情報科学作品一覧

  • 東京大学のデータサイエンティスト育成講座
    4.3
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 東大 松尾研究室が提供するあの人気講座が待望の書籍化! 本書は、2017年と2018年に東京大学で実施された講座で使われた教材がベースになっています。約400名ほどの受講枠(2年間)に、のべ1,800人以上の応募があった人気の講義です。この本のベースとなるコンテンツをさらに精査、ブラッシュアップし、読みやすく整えたものが本書になります。 本書には、データサイエンティストになるための基礎をつめこんでいます。データサイエンティストは、Pythonや確率・統計、機械学習など、幅広くさまざまな分野の知識を必要とします。 この本は主にPython 3を使って、基本的なプログラムの書き方、データの取得、読み込み、そのデータ操作からはじまり、さまざまなPythonのライブラリの使い方、確率統計の手法、機械学習(教師あり学習、教師なし学習とチューニング)の使い方についても学びます。取り扱っているデータは、マーケティングに関するデータやログデータ、金融時系列データなどさまざまで、モデリングの前にそれらを加工する手法も紹介しています。データサイエンティストになるには、どれも必要なスキルです。 本書には、さらに以下の3つの特徴があります。 ・実際のデータを使って手を動かしながら、データサイエンスのスキルを身に付けることができる ・データ分析の現場で使える実践的な内容(データ前処理など)が含まれている ・練習問題や総合問題演習など実際に頭を使って考える内容がたくさんある ◆目次 Chapter 1 本書の概要とPythonの基礎 Chapter 2 科学計算、データ加工、グラフ描画ライブラリの使い方の基礎 Chapter 3 記述統計と単回帰分析 Chapter 4 確率と統計の基礎 Chapter 5 Pythonによる科学計算(NumpyとScipy) Chapter 6 Pandasを使ったデータ加工処理 Chapter 7 Matplotlibを使ったデータ可視化 Chapter 8 機械学習の基礎(教師あり学習) Chapter 9 機械学習の基礎(教師なし学習) Chapter 10 モデルの検証方法とチューニング方法 Chapter 11 総合演習問題 Appendix 本書の環境構築について/練習問題解答/参考文献・参考URL
  • 今日から使えるファインチューニングレシピ ―AI・機械学習の技術と実用をつなぐ基本テクニック ―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ファインチューニングについて,具体的なPythonコードを通じて基本から実践までわかりやすく説明 本書は,画像識別や自然言語処理といった実務における代表的なタスクで現れるモデルのファインチューニング,さらに近年著しく発達している生成AIモデルのファインチューニング,および,強化学習を活用したファインチューニングについて,それぞれ具体的なPythonコードを通じて基本から実践までわかりやすく説明した書籍です. ファインチューニングを実務で活用することを目指すエンジニアや研究者,および学生の方々を対象に,実務に直結したアドバイスや具体的な手法を提供し,現場での実践力を高めていただくことを目標としています. それぞれのタスクを実施するための手続きを「レシピ」としてパッケージ化して,その中身を「レシピの概要」「事前準備」「ファインチューニング実装」「評価」「応用レシピ」としています.具体的なPythonコードを通じて基本的かつ実践的な考え方を理解していただき,さらにそれを読者の皆さん自身の課題に合わせて修正できるようにしています. これからファインチューニングを始めたい,あるいはファインチューニングの実践におけるコツを知りたい方におすすめの書籍です. Chapter 1 ファインチューニングの基礎知識 Chapter 2 画像のファインチューニング Chapter 3 自然言語処理のファインチューニング Chapter 4 生成AIのファインチューニング Chapter 5 強化学習によるファインチューニング Appendix  評価指標
  • IT Text  データベースの基礎
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 情報技術において欠かせない「データベース」の基礎を体系的に解説した教科書 本書は、データベースの基本概念から、データベースのモデル、SQL、論理設計やDBMS、ファイル編成などデータベースの基礎を体系的に、できるだけ図や例を多く用い、データベースとは何か直感的に理解できる教科書です。 ERモデルから関係モデルへの変換方法だけでなく、「基幹系と解析系(情報系)」「マスターテーブル、ファクトテーブル、スタースキーマ」なども解説しており、「データベース」の実務的な基礎を固めるうえで役立ちます. 第1章 データベースの概念 第2章 関係データベース 第3章 関係代数 第4章 SQL 第5章 概念スキーマ設計 第6章 意思決定支援のためのデータベース 第7章 データの格納と問合せ処理 第8章 トランザクション 演習問題略解
  • アイデア実現のための Raspberry Piデザインパターン 電子回路からMathematicaによるArduinoコラボまで
