にも昔学んでから知識をアップデートしていない方にも、悪いサンプルコードと良いサンプルコードを紹介しながら丁寧にデータ分析の前処理を学べる技術書です。  本書は、第一版の前処理大全から大きく構成や内容を変更しています。SQLはBigQuery準拠に変更し、Pandasは最新バージョンの思想に沿い新機能を使ったコードに変更しました。Rの代わりにR同様にパイプラインで書きやすくかつ処理エンジンがRustベースで書かれているため高速なPolarsに変更しました。また、前処理内容も大きく変更し、より現在よく使われる処理を実用ケースとともに解説しています。また、新たな試みとしてコラムとして少しマニアックだけど役立つプログラムの裏側の解説や分析テクニックを紹介しており、中級者の方にとっても有用な知識をお届けしています。 ■こんな方におすすめ データ処理業務に従事するエンジニア、データ分析者 ■目次 ●Part1 前処理の基礎知識   第1章 前処理とは   第2章 SQL   第3章 pandas   第4章 Polars ●Part2 データの構造を対象とした前処理   第5章 抽出   第6章 集約   第7章 結合   第8章 分割   第9章 整形 ●Part3 データの内容を対象とした前処理   第10章 数値   第11章 カテゴリ   第12章 日時   第13章 文字列   第14章 ウィンドウ関数 ●Part4 実践前処理   第15章 演習問題 ■著者プロフィール 本橋智光(モトハシトモミツ):SIerの研究員、Web系企業の分析者を経て、SUSMEDのCTO。株式会社ホクソエムのメンバーでもある。基盤・Webアプリ・機械学習・数理最適化等幅広くこなす。最近の好きなプログラミング言語はRust。 橋本秀太郎(ハシモトシュウタロウ):北海道大学 大学院情報科学研究科 博士後期課程修了。博士(情報科学)。大学院修了後はSIerでデータ分析関連の研究開発やコンサルティングに従事。現在は国内でも有数の膨大なデータを持つインターネット企業に勤め、データサイエンスチームのリードとして、日々サービスグロースのためのデータ分析を行う。
  • 自然計算へのいざない
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 実は自然は計算をしている! 自然界は、私たちが考える以上に様々な手法で計算をしている。 本書は、その計算手法—アルゴリズム—を読み解き、新たな情報処理を確立しようという最先端の試みを、数式を極力避けて平易に解説した。わくわくする最先端の科学・技術に興味のある学部生、大学院生、研究者には必携の書である。
  • 現場で使える!機械学習システム構築実践ガイド デザインパターンを利用した最適な設計・構築・運用手法
    -
    機械学習システムを実用化する 設計・開発・運用ノウハウが満載 【本書の概要】 本書は前著『AIエンジニアのための機械学習システムデザインパターン』(ISBN 978-4798169453 )では触れられなかった、 機械学習システムを構築する上で実際に発生する課題を想定し、 動いているシステムやワークフローに機械学習を組み込む方法を解説した書籍です。 特にニーズの高い以下の機械学習システムの例を用意しています。 ・需要予測システム ・違反検知システム 【本書で学べる内容】 本書を読むことで、ケーススタディとして機械学習を実用化するための、 ・課題設定 ・ワークフロー設計 ・システム開発 ・チーム設計 を学ぶことできます。 【対象読者】 AI エンジニア、システムエンジニア 【目次】 第1章 課題、チーム、システム 第2章 需要予測システムを作る 第3章 動物画像アプリで違反検知システムを作る 第4章 動物画像アプリの検索に機械学習を活用する 【著者プロフィール】 澁井 雄介(しぶい・ゆうすけ) Launchable Inc所属。 MLOpsエンジニア、インフラエンジニア、バックエンドエンジニア、Androidエンジニア、ネコ2匹の飼い主。家に猫用ハンモックが4台ある。 本業でDeveloper ProductivityのためのMLOps・データ基盤を開発しつつ、MLOpsコミュニティの運営や副業に精を出している。 過去にはSIer、外資ソフトウェアベンダー、スタートアップで新規プロダクトの起ち上げ、大規模システム運用、チームマネジメントに従事。 前々職のメルカリにて機械学習をシステムに組み込むデザインパターンを執筆、公開。 ・GitHubで「mercari/ml-system-design-pattern」と検索 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • 基礎から学ぶ 量子計算 ―アルゴリズムと計算量理論―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 丁寧な解説と豊富な演習問題により、量子計算のアルゴリズムと計算量理論について一から理解できる 量子計算のアルゴリズムと計算量理論について、一からわかりやすく解説した書籍です。 現在、大きな注目を集めている量子コンピュータによる計算(量子計算)は、従来のコンピュータによる計算(古典計算)と比べて、いわゆる指数関数的な高速化を実現することがあります。 その一方で、この高速化は量子力学の基礎原理をもとにしており、アルゴリズムと計算量理論の分野の言葉で記述されるものです。したがって、この高速化の現象を正しく理解するには、量子力学特有の重ね合わせの原理とエンタングルメントをはじめとした量子計算のアルゴリズム、および、計算量理論をひと通り理解する必要があります。 本書は、線形代数と離散数学の基本的な知識のみを前提として、量子計算の原理について初学者向けに丁寧な解説を行っています。 数多くの例題と演習問題を収載しており、読者自ら手を動かしながら学ぶことができます。 第1章 計算理論の基礎事項 1.1 文字列,計算問題 1.2 ブール回路 1.3 二進列に対する演算 1.4 計算量クラス 1.4.1 P, NP, EXP 1.4.2 多項式時間帰着とNP完全問題 1.4.3 オラクル 1.4.4 乱択アルゴリズムと計算量クラス 第2章 ブラケット記法と量子計算でおなじみの行列 2.1 ベクトル 2.2 行 列 2.3 量子計算でよく出現する行列 2.3.1 ユニタリ行列 2.3.2 正規行列,エルミート行列 2.3.3 射影行列 2.3.4 半正定値行列 第3章 量子情報の基礎 3.1 量子ビット,量子状態 3.1.1 量子ビット,量子状態の測定 3.1.2 量子ビットの幾何的描像 3.1.3 量子ビット,量子状態の時間発展 3.1.4 量子ランダムアクセス符号 3.1.5 量子鍵配送 3.2 複数の量子ビット 3.2.1 テンソル積 3.2.2 複数の量子ビットからなる量子状態 3.2.3 複数の量子ビットの時間発展および測定 3.2.4 部分系の測定 3.2.5 CHSHゲーム 3.2.6 量子テレポーテーション 3.3 観測量 3.4 混合状態 3.4.1 1量子ビットと密度行列 3.4.2 部分トレースと混合状態 3.5 POVM 3.5.1 3ビット量子ランダムアクセス符号 3.5.2 2値POVM の実現方法 3.6 発展的な概念 3.6.1 トレース保存完全正値写像 3.6.2 近似と距離 第4章 量子回路 4.1 基本ゲート,量子回路 4.2 古典計算vs量子計算 4.3 量子計算の計算木 4.4 万能量子ゲート集合 4.5 よく使用される量子回路 4.5.1 量子回路のワイヤの交換 4.5.2 量子アダマール変換と一様重ね合わせ状態の生成 4.5.3 量子フーリエ変換 4.5.4 アダマールテスト 4.5.5 SWAPテスト 4.6 空間的制約が課された量子回路 第5章 量子アルゴリズム 5.1 Deutsch?Jozsaの量子アルゴリズム 5.2 Groverのアルゴリズム 5.2.1 量子計算に古典アルゴリズムを組み込む 5.2.2 量子振幅増幅 5.3 Simonのアルゴリズム 5.4 位数発見アルゴリズム 5.5 量子特有の問題に対する量子アルゴリズム 5.5.1 位相推定 5.5.2 量子シミュレーション 5.6 その他の量子アルゴリズム 5.7 通信を含む計算問題に対する量子プロトコル 第6章 量子計算量クラス 6.1 Pの量子版:BQP 6.1.1 BQPとNPの関係 6.1.2 BQPを含む古典計算量クラス 6.2 NPの量子版:QMA 6.3 量子対話型証明 6.4 量子多証明者対話型証明 付録 A.1 群と体 A.2 オーダ記法 A.3 チューリング機械 A.4 非決定性チューリング機械 A.5 確率チューリング機械 A.6 PSPACEとEXP
  • Applied AI 人工知能活用と「賢さ」の実装
    -
    本書は「応用人工知能」という視点で、広がるAI応用の全体像は何なのかをまとめています。AIの変遷とこれからを解説することで、AI応用を志す人たちが知るべき道筋を示した一冊。
  • セルオートマトンによる知能シミュレーション ―天然知能を実装する―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 あの「天然知能」を情報科学として明快に解説! 本書は、セルオートマトンによる知能のシミュレーションについて、基本的な考え方から学ぶものです。 オートマトンの基礎から解説を始め、セルオートマトンに見られる典型的な現象(相転移、カオスの縁)、セルオートマトンと人工知能との対応、非同期調整セルオートマトンと著者らの提唱する「天然知能」との対応、リザバーコンピューティングによる実装の手法までを、順を追って解説します。 「天然知能」は、人工知能(RNN)のように初期情報と因果関係(規則)のみに従って結論を出すものではなく、推論過程で外部の情報に触れることにより結論が変わり得る仕組みであり、現実の思考過程・創造に向かう意識の変化にふさわしい概念として提唱されたものです。 第0章 本書の構成 第1章 はじめに:オートマトンから生命的計算へ 1.1 計算機としてのオートマトン 1.2 セルオートマトンによる世界の模倣 1.3 カオスの縁は本当なのか 1.4 天然知能的理解・天然知能的オートマトンへ 第2章 非同期ライフゲームによる確率的論理ゲート 2.1 ウォーミングアップ:本書におけるオートマトンの使用法 2.2 ライフゲームの規則とグライダー 2.3 非同期ライフゲームと相転移 2.4 非同期ライフゲームにおける計算の可能性 2.5 ゆらぎを利用する確率的論理回路 第3章 1次元セルオートマトン 3.1 初等セルオートマトン(ECA) 3.2 ECAの時空間パターン 3.3 1次元セルオートマトンの四つのクラス 第4章 ランダムさ・複雑性・べき乗則 4.1 ビット列のランダムさとエントロピー 4.2 1次元セルオートマトンのランダムさと複雑さ 4.3 べき乗則 第5章 カオスの縁 5.1 1次元セルオートマトンと「カオスの縁」 5.2 浸透セルオートマトンと相転移 第6章 セルオートマトンの天然知能化 6.1 同型性の発見・解体・転回 6.2 受動・能動の一致を実現する人工知能的描像 6.3 受動/能動のトラウマ構造―1:順序型・非同期時間 6.4 受動/能動のトラウマ構造―2:休止型・非同期時間 6.5 非同期調整オートマトン:脱色されたトラウマ 第7章 非同期調整オートマトンの実装 7.1 1次元セルオートマトンにおける同期と非同期 7.2 非同期調整オートマトンの実装 7.3 非同期調整オートマトンの時空間パターン 第8章 非同期調整オートマトンの臨界性 8.1 カオスの縁を超えて普遍的臨界性へ 8.2 パワースペクトルと1/fゆらぎ 第9章 計算万能性と計算効率のトレードオフ 9.1 万能性と効率は比較可能か 9.2 同期計算における万能性と効率のトレードオフ 9.3 非同期計算における万能性と効率のトレードオフ 9.4 非同期時間が内包する同期時間ルールの多様性 9.5 非同期調整が破るECAのトレードオフ 第10章 リザバー計算への実装 10.1 ニューラルネットとリザバー計算 10.2 ECAを用いたリザバー計算 10.3 非同期調整オートマトンを用いた天然知能的学習システム 第11章 おわりに 参考文献
  • Google Colaboratoryで学ぶ!あたらしい人工知能技術の教科書 機械学習・深層学習・強化学習で学ぶAIの基礎技術
    3.5
    最新のAI開発プラットフォームで 機械学習・深層学習・強化学習の 基礎技術を学ぼう! 【本書の概要】 本書はUdemyで大人気の講座 『AIパーフェクトマスター講座 -Google Colaboratoryで隅々まで学ぶ実用的な人工知能/機械学習-』をもとにした書籍です。 ・機械学習(回帰、k平均法、サポートベクターマシン) ・深層学習(画像識別や画像生成、RNN) ・強化学習(Cart Pole問題、深層強化学習) といった、AI開発でニーズの高い人工知能技術を、深層学習を中心に解説しています。 また本書ではサンプルを用意していますので、サンプルを動かしながら、AI技術の仕組みを理解できます。 開発環境にはGoogle Colaboratoryを使用します。 【Google Colaboratoryとは】 ブラウザ上で利用できる機械学習や深層学習向けの開発環境です。 GPUを無料で利用できるので、コードの実行時間を大幅に短縮できます。 【本書ポイント】 ・機械学習・深層学習・強化学習の基礎知識を一気に学べる ・Pythonでコードを動かしながら機械学習・深層学習・強化学習の理論を学べる 【対象読者】 ・何らかのプログラミング経験のある方 ・機械学習・深層学習・強化学習を学ぶ意欲のある方 ・高校数学以上の数学知識のある方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。 人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • テキスト処理の要素技術
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 実践・自然言語処理シリーズの第3巻。本書は自然言語処理におけるテキスト処理の様々な要素技術を、実用的な手法に厳選してまとめている。前処理、類似度、重要度、検索、要約、フィルタリング処理といった基礎的な処理方法が網羅され、自然言語処理の各種ツールの使い方も丁寧に解説している。教科書だけでは不十分な、実践に足る情報をこの一冊を通して得ることができる。
  • 現場で使える!Python深層強化学習入門 強化学習と深層学習による探索と制御
    4.0
    注目の最新AI技術!深層強化学習の開発手法がわかる! 第一線で活躍する著者陣の書下ろしによる待望の1冊! 【本書の目的】 AlphaGo(アルファ碁)でも利用されている深層強化学習。 AIサービスのみならずロボティクス分野でもその応用が期待されています。 本書は、AI開発に携わる第一線の著者陣が深層強化学習の開発手法について書き下ろした注目の1冊です。 【本書の特徴】 第1部では、まず、深層強化学習の概要について説明します。 次いで、強化学習の基礎(Q学習、方策勾配法、Actor-Critic法)と深層学習の基礎(CNN、RNN、LSTM)を解説します。 さらに、簡単な例題として倒立振子制御を取り上げ、DQNとActor-Critic法による実装例を紹介します。 第2部では、具体的な応用例として3つのアプローチを実装込みで解説します。 1つ目は、連続動作制御です。ヒューマノイドシミュレータの2足歩行制御を試みます。 2つ目は、パズル問題の解法です。巡回セールスマン問題(TSP)やルービックキューブの解探索について説明します。 3つ目は、系列データ生成です。文書生成(SeqGAN)やニューラルネットワークのアーキテクチャ探索(ENAS)を解説します。 全体を通して、行動の制御を担うエージェントのモデル化と、方策ベースの強化学習によるエージェントの学習法について学ぶことができます。 【読者が得られること】 深層強化学習による開発手法を学ぶことができます。 【対象読者】 深層強化学習を学びたい理工学生・エンジニア ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Rによる多変量解析入門 データ分析の実践と理論
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 多変量解析手法の理論と実践をバランスよく習得できる!  様々な媒体、経路を通じて大規模データが、驚くほど低コストで入手できるようになった現在、多変量解析手法に習熟したデータサイエンティストに対する学術界、ビジネス界からのニーズは非常に高まっており、これに対して大学や企業では、高いデータ解析力を持った人材の育成に注力し始めています。しかし、多くの多変量解析についての学習書は、理論的な説明に終始し、実務場面でどのように利用されているかについて、殆ど配慮がないのが現状です。  そこで本書は、多変量解析手法の理論と実践をバランスよく解説することで、統計が得意ではない大学生や実務者にも利用しやすい構成とし、本書1冊で多変量解析手法を実務に応用できるまで習得できる内容となっています。 第I部 多変量解析の基礎 第1章 多変量解析の基礎を学びたい―R による多変量データの基本的な統計処理 第2章 R によるデータハンドリングを学びたい ―アンケートデータと ID-POS データのハンドリング 第II部 量的変数の説明・予測 第3章 現象を説明・予測する統計モデルを作りたい (1) ―重回帰分析 第4章 現象を説明・予測する統計モデルを作りたい (2) ―階層的重回帰分析 第5章 さまざまな集団から得られたデータを分析したい―マルチレベルモデル 第6章 複雑な仮説を統計モデルとして表したい (1)―パス解析 第III部 心理尺度の分析 第7章 心理尺度を開発したい (1) ―探索的因子分析 第8章 心理尺度を開発したい (2) ―確認的因子分析 第9章 複雑な仮説を統計モデルとして表したい (2) ―潜在変数を伴うパス解析 第IV部 質的変数の説明・予測 第10章 クロス集計表をもっとていねいに分析したい―対数線形モデル 第11章 カテゴリに所属する確率を説明・予測したい―ロジスティック回帰分析 第V部 個体と変数の分類 第12章 似たもの同士にグループ分けしたい―クラスター分析 第13章 質的変数間の連関を視覚化したい―コレスポンデンス分析 第VI部 多変量解析を使いこなす 第14章 データが持つ情報を視覚化したい―パッケージggplot2による描画 第15章 多変量解析を実践で生かしたい―手法の組み合わせ