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Raspberry Piでアイデアを自由自在に実現するためのデザインパターンを整理。 本書は、Raspberry Piを使ってアイデアを自由自在に実現するための、デザインパターンを整理した書籍です。 Raspberry Piの入門書を読んだだけでは、思いついたアイデアをもとに、実際に動く電子工作を製作することはほぼ不可能です。本書では、アイデア実現に必要なソフトウェア、ハードウェア、部品の集め方、配線などのノウハウを、パターンメイドの方法でわかりやすく紹介しています。 ハードウェアを買い集めて、実際にハードウェアとソフトウェアを組んでみようと思い立った際に、ぜひ一読ください。 ステップ1 とりあえずRaspberry Piを動かしてみる ステップ2 何かをRaspberry Piにつなげるしくみ ステップ3 つなげた何かを動かす準備 ステップ4 手先を動かすことが必要 ステップ5 点灯させて押してみる ステップ6 Arduinoとコラボする ステップ7 動きを計ってみる ステップ8 何かを表示してみる ステップ9 何かを動かしてみる ステップ10 電源は大事 ステップ11 Node.jsとコラボする ステップ12 Mathematicaの使いこなし ステップ13 手順も技術の1つ
  • ゲームAIと深層学習 ニューロ進化と人間性
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ゲームAI手法を技術開発に必要な基礎的な内容から解説! 本書は、最近のゲームAI手法をさまざまな実例で解説するとともに、実際にゲームAIを構築できるような技法の習得を目指します。さらに、人工知能の最新の話題として、人間らしいゲームAIや深層学習、機械学習、強化学習についても解説しています。 第1章 パズルとゲームのAI今昔物語 第2章 パズルを解くAI 第3章 制約従属のパズルと非単調な推理 第4章 ゲームを解くAI 第5章 学習・進化とゲームAI 第6章 ゲームAIと人間らしさ 参考文献 索引
  • Rによるデータマイニング入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、大量データを解析するデータマイニングについて、理論の基礎から解析手法まで、Rを使ったアルゴリズムの例題を交えてていねいに解説します。主な構成は、第1部でRを使ったデータマイニングの簡単な分析と探索的データ解析およびデータの可視化について解説、第2部でデータマイニングの一連の流れについて解説、第3部でRを使った、データマイニング手法をサンプルデータでコードを示して解説、現実のデータマイニング事例を紹介という流れで解説します。
  • AIとソフトウェアテスト 信頼できるシステムを構築するために
    NEW
    -
    ●AI&ソフトウェアテストにおける世界的な第一人者が、  AIをソフトウェアテストと品質保証の視点から解説!  本書は、『Artificial Intelligence and Software Testing: Building systems you can trust』(BCS, The Chartered Institute for IT:英国コンピュータ協会 刊)の翻訳書です。  AI(Artificial Intelligence:人工知能)は、ソフトウェアに新しい可能性をもたらすとともに、私たちの生活にも大きな変化を起こしました。もちろん、その品質保証のスタイルも大きな変更を余儀なくされました。本書は、AIをソフトウェアテストと品質保証の視点から解説し、複雑なAIシステムをどのように信頼のあるシステムにしていくかを読者に示します。  AIは、その機能品質の担保の難しさというデメリットだけではなく、テスト自動化等々のソフトウェアテストに活用できるというメリットも注目され始めています。本書では、これらについても扱います。また、シフトライトテスト(リリース後にユーザーフィードバックを素早く製品に反映すること)や、AIOps(AIを活用したIT運用管理)といったトピックなど、AIにおける品質保証とテストについても扱います。  AI開発を行なうITエンジニアやテスト担当者に一読いただきたい一冊です。 ●本書の構成 第1章 イントロダクション――Rex Black 第2章 信用できるAIと品質――Adam Leon Smith 第3章 品質とバイアス――James Harold Davenport 第4章 機械学習システムテスト――Adam Leon Smith 第5章 AIベースのテストの自動化――Jeremias Rößler 第6章 ソフトウェアテストのオントロジー――Joanna Isabelle Olszewska 第7章 デジタルツインであるメタバースにおけるシフトライトテスト――Jonathon Wright
  • 音声言語処理入門――図解・音声・動画でわかる
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ★音声はどうして言語としてとらえられるのか 図や音声データ・動画を多用し、音声言語処理の仕組みをわかりやすく解説。4部構成。 まず物理学・生理学・心理物理学の切り口から音声言語の仕組みについて説明する。 次に「人間はどのようにして音声を聞き分けるのか」という問いに音声の科学的研究を通して答える。 さらに応用として、音声合成と音声認識の仕組みを解説する。 最後に今後の展望として、言語を獲得する人工知能の可能性について考察する。 掲載図版約160点、音声データ約160個、動画19本収録。 コラムとして、「ハートのこもった音を創る」「音が無いのに聞こえる」など、音声言語にまつわる興味深い話題を25編収録。 言語聴覚士のための教科書または副読本としても使用できる。 [音声ダウンロード・動画YouTube] 〈目次〉 I 音の物理学 1章 静けさの音と音の大きさ ~音が無いとシーンと聞こえるのか~ 2章 音を構成する部品 ~音色は物理的には何なのか~ 3章 スペクトル、そして美しい音とは II 音声科学 4章 音声生成の仕組み ~気管と食道がつながっている!?おかげで~ 5章 脳が音色を感じる仕組み 6章 音の心理物理 7章 言語音声の合成による分析 ~なぜハートは愛/ai/なのか~ III 音声工学 8章 AIがしゃべる人工音声 ~琉球語もしゃべる~ 9章 音声自動認識 ~自分で進化していく機械~ IV 言語の獲得・学習 10章 言語の獲得 ~ヒトとサルの違い~ 11章 言語獲得のモデル ~聞き話す赤ん坊コンピュータ~
  • Pythonで動かして学ぶ!あたらしい数学の教科書 第2版 機械学習・深層学習に必要な基礎知識
    -
    AI開発に必要な 数学の基礎知識を しっかり習得! 【本書の目的】 本書は線形代数、確率、統計/微分といったAI開発に必要な数学の基礎知識をコードを動かしながらわかりやすく解説した書籍です。 【対象読者】 ・数学がAIや機械学習を勉強する際の障壁になっている方 ・ビジネスでAIを扱う必要に迫られた方 ・数学を改めて学び直したい方 ・文系の方、非エンジニアの方で数学の知識に自信のない方 ・コードを書きながら数学を学びたい方 【第2版のポイント】 ・Python 3.12に対応 ・Anaconda及びライブラリのバージョンアップに対応 【目次】 序章 イントロダクション 第1章 学習の準備をしよう 第2章 Pythonの基礎 第3章 数学の基礎 第4章 線形代数 第5章 微分 第6章 確率・統計 第7章 数学を機械学習で実践 Appendix さらに学びたい方のために 【著者プロフィール】 我妻 幸長(あづま・ゆきなが) 「ヒトとAIの共生」がミッションの会社、SAI-Lab株式会社(https://sai-lab.co.jp)の代表取締役。AI関連の教育と研究開発に従事。東北大学大学院理学研究科修了。理学博士(物理学)。法政大学デザイン工学部兼任講師。Web上のコミュニティ「自由研究室 AIRS-Lab」を主宰。オンライン教育プラットフォームUdemyで、20万人以上にAIを教える人気講師。複数の有名企業でAI技術を指導。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • AI駆動でサービスを創る――スモールAIサービスを作りながら学ぶ、生成AIを最大限活かす方法
    -
    ◆どのようなAIサービスが創れるのか、どのようにAIサービスを創るのか◆ 本書は「AIサービスを創る」ことをテーマとして、AIの基本的理解から、AIサービスの創出、分析、実装に至るまで幅広いトピックを扱います。生成AIが登場して以降、サービスを発案する役割、ビジネスモデルを検討する役割、システムを構築する役割という従来の役割の垣根が薄まる中、AIサービスについて全体を通して理解することの重要性は増しています。本書では、そのような役割の異なる人であってもAIサービスの全体像をつかみやすいよう、各トピックをできるだけ平易にわかりやすく紹介しています。そのうえで、サービス創り全般に対して生成AIを活用するアプローチ=「AI駆動によるサービス創り」として、生成AIの多様な活用方法について随所で紹介しています。 ■こんな方におすすめ ・生成AIを使ったサービスの開発に興味のある人 ■目次 第一部 AI駆動によるサービス創りの全体像 ●第1章 AIサービスの基本 ・1.1 AIサービスをなぜ作るのか ・1.2 AIサービス創りに必要な3つの観点と3つの分析 ●第2章 AIサービス創りのための3つの観点 ・2.1 どのようなAIサービスを創るか? ・2.2 観点1:不確実な対象に使う ・2.3 観点2:チャットでないもの、生成しないものにも使う ・2.4 観点3:ドメインの強みを活かす ●第3章 AIサービス創りのための3つの分析 ・3.1 サービス創りの前の事前準備 ・3.2 分析1:ビジネス分析 ・3.3 分析2:効果分析 ・3.4 分析3:リーガル分析 ●第4章 AIサービスの実装方式の種類と選択 ・4.1 AIサービスの実装方式 ・4.2 AIサービスの実装方式の選択 ・4.3 第一部のまとめ:AIサービス開発のはじめの一歩 第二部 AIサービスをノーコードで実装する ●第5章 ChatGPTの基本的な使い方 ・5.1 プロンプト ・5.2 追加データの活用方法 ●第6章 カスタムGPTによるAIサービスのノーコード実装 ・6.1 カスタムGPTの基本 ・6.2 カスタムGPTの応用 ・6.3 第二部のまとめ:AIサービスの可能性と課題 第三部 AIサービスをAPI/OSSモデルで実装する ●第7章 OpenAIAPIによるAIサービスの実装 ・7.1 OpenAIAPI keyの取得 ・7.2 Google Colaboratoryでのコーディングテスト ・7.3 Gradioを用いたデモ作成 ・7.4 Hugging Face Spacesでの公開 ●第8章 生成AIのOSSモデルによるAIサービスの実装 ・8.1 生成AIのOSSモデル利用の利点と注意点 ・8.2 Hugging Faceの生成AIモデルアクセス準備 ・8.3 Google Colaboratoryでのコーディング ・8.4 生成AIのOSSモデルの種類と選択 ・8.5 第三部のまとめ:AIサービスの実装、運用と管理へ向けて 第四部 AIを正しく駆動させるためのAIの理解 ●第9章 AIを理解する ・9.1 AIの基本 ・9.2 ルールベースAI ・9.3 機械学習の基本 ・9.4 分類問題を解くためのAI ・9.5 機械学習に用いるデータ ●第10章 大規模言語モデルを理解する ・10.1 言語モデルの基本 ・10.2 統計的言語モデル ・10.3 ニューラル言語モデル ・10.4 大規模言語モデルの学習 ・10.5 大規模言語モデルのドメイン適応 ・10.6 第四部のまとめ:LLMの現在と未来 ■著者プロフィール 貞光 九月(さだみつ くがつ):株式会社VAIABLE ファウンダー。1981年9月福岡県生まれ。筑波大学大学院博士課程修了後、NTT研究所、フューチャー株式会社Chief AI Officer/VPを経て、2022年に株式会社VAIABLEを創設。株式会社マネ―フォワード研究アドバイザを兼任。