  • 実践MLOps ―作って理解する機械学習システムの構築と運用―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 手を動かして理解する、実務で役立つMLOps 本書は、サービスに活用できる機械学習システムの開発・運用を解説する書籍です。  機械学習をサービスで活用するとき、機械学習モデル自体ではなく、運用上・管理上の問題に直面することは数多くあります。どれだけ優れた機械学習モデルを構築できたとしても、それをサービスに活かすためのシステムがなければ運用できません。  そこで本書では、機械学習システムを運用するための技術であるMLOpsを、機械学習システムの構築を通じて学んでいきます。具体的には、広告クリック率をリアルタイムで予測する機械学習システムをAWS上にデプロイします。  機械学習パイプラインや推論サービスの構築だけでなく、バージョニングやシステム監視など、サービス活用のために必要とされる一歩進んだ内容にまで踏み込んでいる点が特徴です。 【このような方におすすめ】 ◎ 機械学習システムに関わるソフトウェアエンジニア ◎ 開発だけでなくデプロイまで行うデータサイエンティストや機械学習エンジニア 〇 機械学習をビジネス活用しようと考えているプロダクトマネージャー 〇 機械学習をサービスで活用している企業で働きたいと考えている大学生 はじめに・目次 1章 MLOps概要 2章 環境構築 3章 モデル作成 4章 機械学習パイプライン 5章 実験基盤 6章 バージョン管理 7章 CI・CD 8章 推論サービス 9章 継続的学習 10章 監視 索引
  • 人工知能と哲学と四つの問い
    -
    人工知能と哲学、「人」に迫る二つの学問が影響し合うその先を問い、考える  本書は、人工知能学会誌『人工知能』の連載記事:レクチャーシリーズ「AI哲学マップ」および関連記事を再編集し、書籍化するものです。  レクチャーシリーズ「AI哲学マップ」は、人文系(主に哲学)の研究者と人工知能分野の研究者の対談から、相互の知見を共有し集積した先に、「人工知能のフロンティアを描き出す」ことを目的として企画されました。本書では、記事・対談の内容から浮かび上がった下記四つの問いを提示し、これらを軸に対談内容を理解することで、人工知能研究の「現在地」と「方向性」を明らかにし、学問としての発展に示唆を与えます。  問い1 人工知能にとってコミュニケーションとは何か  問い2 人工知能にとって意識とは何か  問い3 人工知能にとって社会とは何か  問い4 人工知能にとって実世界とは何か  記事再編にあたり、人工知能を専門としない多くの方々にもわかりやすく読めるよう、技術解説の補足や挿絵の追加など、内容理解の助けとなる工夫を凝らしました。 はじめに 問い1 人工知能にとってコミュニケーションとは何か 問い2 人工知能にとって意識とは何か 問い3 人工知能にとって社会とは何か 問い4 人工知能にとって実世界とは何か おわりに 注釈語索引 対談参加者プロフィール一覧
  • DataRobotではじめるビジネスAI入門 [DataRobot Japan 公式ガイドブック]
    -
    AIの民主化! DataRobotで AIドリブンな意思決定を実現! 【本書の概要】 本書は、データ準備からAI(機械学習)モデルの生成、モデルの実運用化などデータ・AI活用のステップを エンドツーエンドで自動化してくれる「DataRobot」を利用してAIのビジネス活用を実現する手法を解説した書籍です。 DataRobotを使えば、データサイエンティストやAIエンジニアのように専門知識を持たないユーザーでも、 シチズンデータサイエンティストとしてAI活用の最先端に立ち、AIドリブンな意思決定を実現できます。 【対象読者】 ・ビジネスアナリスト:BIツールやSQLなどを使ってデータ分析をしている方 ・マネジメント層:「AIで何かをやれ」ではなく、最低限のAIの知識を持って技術者と話せるようになりたい中間管理職の方 ・エンジニア:統計分析やプログラミングなどの技術を日常的に使っているものの、AI技術には馴染みのない方 【本書の特徴】 本書はDataRobot初心者に必要となる前提知識、基本操作、データ準備、モデル生成、モデルの評価・解釈などにおける ベストプラクティスを網羅した入門書です。 また業務活用編として自社のビジネスに合わせた利用方法のヒントも紹介しています。 【著者プロフィール】 中山晴之、小島繁樹、川越雄介、香西哲弥 DataRobot Japan 執筆メンバー。 【著者・監修者プロフィール】 シバタアキラ(DataRobotJapan チーフデータサイエンティスト) 世界のトップデータサイエンティストが働くDataRobot, Inc. にて、日本事業の技術責任者。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • 人工生命と進化システム
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「脳コミュニケーションのための進化システムの研究」の基になった考え方を取り上げ、平易に解説。
  • パーフェクト Excel VBA
    -
    VBAに関して、世にある情報の多くは「使い方」にフォーカスしすぎており、「構造」や「体系」、「作法」に触れていない場合も多く、そのためか他の言語にくらべ、メンテナンス性や再利用性の低いコードや運用しづらいマクロがまん延している状況にあるともいえます。こうした状況を打破するためには、本質的には、最初から言語の体系や構造を理解し、作法が身につくように学ぶことが最善の策といえます。本書は、Excel VBAで本格的なアプリ開発などを目指す人のためのバイブル的1冊として、基礎から応用までを、体系的に詳しく学べる解説書です。
  • 実務で使える数理最適化の考え方 ―基礎から学ぶモデリング―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 数理最適化を使って現実の問題を解決できるようになる!  本書は、数理最適化の基礎から実務に応用する際のポイントや注意点まで、「モデリング」の観点を中心にして初学者にもわかりやすく解説します。  モデリングには、「教科書的な問題」と「現実の問題」の間に大きな壁があります。本書は、数理最適化の実応用に日々取り組んでいる著者たちが、その経験をもとに、「数理最適化を使う際にどのようなことを気にするか」「どのように問題を捉えるか」などを、「数理最適化の考え方」としてまとめたものです。  典型的な例題を、条件を変えながら深く考察しているので、様々に応用できるモデリングの考え方が身につきます。本書の「考え方」を習得することで、現実の問題を数理最適化を使って解決できるようになります。 また、モデリングスキルだけでなく、実際に数理最適化を応用する際のノウハウについても学べる点が特徴です。  数学的な予備知識はなるべく仮定せず、必要となる概念は本を読み進める中で自然に身につくようになっています。 まえがき 第1章 数理最適化という考え方 1.1 数理最適化について知ろう 1.2 今,数理最適化が注目されている理由 第2章 実務に活かす数理最適化の考え方 2.1 数理最適化とモデリング 2.2 定式化,求解,分析 2.3 最適化ソルバー 2.4 数理最適化問題の分類 2.5 まとめ 第3章 数理最適化問題の問題構造という考え方 3.1 配合問題 3.2 輸送問題 3.3 生産計画問題 3.4 まとめ 第4章 二択が含まれる最適化モデルの考え方 4.1 二択を表す変数 4.2 取捨選択問題 4.3 輸送問題再訪 – 問題拡張1 4.4 輸送問題再訪 – 問題拡張2 4.5 まとめ 第5章 割り当てという考え方 5.1 世の中にある割当問題 5.2 割当図と割当表 5.3 割当問題のモデル化 5.4 まとめ 第6章 割当問題を応用するための考え方 6.1 人員配置問題 6.2 シフトスケジューリング問題 6.3 配送計画問題 6.4 まとめ 第7章 問題を分割するという考え方 7.1 問題を分割するとは? 7.2 期間で分割する 7.3 粒度で分割する 7.4 問題構造で分割する 7.5 制約の強さで分割する 7.6 まとめ 第8章 数理最適化プロジェクトを成功させるための考え方 8.1 問題をどう定めるか 8.2 システム化における注意点 8.3 数理最適化プロジェクト開始前の見極め 8.4 数理最適化プロジェクト進行の要諦 8.5 数理最適化の課題の発見について 付録 A Excelソルバー B よく使う数学記号 C スラック変数 文献案内 あとがき 索引
  • Scilabで学ぶ システム制御の基礎
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 フリーソフトのScilabを使ってシステム制御を理解できる!  「制御工学」は数学的な知識を前提に解説されるが、現場では数値解析ソフトを使って設計がなされる場合が多い。  本書は、フリーソフトであるが入門には十分な機能があるScilabでの演習を通じて「制御工学」を実感し、必要な知識を身に付けられることを目的としたテキストで、豊富な例題により自習書としても役立つ。 このような方におすすめ ・高専、大学学部、大学院、専門学校の学生(教科書・参考書・自習書として) ・上記学校の教員 ・制御関連の初級技術者 主要目次 第1章 はじめに 第2章 Scilab入門 第3章 システム制御に必要な数学 第4章 伝達関数とブロック線図 第5章 時間応答 第6章 周波数応答 第7章 フィードバック系の安定性 第8章 PID制御 第9章 状態方程式の構造と性質 第10章 状態フィードバックとオブザーバ 第11章 最適制御 第12章 ディジタル制御
  • 機械学習のための確率過程入門(増補改訂版)― 確率微分方程式からベイズモデル,拡散モデルまで―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ベイズモデル、生成AIの数学的動作原理を学ぶ 増補改訂でより詳しく  本書は,機械学習の道具として使われている確率過程の書籍です.確率過程とは,誤解をおそれずにひと言でいえば「パラメータにしたがってランダムに変動するデータを解析するための数学の一分野」です.すなわち,ベイズモデル,生成AIの数学的動作原理です.  日進月歩の勢いで発展を遂げる機械学習の研究成果を各自の専門領域に取り入れるには,これらの中で道具として使われている確率過程の基礎的な知識が必要不可欠です.本書では,数学的な厳密性は犠牲としながらも,機械学習の最新の結果を理解するために最低限必要と思われる内容にしぼって,確率過程について説明しています.  今回の増補改訂によって内容を大幅に追加しています. 第1章 確率論の基礎 第2章 確率積分と確率微分方程式 第3章 マルコフ過程の性質 第4章 確率過程とベイズモデル 第5章 確率過程と機械学習 第6章 実問題への応用 付録A 基礎事項の復習式の復習 付録B サンプルコード
  • AWSではじめる実践データマネジメント
    -
    ◆データをうまく活用できない壁を壊すノウハウを集大成◆ 「データに欠損値や誤りがあり、正しく分析できない」 「同じ顧客や企業が重複して登録されている」 「データの意味や使い方がわからない」 「部門ごとに見せられるデータが異なり、他部門に横展開できない」 「分析データに含まれる個人情報の取り扱いに苦慮している」 データを活用したいのに、うまくいかない……その壁を壊すには、データマネジメントが不可欠。 ・データをカタログ化、一元的に管理できる「Amazon DataZone」 ・さまざまなデータソースからデータを見つけ出して加工・統合でき、品質チェックの自動化もできる「AWS Glue」 ・データレイク内のデータに対して、行や列レベルでのきめ細やかなアクセス制御ができる「AWS Lake Formation」 など、データマネジメントに役立つ最新サービスの実践的な使い方をAWS Professional Servicesコンサルタントが解説。 ■こんな方におすすめ ・データがあるのにうまく活用できていない組織のエンジニア、データサイエンティスト ・AWSユーザー ■目次 1章 データマネジメントとAWS ・1.1 データマネジメントとは ・1.2 データマネジメントとAWSサービス ・1.3 データストア ・1.4 データパイプライン ・1.5 分析 ・1.6 セキュリティ/ガバナンス 2章 データに欠損値や誤りがあり、正しく分析できない ・2.1 データ品質の問題を解決するには ・2.2 Glue Data Qualityを使って保管されているデータの品質を測定する ・2.3 Glue Data Qualityを使って、データ処理パイプラインの中でデータ品質を測定する ・2.4 Glue DataBrewを使ってデータ品質を測定する 3章 データ加工処理が複雑で読み解けない ・3.1 データ加工処理の問題を解決するには ・ 3.2 Glue Studioによるジョブの作成 ・3.3 Step Functionsによるワークフローの構築 ・3.4 Amazon MWAAによるワークフローの構築 4章 同じ顧客や企業が重複して登録されている ・4.1 データの重複をなくすには ・4.2 AWS Glueを使って、ETLパイプラインの中で名寄せをおこなう 5章 データの意味や使い方がわからない ・5.1 メタデータの問題を解決するには ・5.2 メタデータの項目や記載ルールを整備する ・5.3 メタデータの充足化と公開 ・5.4 データカタログを用いてデータの存在と示す意味を把握する ・5.5 メタデータの品質維持と向上 6章 部門ごとに見せられるデータが異なり、他部門に横展開できない ・6.1 部門間でのデータ共有を推進するには ・6.2 組織間でデータを共有する ・6.3 データの共有範囲の確認と変更 7章 分析データに含まれる個人情報の取り扱いに苦慮している ・7.1 データ分析において個人情報の問題を解決するには ・7.2 「持ち込ませない」処理の実装 ・7.3 「残さない」処理の実装 ・7.4 「使わせない」処理の実装 ■著者プロフィール ●赤羽根正則:アマゾン ウェブ サービス ジャパン合同会社プロフェッショナルサービス本部所属。データ分析基盤のアーキテクチャ作成支援やデータエンジニアリングでのパフォーマンスチューニングなどに従事。 ●佐藤悠:アマゾン ウェブ サービス ジャパン合同会社プロフェッショナルサービス本部所属。AWS GlueやAWS Lake Formation、Amazon MWAAが得意。 ●仲谷岳志:アマゾン ウェブ サービス ジャパン合同会社プロフェッショナルサービス本部所属。AWSのプリンシパルアーキテクトとして、クラウドインフラやデータ基盤の設計・構築、生成AIプラットフォーム構想の策定支援などを担当。 ●松浦晋:アマゾン ウェブ サービス ジャパン合同会社プロフェッショナルサービス本部プラクティスマネージャー。エンタープライズ向けのデータプラットフォーム構築やデータマネジメント戦略立案に関する支援に従事。 ●吉濱佐知子:アマゾン ウェブ サービス ジャパン合同会社プロフェッショナルサービス本部所属。コンサルタントとして、データ管理・分析基盤の構想策定や基本設計、データ・AI活用のワークショップ実施やAWS技術活用のための研修活動などに従事。