  • 深層学習による自動作曲入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能は作曲家の夢を見るか? 【本書のポイント】 ・深層学習による自動作曲技術の全体像を知る ・Colaboratoryを使った自動作曲のお試し ・データセットを多数紹介  機械学習による自動作曲(AI作曲)技術を解説した専門書です。機械学習やメディアアート関係の研究者、学生、音楽産業の技術者を主な読者対象として、現在の自動作曲技術をまとめています。また、実践要素(Python/Colaboratoryを使った自動作曲の実践)を設けて、情報科学の知識のないクリエイターやアマチュア作曲者、動画制作者などが自動作曲にチャレンジできるようにしました。  近年、画像生成を中心にAI(機械学習)によるメディア生成が注目を集めています。自動作曲はその名の通り、音楽を生成する技術で、近年では機械学習・深層学習による自動作曲・音楽分析が盛んに研究されています。  本書では、言語・音声などの従来の時系列データと異なる音楽データの特徴に基づく分析や、音声の生成のような「それっぽい」にとどまらない美的な質の学習方法や評価といった、音楽に特化した機械学習のアプローチを解説します。  読者は本書によって、現時点での深層学習による自動作曲の全体図を理解でき、またGoogleのMusic TransformerやOpenAIのJukeboxなど、最先端の重要モデルの仕組みや性能を学ぶことができます。自身のAI作曲の性能向上や実用性の改善を図ることが可能となります。 第 1 章 AI による自動作曲とは 1.1 背景 ── AI と作曲 1.2 自動作曲の歴史 1.3 本書の目的と構成 1.4 本章のまとめ 第 2 章 音楽の基礎知識 2.1 音楽の存在形式 2.2 平面的な要素 2.3 立体的な要素 2.4 音楽制作の流れ 2.5 本章のまとめ 第3章 AI モデル 3.1 時系列モデル 3.1.1 RNN・LSTM・GRU 3.2 畳み込みネットワークネット (CNN) 3.3 生成モデル 3.4 強化学習 3.5 本章のまとめ 第4章 楽譜(MIDI)としての自動作曲 1:時系列学習による自動作曲 4.1 RNN 基盤の自動作曲 4.2 トランスフォーマー基盤の自動作曲 4.3 本章のまとめ 第5章 楽譜(MIDI)としての自動作曲 2:生成モデルによる自動楽曲 5.1 GAN 基盤の自動作曲 5.2 VAE 基盤の自動作曲 5.3 拡散モデルによる自動作曲 5.4 本章のまとめ 第6章 楽譜(MIDI)としての自動作曲 3:強化学習による自動作曲 6.1 報酬の設定 6.2 他モデルとの融合 6.3 強化学習の二つのアプローチ 6.4 本章のまとめ 第7章 波形としての自動作曲 7.1 なぜ難しいのか 7.2 音声生成 7.3 波形としての音楽生成 7.4 本章のまとめ 第 8 章 データセットおよび評価指標 8.1 データセット 8.2 評価指標 8.3 本章のまとめ 第 9 章 前処理とデータ拡張 9.1 前処理 9.2 データ拡張 9.3 本章のまとめ 第 10 章 AIの他の音楽分野への応用 10.1 音源推薦 10.2 ジャンル識別 10.3 音源分離 10.4 自動ミックスダウンおよびマスタリング 10.5 本章のまとめ 第 11 章 まとめと今後の課題 11.1 今後の課題 11.2 音楽への関わり方の変化と意義 11.3 本章のまとめ 参考文献 索引
  • Rによるやさしいテキストアナリティクス
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 テキストアナリティクスの技術と実践を詳しく解説! 本書は、アンケートやSNSといったテキストデータを対象とした分析に興味がある方や実務で応用したい方に向けて、テキストアナリティクスに関する基本的な知識と、著者が非常に重要であると考える技術について解説した入門書です。テキストアナリティクスは従来のテキストマイニングにとどまらず、より明確な分析目的や理論的枠組みをもった方法論です。 本書では、データの構築から分析までを行った、汎用性の高い事例を紹介しています。また、単にツールとしてのRの使い方を知るだけでなく、読者が目的に応じた分析方法を判断できるようになるようにまとめています。 サンプルのデータやコードを参考に手を動かしながら学習することができ、初心者の「一冊目」にうってつけです。 はじめに [基礎編] 第1章 テキストアナリティクス入門  1.1 テキストアナリティクスとは  1.2 社会で活用されるテキストアナリティクス  1.3 テキストアナリティクスの活用事例の探し方  1.4 テキストアナリティクスの歴史 第2章 テキストアナリティクスの理論的枠組み  2.1 テキストデータの構築  2.2 テキストデータの分析 [準備編] 第3章 分析データの準備  3.1 データセットの構築  3.2 テキストファイルの作成  3.3 CSVファイルの作成  3.4 テキスト整形 第4章 Rの基本  4.1 Rの導入  4.2 コードの入力  4.3 変数と代入  4.4 ベクトル  4.5 行列とデータフレーム  4.6 ファイルの操作  4.7 パッケージのインストール  4.8 ヘルプの参照 第5章 データ分析の基本  5.1 データハンドリング  5.2 文字列処理  5.3 可視化  5.4 統計処理 第6章 テキスト分析の基本  6.1 RMeCabの導入  6.2 形態素解析  6.3 単語の分析  6.4 n-gramの分析  6.5 共起語の分析  6.6 複数テキストの分析  6.7 頻度表の加工  6.8 用例検索 [実践編] 第7章 授業評価アンケートの分析  7.1 授業評価アンケートに基づく授業改善  7.2 分析データ  7.3 単純な頻度集計  7.4 品詞別の頻度集計  7.5 用例検索 第8章 オンラインレビューを用いたクチコミ分析  8.1 マーケティングのためのクチコミ分析  8.2 分析データ  8.3 レビューの評価と集計  8.4 低評価コメントと高評価コメントの比較  8.5 共起語の集計  8.6 共起ネットワークによる可視化 第9章 スクレイピングによる特徴語抽出  9.1 スクレイピングによるデータ収集  9.2 分析データ  9.3 特徴語抽出  9.4 用例検索 第10章 警察白書のトピック分析  10.1 白書から見る現代社会の諸相  10.2 分析データ  10.3 トピックモデル  10.4 階層型クラスター分析 第11章 文学作品の著者推定  11.1 文体識別指標を用いた著者推定  11.2 分析データ  11.3 箱ひげ図  11.4 対応分析  11.5 ランダムフォレスト おわりに 参考文献 索引