  • やさしく学ぶLLMエージェント ―基本からマルチエージェント構築まで―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 OpenAI、Anthropic、Gemini、LangChain、LangGraph、Gradio、Tavily、SerpApiなどを用い、基本からマルチエージェントシステムの設計まで、開発に必要なテクニックを体系的に解説  LLMエージェント(AIエージェント)は、ペルソナ(口調、知識、判断の方向、人柄)等を生成AIに組み込み、生きた人間の代わりに様々なことをするもので、カスタマーサービス、情報検索、分析、意思決定支援など、様々なタスクを自律的に遂行することができます。これにより、新たなサービスの創出、業務の自動化や効率化など、ビジネスに大きなインパクトをもたらすことが期待されています。  一方で、LLMエージェントを実際のビジネスに応用するためには、技術的な理解だけでなく、システム設計や運用における様々な課題をクリアする必要があります。例えば、エージェントの能力を最大限に引き出すための対話設計、複数エージェント間の連携制御、ユーザーとのインタラクションデザインなどを設計、解説します。 第1章 LLMエージェントとは 1.1 言語モデルとは何か 1.2 LLMエージェントとは 第2章 エージェント作成のための基礎知識 2.1 OpenAI API 2.2 LangChain入門 2.3 Gradio を用いたGUI作成 第3章 エージェント 3.1 LLMに知識を与える 3.2 LLMにツールを与える 3.3 複雑なフローで推論するエージェント 3.4 記憶を持つエージェント 3.5 ペルソナのあるエージェント 第4章 マルチエージェント 4.1 マルチエージェントとは 4.2 マルチエージェントシステムの構築 4.3 マルチエージェントの活用 第5章 LLMエージェント研究の最先端 5.1 直近の研究動向 5.2 ビジネスでの利用例 補足 OpenAI API/Anthropic APIキー/Gemini APIキー/Tavily APIキー/Serp APIキー/Google Colaboratoryのシークレット機能
  • Data-centric AI入門
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆高品質なデータを設計・開発する技術◆  Data-centric AIとは、機械学習の権威でありGoogleのAI研究チームを率いたAndrew Ngが2021年に提唱した、モデルよりもデータに主眼を置くというAI開発のアプローチです。過去数十年にわたりAI開発においては、固定されたデータセットに対してニューラルネットワークをはじめとしたモデルを適用し、そのモデルを改善することに関心が寄せられていました。しかし、このモデルを中心としたアプローチでは、データセットへの過度な依存やデータセットが抱える課題への無意味な適合により、実用において期待ほどモデルの性能が改善しないといった問題が指摘されています。そのため近年はモデルを固定したうえで、データ拡張、アノテーションの効率化や一貫性の担保、能動学習といったデータに工夫を加えることによってモデルの性能を向上させるアプローチに注目が集まっています。本書では、Data-centric AIの概要を解説したあとに、画像認識、自然言語処理、ロボットといった分野におけるデータを改善するための具体的なアプローチを解説します。最終章では、企業における実践的な取り組みを紹介します。 ■こんな方におすすめ ・データセットの作成、データの学習方法に興味のある方 ・基盤モデルに興味がある方 ■目次 ●第1章 Data-centric AIの概要 ・1.1 Data-centric AIとは ・1.2 データセットのサイズとモデルの性能の関係 ・1.3 データの品質の重要性 ・1.4 おわりに ●第2章 画像データ ・2.1 画像認識におけるData-Centric AIとは ・2.2 画像認識モデルの基礎知識 ・2.3 データを拡張、生成する技術 ・2.4 不完全なアノテーションからの学習 ・2.5 画像と言語ペアの関係性を学習した基盤モデル ・2.6 能動学習 ・2.7 おわりに ●第3章 テキストデータの収集と構築 ・3.1 言語モデルの事前学習 ・3.2 事前学習データの収集 ・3.3 ノイズ除去のためのフィルタリング ・3.4 データからの重複除去 ・3.5 テキストデータ収集の限界 ・3.6 おわりに ●第4章 大規模言語モデルのファインチューニングデータ ・4.1 ファインチューニングとは ・4.2 Instruction Data ・4.3 Preference Data ・4.4 ファインチューニングモデルの評価 ・4.5 日本語における大規模言語モデルのファインチューニング ・4.6 おわりに ●第5章 ロボットデータ ・5.1 はじめに ・5.2 RTシリーズの概要 ・5.3 多様なロボット ・5.4 ロボットにおけるデータ収集 ・5.5 データセット ・5.6 データ拡張 ・5.7 おわりに ●第6章 Data-centric AIの実践例 ・6.1 テスラ ・6.2 メタ ・6.3 チューリング ・6.4 LINEヤフー ・6.5 GO ・6.6 コンペティションとベンチマーク ・6.7 Data-centric AI実践のためのサービス ・6.8 おわりに ■著者プロフィール 片岡裕雄(かたおかひろかつ):2014年 慶應義塾大学大学院 博士(工学)。2024年現在、産業技術総合研究所 上級主任研究員、オックスフォード大学 Academic Visitor および cvpaper.challenge 主宰。時空間モデルのベースライン3D ResNetの研究開発,実データ不要の事前学習法 数式ドリブン教師あり学習(Formula-Driven Supervised Learning; FDSL)を提案。2019/2022年度AIST Best Paper、2020年 ACCV 2020 Best Paper Honorable Mention Award、2023年 BMVC 2023 Best Industry Paper Finalist。研究はMIT Technology Reviewや日経等メディアにて掲載。本書の監修を担当。
  • 反実仮想機械学習~機械学習と因果推論の融合技術の理論と実践
    5.0
    【世界初の反実仮想機械学習の教科書!】  反実仮想(Counterfactual)─ 起こり得たけれども実際には起こらなかった状況 ─ に関する正確な情報を得ることは、機械学習や意思決定最適化の応用において必要不可欠です。例えば、「現在運用している推薦アルゴリズムを仮に別のアルゴリズムに変えたら、ユーザの行動はどう変化するだろうか?」や「特定のユーザ群に新たなクーポンを与えたら、収益はどれほど増加するだろうか?」などの実務・社会でよくある問いに答えることを可能にするのが、反実仮想機械学習(CounterFactual Machine Learning; CFML)と総称される機械学習と因果推論の融合技術です。  本書では、反実仮想機械学習の重要な基礎であるオフ方策評価と呼ばれる統計的推定問題を重点的に扱い、反実仮想に関する情報を観測データに基づいて正確に推定するために必要な考え方と統計技術を着実に身につけます。その後、オフ方策評価の自然な拡張として、観測データに基づく意思決定の最適化問題を扱います。こうして、反実仮想推定を最重要の基礎に据える反実仮想機械学習の思想と理論、それらの汎用的な応用力を身につけることが、本書における最大の目標です。  なお本書では、反実仮想機械学習に関する理論やその実践、Pythonを用いた実装をバランスよく扱っています。例えば、関連の学術研究や論文執筆を行う方向けには、理論の理解を深める章末問題を提供しています。6章には、実践現場で働く方々向けに、独自に作成したケース問題を用いた応用例を示しました。学術研究を行いたい学生・研究者の方や実応用を行いたい実務家の方など、幅広い層や用途に有効活用していただける内容に仕上がっています。 ■目次 ●第0章:基礎知識の整理   0.1 確率の基礎   0.2 統計的推定の基礎   0.3 教師あり学習の基礎   0.4 因果推論の基礎 ●第1章:標準的なオフ方策評価   1.1 オフ方策評価の定式化   1.2 標準的な推定量とその性質   1.3 基本推定量の精度を改善するためのテクニック ●第2章:ランキングにおけるオフ方策評価   2.1 ランキングにおけるオフ方策評価の定式化   2.2 ランキングにおけるIPS 推定量とその問題点   2.3 ユーザ行動に関する仮定を駆使したIPS 推定量   2.4 ランキングのオフ方策評価に残された課題 ●第3章:行動特徴量を用いたオフ方策評価   3.1 行動の特徴量を取り入れたオフ方策評価の定式化   3.2 行動特徴量を有効活用する推定量   3.3 これまでに登場した推定量のまとめ ●第4章:オフ方策評価に関する最新の話題   4.1 強化学習の方策に対するオフ方策評価   4.2 オフ方策評価に関するそのほかの最新トピック ●第5章:オフ方策学習に関する最新の話題   5.1 オフ方策学習の定式化   5.2 オフ方策学習における標準的なアプローチ   5.3 オフライン強化学習   5.4 オフ方策学習にまつわるそのほかのトピック ●第6章:オフ方策評価・学習の現場活用   6.1 方策の長期性能に関するオフライン評価   6.2 プラットフォーム全体で観測される報酬を最適化する方策   6.3 本章のまとめ ■著者プロフィール 齋藤優太(さいとうゆうた):1998年北海道生まれ。2021年に、東京工業大学にて経営工学学士号を取得。大学在学中から、企業と連携して反実仮想機械学習や推薦・検索システム、広告配信などに関する共同研究・社会実装に多く取り組む。2021年8月からは米コーネル大学においても反実仮想機械学習などに関する研究を行い、NeurIPS・ICML・KDD・ICLR・RecSys・WSDMなどの国際会議にて論文を多数発表。そのほか、2021年に日本オープンイノベーション大賞内閣総理大臣賞を受賞。2022年にはWSDM Best Paper Runner-Up Award、Forbes Japan 30 Under 30、および孫正義育英財団第6期生に選出。著書に『施策デザインのための機械学習入門』(技術評論社)がある。
  • 機械学習による分子最適化―数理と実装―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習を用いた新規分子構造の生成や最適化にまつわる技術について,基礎理論から実装まで一気通貫して解説  本書は,機械学習の初学者であっても分子構造の生成モデルや分子構造の最適化手法を理解できるように,機械学習の基礎から分子構造の生成モデルや最適化手法にいたるまでを体系的にまとめた書籍です.  さらに,機械学習に関する技術はプログラミングを通じて実践することでより理解が深まるものであるため,数理的な内容だけではなく,Pythonによる実装を織り交ぜて説明しています.分子構造の生成モデルや最適化手法に関する基礎知識を得ることができるだけでなく,それらを実践に活かすところまで習得できます.  また,分子構造を取り扱うための手法や,特有の事情についても詳しく説明していますので,機械学習の研究者が分子構造を取り扱った研究を始めたい場合にも参考になります. 〈このような方におすすめ〉 材料設計、創薬に携わる技術者、研究者および学生 分子生成モデルへの応用を目指す機械学習の技術者、研究者および学生 〈目次〉 第1章 分子生成モデルと分子最適化 1.1 分子最適化 1.2 分子生成に関する問題設定 1.3 分子生成モデルの構成要素 1.4 本書の構成 1.5 記 法 1.6 プログラミング環境 第2章 分子データの表現 2.1 分子のグラフ表現 2.2 SMILES 2.3 SELFIES 2.4 分子記述子 2.5 フィンガープリント 第3章 教師あり学習を用いた物性値予測 3.1 教師あり学習 3.2 経験損失最小化にもとづく教師あり学習 3.3 予測分布 3.4 ニューラルネットワーク 3.5 最適化アルゴリズム 3.6 評 価 3.7 過剰適合と正則化 3.8 グラフニューラルネットワーク 3.9 モデルの適用範囲 3.10 予測器の実装例・実行例 第4章 系列モデルを用いた分子生成 4.1 系列モデル 4.2 系列モデルを用いた分子生成モデル 第5章 変分オートエンコーダを用いた分子生成 5.1 変分ベイズ法 5.2 変分オートエンコーダ 5.3 変分オートエンコーダを用いた分子生成モデル 第6章 分子生成モデルを用いた分子最適化 6.1 分子最適化問題とその難しさ 6.2 分子最適化問題の連続最適化問題への変換 6.3 ベイズ最適化を用いた分子最適化 6.4 ベイズ最適化を用いた分子最適化アルゴリズム 第7章 強化学習を用いた分子生成モデルと分子最適化 7.1 強化学習の定式化 7.2 分子最適化の強化学習としての定式化 7.3 方策勾配法 7.4 オフライン強化学習 7.5 SMILES-LSTMを方策とした方策最適化 第8章 発展的な分子生成モデル 8.1 原子団を組み合わせる分子生成 8.2 分子骨格を用いた分子生成 8.3 生成モデルの評価手法 付 録 正規分布にかかわる公式 A.1 モーメント母関数 A.2 線形結合 A.3 条件付き確率
  • ゲーム理論からの社会ネットワーク分析
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ゲーム理論から社会ネットワーク構造を明らかにする! ▼社会ネットワーク分析とは 人と人が集まると社会が形成されます。人々には、家族であれば親子関係、婚姻関係、企業であれば上司と部下、同僚などの関係性がありあます。こうした関係はAさんとBさんの関係といった個々の関係を見るだけでは不十分であり、例えば、王族の家族関係は親子関係・婚姻関係の全体を見ることで、王位継承の争いをより深く理解できます。企業内でも、フォーマルであれ、インフォーマルであれ、誰と誰がより密な交流をしているかを全体として把握することで、企業内の派閥を確認でき、誰が出世しやすいかが見えてくるかもしれません。こうした個々の関係を超えた、集団や社会全体の関係、言い換えると、社会に存在する構造を明らかにする学問が社会ネットワーク分析です。 ▼ゲーム理論 他方、人は意思決定を行う主体にほかなりません。家族内では、子どもは学校でどのような行動をとるか(勉強するか、部活に打ち込むか、遊びに徹するかなど)を決めていき、親も子どもをどのようにしつけるかについて意思決定をしていきます。企業内でも、社員はそれぞれ意思決定をしながら、企業全体のパフォーマンスが決まっていきます。このときに、自分の望ましさは必ずしも相手の望ましさと共通にはなりません。子どもは勉強したくないし、親は勉強をさせたい。部下はサボりたいかもしれないし、上司はもっと頑張ってもらいたいかもしれない。こうした状況では、相手の行動に依存して、自分の取るべき行動が変わっていきます。こうした状況は駆け引きのある状況と言え、このような状況を分析する学問がゲーム理論です。 経済学や社会学を専攻する学部学生をはじめ、理論的な社会分析に興味のある社会人を主な読者対象として、ゲーム理論とRを通じて、社会ネットワーク分析を学ぶものです。 第1章ゲームとネットワークの記号表現 第2章ゲームとネットワークの記号表現の活用 第3章閉鎖性とネットワーク 第4章ネットワーク上の公共財供給と進化ゲーム 第5章ネットワーク形成についてのゲームとペアワイズ安定 第6章直接的なつながりの指標としての次数 第7章間接的なつながりも含めた中心性 第8章固有ベクトル中心性 第9章ナッシュ均衡と中心性 第10章社会関係資本と拡散中心性(三つの中心性の統合)
  • 実践的プライバシーリスク評価技法 プライバシーバイデザインと個人情報影響評価
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 マイナンバー法が求める個人情報影響評価の手法が分かる 2013年に成立した行政手続番号法(通称マイナンバー法)は、2016年1月から運用が開始され、行政機関に提出する税や社会保険などに関する書類への番号記載が必要となる。同法は大変重要な個人情報を扱うため、違反者には厳罰が用意されている。 そのマイナンバー法が、個人情報を適正に運用するために義務づけたものが「個人情報影響評価」である。本書はプライバシーバイデザインと個人情報影響評価の考え方を示し、実践例や評価書のサンプルを提示して具体的なスキルが身につくよう工夫してある。 同法に直接携わる行政機関、ソフトウェア会社、または民間においても従業員の「個人番号」、個人支払先等の「個人番号」を取扱う担当部門には必携の書である。
  • 量子コンピュータの頭の中―計算しながら理解する量子アルゴリズムの世界
    4.5
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 量子コンピュータのしくみの説明は、「量子とは粒であり波である」「結果は観測するまで確定しない」など、直感的には想像がつかない説明がつきまといます。そんな難解なイメージのある量子コンピュータがいかにして計算しているのかを解説する本です。 本書では、量子コンピュータのうち、ソフトウェア(アルゴリズム)のしくみを扱っています。逆に、ハードやビジネス活用に関する話はしていません。また、量子力学にも触れません。そのかわり、高校数学(主に行列)の知識さえあれば、その延長で量子アルゴリズムを理解できるよう、ていねいに、たっぷり解説します。本書に出てくる計算のルールの解説からはじめるので、難しそうと感じるかたでも、ぜひ読んでみてください。この本を片手に、量子コンピュータの「頭の中」をのぞいてみましょう。
  • 拡散モデル データ生成技術の数理
    -
    テキストに対応する画像を生成する――従来は困難であった高次元のデータを創り出す生成モデルの技術が注目されている.現在,最高の性能を発揮し,画像・動画・音声・化合物の生成など,多様な応用が期待されているのが拡散モデルである.その数理の心から課題までを世界に先駆けて解説し,理論のさらなる発展を追究する.※この電子書籍は「固定レイアウト型」で作成されており,タブレットなど大きなディスプレイを備えた端末で読むことに適しています.また,文字だけを拡大すること,文字列のハイライト,検索,辞書の参照,引用などの機能は使用できません.