  • Google Cloud エンタープライズIT基盤設計ガイド
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 企業システムに関わる人が知っておくべきGoogle Cloudのサービスを 網羅的にわかりやすく解説 3つのシナリオにおける設計の進め方や注意点も収録 Google Cloudは企業情報システムへの対応を急速に進めており、DX(デジタルトランスフォーメーション)での存在感を高めています。本書は、企業情報システムの担当者やシステム企画部門、サービスを開発・運営する事業部門の担当者などが知っておくべきGoogle Cloudのサービスを網羅的に分かりやすく解説した一冊です。 データベースやセキュリティー、機械学習など11のカテゴリーに分けて重要なサービスを1つひとつ平易に解説しており、Google Cloudの基本的な知識を体系立ててつかむことができます。「ハイブリッドクラウドの構築」「データ分析基盤の構築」「IoT・機械学習システムの構築」という3つのシナリオにおける具体的な開発の進め方、設計例、考慮すべきポイントも収録しました。
  • 戦略ゲームAI 解体新書 ストラテジー&シミュレーションゲームから学ぶ最先端アルゴリズム
    4.7
    ゲーム開発者、AIエンジニア、 すべての意思決定に悩んでいる方に必見! 戦略ゲームAIの仕組み、戦略的意思決定プロセスを紐解くバイブル書 【戦略ゲームAIについて】 戦略ゲームの元にとなるストラテジー&シミュレーションゲームはボードゲームを発端として、発展してきました。 近年では、スマートフォン向けのソーシャルゲームを筆頭に、数多くのゲームでストラテジー&シミュレーション要素が取り入れられており、 いまやゲーム開発において戦略ゲームAIは避けて通れない非常に重要な要素になっています。 またゲーム開発のみならず、一般の人工知能開発、複雑な意思決定のプロセス形成において、その技術は非常に注目されています。 【本書の特徴】 ストラテジー&シミュレーションゲームに利用されている戦略ゲームAI技術について、 国内や海外の事例を交え、その仕組みを丁寧に解説した書籍です。 基本的な技術の概論の解説から始まり、 著者が注目するシミュレーション&ストラテジーゲームAIのアルゴリズムについて、 ビジュアルを交えながら解説します。 【読者対象】 ・ゲーム開発者 ・AI開発者 ・意思決定に興味を持つ方 【本書のゴール】 戦略ゲームAIの仕組みを学ぶことができる 【プロフィール】 ゲームAI研究者・開発者。 京都大学で数学を専攻、大阪大学(物理学修士)、東京大学工学系研究科博士課程(単位取得満期退学)。 博士(工学、東京大学)。2004年よりデジタルゲームにおける人工知能の開発・研究に従事。 国際ゲーム開発者協会日本ゲームAI専門部会設立(チェア)、日本デジタルゲーム学会理事など。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • あたらしい脳科学と人工知能の教科書
    3.3
    シンギュラリティ前夜! 脳科学と人工知能の接点がわかる! 【本書の概要】 本書はUdemyで大人気の講座、 『脳科学と人工知能:シンギュラリティ前夜における、人間と機械の接点』 をもとにした書籍です。 脳と人工知能のそれぞれの概要から始まり、 脳の各部位と機能を解説した上で、 人工知能の様々なアルゴリズムとの接点をわかりやすく解説。 脳と人工知能の、類似点と相違点を学ぶことができます。 後半の章では「意識の謎」についても解説します。 【シンギュラリティ】 また近年、人工知能の分野では「シンギュラリティ」という概念が注目されています。 シンギュラリティとは指数関数的に高度化する技術や人工知能が未来に人間の知能を凌駕するという概念ですが、 本書を読むことでそうしたシンギュラリティへの洞察力も養うことができます。 【対象読者】 ・人工知能に強い関心があり、人工知能の背景にある天然の「知能」の仕組みについて知りたい方 ・人工知能に関して、技術面以外の知識、特に生物学的側面を知りたいエンジニア ・人工知能の未来と、自身のキャリアを関連付けて考えたいビジネスマン ・素朴に、「ヒトって何?」という疑問のある方 ・知性の本質をアルゴリズムで探究したい方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。 人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • プログラミングなしではじめる人工知能
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 プログラミングなしで人工知能をはじめよう!  本書は,何か人工知能を活用してみたいが,プログラミングを学ぶのはハードルが高い,どんなことができるのかまずは試してみたい,という方をおもな対象として,Azure Machine Learning Studio (classic)を用いたノンプログラミングでの人工知能手法を紹介するものです.  Azure Machine Learning Studio (classic)はMicrosoft社の提供するクラウドサービスで,一般的なブラウザ上でドラッグ&ドロップによるビジュアル操作を用いて,人工知能(機械学習)を実践することができます.機能単位のアイコンとアイコンとを配線することで,さまざまな分析をおこなうことができます.  