    試し読み

    フォロー
  • Optunaによるブラックボックス最適化
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 チューニングを自動化するブラックボックス最適化について詳説  本書は,機械学習に欠かせないハイパーパラメータ調整(チューニング)を自動化するブラックボックス最適化について一からわかりやすく,そして,詳しく説明した書籍です.合わせて,Python言語上で動作するフレームワーク“Optuna”によるブラックボックス最適化の実行を,Optunaの開発者ら自ら詳しく説明しており,基礎を理解しながら実践に即した知識を身につけることができます.  いまや機械学習は多種多様な応用が広く図られており,技術者/研究者,学生全般にとって必修といえるスキルになっていますが,その際に手間を要するのが,ハイパーパラメータ調整です.特に,深層学習(ディープラーニング)では,ハイパーパラメータの数が多い傾向があるうえに,その調整が性能を大きく左右するといわれています.多くの技術者が,これにかなりの時間が費やされてしまっているのが実情です.ブラックボックス最適化は汎用性も高く,機械学習のハイパーパラメータ調整に限らず,工学や日常生活にかかわる多くのことを最適化できます.例えば,本書ではミドルウェアのパフォーマンス調整や,お菓子のレシピ作成にブラックボックス最適化を応用する方法も紹介しています.  ハイパーパラメータ調整の手間を大幅に削減するブラックボックス最適化とそのPythonベースのフレームワークOptunaについて,応用例からアルゴリズムまでを一からわかりやすく説明した書籍です.機械学習に留まらず,科学技術のあらゆる分野で登場するブラックボックス最適化に入門するにあたって最適な書籍です. CHAPTER 1 ブラックボックス最適化の基礎 1.1 ブラックボックス最適化とは? 1.2 目的関数と最適化 1.3 グリッドサーチとランダムサーチ 1.4 SMBO 1.5 ブラックボックス最適化の利用対象 CHAPTER 2 はじめてのOptuna 2.1 環境構築 2.2 簡単な数式の最適化 2.3 機械学習のハイパーパラメータのOptunaによる最適化 CHAPTER 3 Optunaを使いこなす 3.1 多目的最適化 3.2 制約付き最適化 3.3 可視化機能を用いた探索空間の調整 3.4 探索点の手動指定 3.5 分散並列最適化 3.6 サンプラーの選択 3.7 枝刈り CHAPTER 4 ブラックボックス最適化の応用例 4.1 機械学習のハイパーパラメータの最適化:音声認識ソフトウェアMozilla DeepSpeech 4.2 パイプラインフレームワークとハイパーパラメータ最適化 4.3 継続的なモデル改善でのOptunaの使い方 4.4 オンライン広告入札システムの実行環境の最適化 4.5 クッキーレシピの最適化 4.6 ニューラルアーキテクチャサーチ CHAPTER 5 Optunaの最適化の仕組み 5.1 Optunaの柔軟なインタフェース 5.2 独立サンプリング 5.3 独立サンプリングの課題 5.4 同時サンプリング 5.5 パラメータ選択の全体像 CHAPTER 6 ブラックボックス最適化のアルゴリズム 6.1 探索点選択における共通の枠組 6.2 単目的最適化における探索点選択のアルゴリズム 6.3 多目的最適化における探索点選択のアルゴリズム 6.4 探索点選択アルゴリズムの使い分け
  • 音声対話システム ―基礎から実装まで―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 音声対話システムの理論と実装を網羅! Python言語による音声対話システムの実装方法を詳しく解説.  本書は,人間の言葉を理解し,適切に応答するシステム(=音声対話システム)の理論をわかりやすく網羅した書籍です.合わせて,Python言語による音声対話システムの実装方法を詳しく説明しており,基礎を理解しながら実践に即した知識を身につけることができます.  音声対話システムの実用化・普及が進む中で,さまざまな課題が明確化され,取り組みが進められています.また,少子高齢化が進み,働き手が不足している社会状況から,音声対話システムに対する社会の期待は今後ますます高まっていくと予想されています.  今後,音声対話システムの研究開発に携わる方に必携の書籍です. 第1章 音声対話システムの概要 第2章 音声対話システムの分類 第3章 音声認識 第4章 言語理解 第5章 対話管理 第6章 end-to-endモデルによる応答生成 第7章 応答文テキストの音声合成 第8章 音声対話システムの評価 第9章 人間らしい対話を実現するための要素技術 第10章 音声対話システムの未来 付 録 Dialogflow ESによる実装
  • PyTorchで作る!深層学習モデル・AI アプリ開発入門
    5.0
    大人気の機械学習フレームワーク「PyTorch」で 深層学習モデルとAIアプリを開発しよう! 【PyTorchについて】 PyTorch は、主に深層学習で利用されている機械学習フレームワークです。 世界中で幅広く利用されており、国内でもここ数年で多くの方が利用し始めています。 【本書の概要】 Udemyで公開中の大人気講座『【PyTorch+Colab】PyTorchで実装するディープラーニング -CNN、RNN、人工知能 Web アプリの構築』の書籍化企画です。 PyTorch を使い、CNN による画像認識、RNN による時系列データ処理、深層学習モデルを利用した AI アプリの構築方法を学ぶことができます。 本書で PyTorch を利用した深層学習のモデルの構築からアプリへの実装までできるようになります。 【本書で得られること】 ・機械学習フレームワーク「PyTorch」の基礎が身につきます。 ・PyTorchのコードの読み書きができるようになります。 ・CNN、RNN などを実装できるようになります。 ・自分で調べながら、ディープラーニングのコードを実装する力が身につきます。 ・最終的に人工知能アプリを構築し、公開できるようになります。 【目次】 Chapter0 イントロダクション Chapter1 PyTorchと深層学習 Chapter2 開発環境 Chapter3 PyTorchで実装する簡単な深層学習 Chapter4 自動微分とDataLoader Chapter5 CNN(畳み込みニューラルネットワーク) Chapter6 RNN(再帰型ニューラルネットワーク) CHapter7 AIアプリの構築と公開 APPENDIX さらに学びたい方のために 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab 株式会社を起業。「ヒトと AI の共生」がミッション。人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 理学博士(物理)。解決策のモデル化、数式化が得意で、プログラミング教育も行う。 近著に『Google Colaboratoryで学ぶ!あたらしい人工知能技術の教科書 機械学習・深層学習・強化学習で学ぶAIの基礎技術』、 『Pythonで動かして学ぶ!あたらしい数学の教科書』(いずれも翔泳社)がある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • グラフニューラルネットワーク ―PyTorchによる実装―