基本的な人工知能手法の解説に留まらず,「カップの振動」に対する教師あり学習,「扇風機の異常」を教師あり学習で分類する,水位の推定などの数値予測,「地目別平均地価」に対する教師あり学習,「ICTサービスの利用動向」に対するクラスタリング,「扇風機の異常動作」に対するSVMを用いた異常検知などの具体的な例を取り上げて解説することで,実践的な人工知能の手法をお試しできるようになっています. 1. AIとは? 2. Azure Machine Learning Studio (classic)の利用準備 3. データ形式の理解と準備 4. Azure Machine Learning Studio (classic)における処理の全体構造 5. Azure Machine Learning Studio (classic)へのデータ入出力 6. Azure Machine Learning Studio (classic)内における前処理 7. 教師あり学習 8. 数値予測 9. グルーピングと異常検知 10. 学習と推定についての評価 11. 独自処理 12. Webサービス化とAndroidアプリ作成
  • わかりやすいパターン認識(第2版)
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 パターン認識の決定版教科書、待望の改訂2版! 本書は1998年刊行の『わかりやすいパターン認識』の改訂版です。パターン認識を初めて学ぶ読者をおもな対象として、扱うテーマを基本的な項目にしぼり、それらを重点的かつ詳細に解説しました。  改訂にあたっては、具体例・実験例をもっと増やしてほしいという初版に与えられた要望に答え、補足・実験例、演習問題を加えました。演習問題の詳細な解答はオーム社のホームページに掲載されています。初版発行から20年の間に開発・提案された新しい手法の解説ではなく、基本的な内容を充実させ、より使いやすい書籍となるように改訂いたしました。 第1章 パターン認識とは 第2章 学習と識別関数 第3章 誤差評価に基づく学習 第4章 識別部の設計 第5章 特徴の評価とベイズ誤り確率 第6章 特徴空間の変換 第7章 部分空間法 第8章 学習アルゴリズムの一般化 第9章 学習アルゴリズムとベイズ決定則
  • 現場で使える!Watson開発入門 Watson API、Watson StudioによるAI開発手法
    -
    進化したWatsonでAIアプリを開発しよう! AIサービスの先駆けでもある「Watson(ワトソン)」。 近年急激な進化を遂げています。 機械学習や深層学習を利用したアプリケーション開発において 利用する開発者の方も増加してきています。 本書は、そうしたWatson の主力サービスである、 ・Watson Assistant ・Watson Discovery ・Watson Studio を軸にした開発手法を紹介する書籍です。 第1部では、Watson、Watson APIとIBM Cloudを利用した AIサービス開発の基本を紹介します。 第2部では、「Watson Assistant」「Watson Discovery」「Watson Studio」を利用した AIサービスの開発手法を紹介。 最終章では、ハタプロ社のロボット「ZUKKU(ズック)」の事例なども紹介します。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • オープンソースで作る!RPAシステム開発入門 設計・開発から構築・運用まで
    3.0
    【背景】 近年、RPAをビジネスの現場で積極的に利用しようとする動きが活発です。 RPAとはロボティック・プロセス・オートメーションの略語で、 日常の定型業務をソフトウェアに代行させ、自動化を図ることです。 RPAが注目される理由としては、 ・慢性的な人員不足 ・システムの乱立とつなぎ業務の多さ ・製造業の成功 が背景にあります。 【書籍の概要】 本書は、長年自動化システムについて業務開発を行ってきた著者が、 オープンソースのRPAソフトウェアを組み合わせて、 RPAシステムを構築する手法を解説した書籍です。 RPAシステムで利用するソフトウェアはオープンソース「Sikulix」を利用します。 第1部ではRPAシステム開発の基本について簡単なシステム構築を元に解説します。 第2部では需要の高いRPAモデルケースを元に開発の勘所を中心に解説します。 【対象読者】 システムエンジニア 【Sikulix(シクリ)について】 OpenCV(インテル社が開発・公開したオープンソースの画像解析ライブラリ)を利用した GUIオートメーションツールです。 【著者】 小佐井 宏之(こさい・ひろゆき) 福岡県出身。京都工芸繊維大学同大学院修士課程修了。 まだPCが珍しかった中学の頃、プログラムを独習。 みんなが自由で豊かに暮らす未来を確信していた。あれから30年。 逆に多くの人がPCに時間を奪われている現状はナンセンスだと感じる。 業務完全自動化の恩恵を多くの人に届け、無意味なPC作業から解放し 日本を元気にしたい。株式会社完全自動化研究所 代表取締役社長。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonで学ぶ統計的機械学習
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで機械学習に必要な統計解析を学べる!! 機械学習を使いこなすには、確率・統計に根ざしたデータ解析の基礎理論の理解が不可欠です。そこで本書は、Pythonの簡単な使い方から確率・統計の基礎、統計モデルによる機械学習を解説します。 第I部 Pythonによる計算  第1章 Pythonの初歩  第2章 確率の計算 第II部 統計解析の基礎  第3章 機械学習の問題設定  第4章 統計的精度の評価  第5章 データの整理と特徴抽出  第6章 統計モデルによる学習  第7章 仮説検定 第III部 機械学習の方法  第8章 回帰分析の基礎  第9章 クラスタリング  第10章 サポートベクトルマシン  第11章 スパース学習  第12章 決定木とアンサンブル学習  第13章 ガウス過程モデル  第14章 密度比推定 付録A ベンチマークデータ  A.1 UCI Machine Learning Repository  A.2 mlbench  A.3 datasets 参考文献 Python索引 用語索引
  • Pythonによる深層強化学習入門 ChainerとOpenAI Gymではじめる強化学習
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層強化学習の入門から実装まで、この一冊でわかる! アルファ碁などのゲームAIやロボットアームの制御、自動運転などで注目されている深層強化学習の基礎と、Pythonによる実装について解説した入門書です。 強化学習に適したライブラリであるChainer(ChainerRL)と、AIシミュレーション環境であるOpenAI gymを用いて解説しています。 ソフトウェアシミュレーションだけでなくRaspberryPiとArduinoを用いた実環境への応用も解説しているので、ソフト・ハード問わず自身の課題に深層強化学習を応用することができるようになっています。 1章 はじめに 2章 深層学習 3章 強化学習 4章 深層強化学習 5章 実環境への応用 付録 付録1 VirtualBoxのインストール 付録2 RaspberryPiの設定 付録3 Arduinoのインストール 付録4 Graphical Processing Unit(GPU)の利用 付録5 Intel Math Kernel Libraryを用いたNumPyのインストール
  • 人工知能システムのプロジェクトがわかる本 企画・開発から運用・保守まで
    4.8
    自社システムに人工知能を導入したいときに読む本! 人工知能の開発は進んでいますが、人工知能システムを開発するプロジェクトマネージャーの数は現在足りておらず、その数は今後さらに必要になっていきます。 また、大規模システムに人工知能が入るようになっていくと、それを運用・保守する仕事も必要となります。 しかし、人工知能の運用・保守に関するノウハウは世にほとんど存在せず、近い将来大きな需要が生じることが予想できます。 本書では、人工知能のシステムの企画に対して提案して開発し運用・保守したい人向けに、 人工知能システムの企画書の書き方やベンダーの提案書や開発計画の良し悪しの判断基準、 人工知能システムの開発および運用・保守の一連のプロセスについて解説します。 【本書のポイント】 ・人工知能の導入を検討しているビジネスマン向けの人工知能プロマネ読本 ・人工知能システムの企画書が書けるようになる ・ベンダーに要求仕様を提案したり、ベンダーの提案書や開発計画の良し悪しが判断できるようになる ・人工知能システムの開発および運用・保守の一連のプロセスを把握できる ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • スーパーインテリジェンス 超絶AIと人類の命運
    3.9
    ■AIについての最も重要な命題=人類はAIを制御できるか、という「AIコントロール問題」と真正面から格闘した本命本。 ■近未来に、汎用的な能力においても思考能力においても、そして、専門的な知識・能力においても、人類の叡智を結集した知力よりもはるかに優れた超絶知能(スーパーインテリジェンス)が出現した場合、人類は滅亡するリスクに直面する可能性がありうる。そのリスクを回避するためには、スーパーインテリジェンスを人類がコントロールできるかどうかが鍵を握る。果たして、そのようなことは本当にできるのか? ■オックスフォード大学の若き俊英、ニック・ボストロム教授が、スーパーインテリジェンスはどのようにして出現するのか、どのようなパワーを持つのか、いずれ人類がぶち当たる可能性のある最大の難問、「AIのコントロール問題」とは何か、解決策はあるのかなどについて、大胆にして、きわめて緻密に論じる。2014年秋に原著が出版されるや、瞬く間にニューヨーク・タイムズ紙ベストセラーとなり、イーロン・マスク、ビル・ゲイツ、S・ホーキング博士およびその他多数の学者や研究者に影響を与え、AIの開発研究は安全性の確保が至上命題であることを広く認識させるきっかけとなった。 ■近未来においてスーパーインテリジェンスは実現する可能性はあるのか? どのようなプロセスで実現されるのか?スーパーインテリジェンスはどのような種類の能力をもち、人類に対してどのような戦略的優位性をもつのか? その能力が獲得される要因は何か? 人類が滅亡する危機に直面するリスク、人類との共存の可能性についてどう考えるべきか? これらAIをめぐる真に根源的な問題について著者は、類書をはるかに超えた科学的、論理的な考察を徹底して慎重に積み重ね、検証する。
  • Rによるやさしいテキストマイニング 機械学習編
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習で捗るテキストマイニング! 機械学習を用いた本格的なテキストマイニングをやさしく解説! 本書は、フリーの分析ツールであるRを用いて、機械学習による大規模なテキストデータ解析の手法などをわかりやすく解説した書籍です。 (1) ウェブからのテキストデータの自動収集、(2) 生の「きたない」データを分析しやすい「きれいな」データにするための前処理、(3) 大規模データを解析するための機械学習の手法、(4) 分析結果を顧客や上司に分かりやすく伝えるための可視化の手法を丁寧に解説しています。 解説は、数式が苦手な読者もすんなりと読めるように、手法の原理を直感的に理解できるイラスト・図面を多用した構成としています。 主要目次 Part I テキストマイニング 第1章 自然言語処理 第2章 テキスト処理 第3章 スクレイピング Part II 機械学習 第4章 データハンドリング 第5章 教師あり学習―回帰 第6章 教師あり学習―分類 第7章 教師なし学習
  • データマネジメント 業務改善の正攻法 戦略から実践(日経BP Next ICT選書)
    -