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層学習でネットワークを解析する世界最前線の研究を1冊で学ぶ!  深層学習をグラフ(ネットワーク)で表される構造データに対して適用するための研究が盛んになっています。それが、本書で解説するグラフニューラルネットワークです。グラフ中の頂点やグラフ全体を高精度に分類できれば、高度な画像認識、推薦システム、交通量予測、化合物分類、さらには新型コロナウイルス(COVID-19)への対処のための応用なども期待できる、世界最前線の研究です。  本書では、グラフニューラルネットワークの基本的な知識および研究事例について説明し、PyTorchによる実装について紹介するとともに、今後の学習のための情報源についても解説します。Google Colaboratoryで解説するとともに、サンプルコードもついています。 まえがき 第1章 グラフニューラルネットワークとは  1.1 はじめに  1.2 グラフを対象とした畳み込み  1.3 グラフを対象とした機械学習タスク   1.3.1 ノード分類   1.3.2 グラフ分類   1.3.3 リンク予測   1.3.4 グラフ生成  1.4 グラフニューラルネットワークの応用   1.4.1 画像認識   1.4.2 推薦システム   1.4.3 交通量予測   1.4.4 化合物分類   1.4.5 組み合わせ最適化   1.4.6 COVID-19とグラフニューラルネットワーク  まとめ 第2章 グラフエンベディング  2.1 グラフエンベディング手法の概観  2.2 次元縮約に基づく手法  2.3 グラフ構造に基づく手法   2.3.1 DeepWalk   2.3.2 LINE   2.3.3 node2vec   2.3.4 GraRep  2.4 ニューラルネットワークに基づく手法  まとめ 第3章 グラフにおける畳み込み  3.1 グラフ畳み込みにおけるアプローチ  3.2 Spectral Graph Convolution   3.2.1 フーリエ変換   3.2.2 グラフラプラシアン   3.2.3 ChebNet   3.2.4 GCN  3.3 Spatial Graph Convolution   3.3.1 PATCHY-SAN   3.3.2 DCNN   3.3.3 GraphSAGE  まとめ 第4章 関連トピック  4.1 グラフオートエンコーダ  4.2 GAT  4.3 SGC  4.4 GIN  4.5 敵対的攻撃  4.6 動的グラフのエンベディング  4.7 時空間グラフ畳み込みネットワーク  4.8 説明可能性  まとめ 第5章 実装のための準備  5.1 Python  5.2 NumPy  5.3 SciPy  5.4 pandas  5.5 Matplotlib  5.6 seaborn  5.7 Scikit-learn  5.8 t-SNE  5.9 Jupyter Notebook  5.10 Google Colaboratory  まとめ 第6章 PyTorch Geometricによる実装  6.1 PyTorch   6.1.1 データセット   6.1.2 モデル   6.1.3 損失   6.1.4 最適化  6.2 PyTorch Geometric入門   6.2.1 PyTorh Geometricとは   6.2.2 類似ライブラリとの比較   6.2.3 PyTorch Geometricによるグラフのデータ構造   6.2.4 よく使われるベンチマークデータセット   6.2.5 ミニバッチ   6.2.6 データ変換   6.2.7 グラフの学習手法  6.3 PyTorch Geometricによるノード分類・グラフ分類   6.3.1 PyTorch Geometricによるエンベディング   6.3.2 PyTorch Geometricによるノード分類   6.3.3 PyTorch Geometricによるグラフ分類  まとめ 第7章 今後の学習に向けて  7.1 書籍  7.2 サーベイ論文  7.3 動画  7.4 リンク集など  7.5 Open Graph Benchmark  まとめ おわりに 参考文献 索引
  • コグニティブインタラクション ―次世代AIに向けた方法論とデザイン―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人と自然にコミュニケーションするAI,ロボットを設計するための入門書. コグニティブインタラクションは,従来の認知科学や情報科学だけではなしえていない,「状況に応じて,人と自然に,かつ持続的にインタラクションが可能な人工物を設計するための基礎理論」です.本書は,その入門書です. AIやロボットが人の社会生活にとけこむためには,人と協調行動をとれなければいけません.それには,コミュニケーション,つまり,意思疎通の能力が欠かせません.しかし,言語によるコミュニケーションよりも,非言語情報によるインタラクションのほうが重要になることがよくあります.相手が人であれ,動物であれ,AIやロボットなどの人工物であれ,人は相手の意図や欲求などの心的状況を読み取り,それに適応した行動をとるという,コグニティブ(認知的)インタラクションを繰り返すことで,円滑に対話を行っていると考えられるからです. 第1章では,人とAIのインタラクションについて,人どうしのインタラクションや人と動物のインタラクションをベースに考える枠組を説明しています.第2章では,インタラクションを分析していくための概念や方法を説明しています.続く第3章では,取得したデータをモデルベースで分析するために必要な,データの表現方法について説明しています.最後の第4章では,第3章までに学んだ基礎的な概念や方法を用いて,実際にどのようなインタラクションの分析が可能なのかを,これまでの事例の中から特に興味深いものに絞って説明しています. 本書を読むことで,人どうし,あるいは人と動物の間のインタラクションで起きていることを理解するためだけでなく,人と自然にコミュニケーションするAI,ロボット,そのほかの人工物を設計するための基本がわかります. 序章 「コグニティブインタラクション」とは 第1章 インタラクションの重要性と認知モデリング  1.1 人と人工物のインタラクション  1.2 コミュニケーションとインタラクション  1.3 AIとインタラクション  1.4 インタラクションのための認知モデリング  1.5 他者モデルのモデリング 第2章 インタラクション分析の基礎  2.1 仮説を立てる徴  2.2 仮説検証のための実験デザイン  2.3 分析データの扱い  2.4 インタラクションの基本的な時系列モデル  2.5 時系列データの因果関係の分析モデル  2.6 強化学習モデルによるインタラクション解析態 第3章 データの定量的表現と変数  3.1 表情と視線にかかわる変数  3.2 身体運動と空間配置にかかわる変数  3.3 音声言語にかかわる変数  3.4 人以外において重要な変数  3.5 動画像処理  3.6 装着型デバイスによる身体動作計測  3.7 音韻情報と韻律情報の計測処理  3.8 生理指標の計測 第4章 インタラクション分析の実際とポイント  4.1 相手が何をしようとしているのかを理解する  4.2 みんなは何をしようとしているのかを考える  4.3 人‐動物インタラクション  4.4 人‐人工物インタラクション Column  0.1 認知的インタラクションデザイン学  1.1 インタラクションにおける相互適応学習  1.2 社会脳仮説と心の理論  1.3 ヒューリスティックとアルゴリズム  1.4 適応認知における認知バイアス  2.1  相談の成否を決める隠れ状態の推定(二者間インタラクションの時系列分析)  2.2 鹿狩りゲームと読みの深さ  3.1 音声に含まれる個人性と生成・識別モデル  3.2 複数ロボットの発話の重なりによって創発する空間の知覚  3.3 ヘッドマウントディスプレイ(HMD)  3.4 アバターの情動表現と仮想空間の文脈理解  4.1 ロボットを介した人‐人インタラクションの分析  4.2 人‐ウマインタラクションにおける人馬一体感とは  4.3 ウマの歩法変化の計測と解析方法  4.4 電動車いすを使った応答性と鋭敏性に関する実験  4.5 ユーザの信頼を誘発する商品推薦エージェントのデザイン  4.6 人とAIの間にリーダ‐フォロワ関係は成立するか

最近チェックした作品からのおすすめ