    データを使い、業務改善をしてビジネスに貢献する。その担い手として情報システム部門が期待されています。本書はデータを整え、活用する「データマネジメント」の体系を提示し、計画の立て方、取り組む際の勘所、実例を網羅した一冊です。  複数システムに散在するデータの統合手法について一章を設けました。企業合併や国際化にあたって必須の活動です。さらに著者が30年かけて分析した「データモデルパターン」を初公開しました。商品管理、価格、契約、予実対比のパターンを見ると、業務の改善や設計の糸口が得られます。  手法ごとに実践事例を掲載しました。ビッグローブ、ホンダ、ヤマハ発動機、NTTデータ、大成建設、JCBの実務者が寄稿しています。
  • ゴール&ストラテジ入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 <A5判の書籍を固定レイアウトで制作したものです。大きめの端末でご覧ください> GQM+Strategies(目標・質問・メトリクス+戦略)アプローチ  本書で解説するGQM+Strategies(目標・質問・メトリクス+戦略)アプローチは、目標に沿って測ることを決めるという意識的・無意識的に広く用いられているGQM(目標・質問・メトリクス)法を拡張し、残念なITシステムを作らないようにするためのものである。具体的には、測定を通じて目標を定量管理する中で、組織のあらゆる箇所や階層において目標とITシステム化に代表される戦略を整合させ、改善させ続けることを可能とする。  本書執筆にあたっては、ドイツIESE研究所(実験的ソフトウェア工学研究所)ならびに日本国内における豊富な実践適用を経た結果を反映させており、経営者や投資(特にIT投資)を検討する立場の方から、戦略(特にITシステム)の企画立案や運用に携わる方まで、幅広く役立つものとなっている。 ★このような方におすすめ 企業のITシステム開発者 ★目次 第1章 まず理解しておくこと 第1部 GQM+Strategiesアプローチ 第2章 GQM+Strategiesのポイント 第3章 フェーズ0:初期化 第4章 フェーズ1:環境の特性化 第5章 フェーズ2:目標と戦略の設定 第6章 フェーズ3:実行計画の策定 第7章 フェーズ4:計画の実行 第8章 フェーズ5:成果の分析 第9章 フェーズ6:結果のまとめ 第2部 業界への適用と他の手法との関係 第10章 各社の適用例 第11章 他のアプローチとの関係 第12章 まとめと今後に向けた見解 付録A GQM+Strategiesプロセスチェックリスト 付録B GQM+Strategies評価アンケート
  • DEOS 変化しつづけるシステムのためのディペンダビリティ工学
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 変化し、長期運用するシステムの信頼性を確保する! 本書は、現代社会において、変化しつつ長期的に運用される巨大で複雑な複合システムに対し、いかにしてその不具合を減らし、重大事故を防ぎ、信頼性を保ちつつ運用を継続していくかについて体系的に議論した初めての技術書である。機能や構造、その境界が変化するシステムは通常「オープンシステム」と呼ばれる。我々はこのための技術体系を「オープンシステムのためのディペンダビリティ工学」、英文で“Dependability Engineering for Open Systems”、その略称をDEOS(デオス)と呼んでいる。システム開発・保守・運用に従事する技術者、研究者に必携の書である。
  • アプリ開発のための生成AIエージェント Replit入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 クラウドベースのWebアプリ開発ツール「Replit」とその生成AI機能「Replit Agent」の解説書籍。環境構築からコード生成までAIが支援する開発手法をフレームワークや知識データベースとともに徹底解説。
  • 製造業向け人工知能講義
    -
    進化の速いAIはここを押さえる 製造業の業務活用のための人工知能講義 業務改革、DX推進部門、IT部門、生産技術部門、経営層の悩みに応える  製造業が人工知能(AI)を業務で活用するために、押さえておくべき「本質」を講義形式(読み物)でまとめました。AIは業務の生産性や付加価値の向上に非常に役立つ技術です。ところが、技術の進化が極めて速いため、多くのビジネスパーソンにとって理解が追い付かず、「どうやって使いこなせばよいのか、よく分からない」という現実があります。こうしたビジネスパーソン、中でも企業の業務改革やDX、AI、IT推進部、生産技術部の社員や管理者、経営者の悩みに応えるために、業務活用を進める上で押さえるべきAIのポイントを伝授し、変化に対応してAIを学ぶ際の「見取り図」を描くためのガイドを提供します。  筆者は、名だたる日本の大手企業からAI活用に関する研修のオファーを受け続けている速水悟教授。AIをどのように学べば実務において活用できるかについて、AIの専門知識を持たない人でも理解できます。
  • Google AI Studio 超入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Google AI Studioを使ったアプリ開発解説書です。Python、Node.js、Web、curlなどから生成AIを利用。環境構築から画像生成AI、データ変換まで網羅しています。
  • コンピュータでとく数学 ―データサイエンスのための統計・微分積分・線形代数―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Wolfram|Alpha,Python,R,Mathematicaをフル活用して,大学教養レベルの統計,微分積分,線形代数の全体像を把握する.学び直しにも最適な一冊. コンピュータ(Wolfram|Alpha,Python,R,Mathematica)を活用して,数学の学びの質を高めましょう. 本書の具体的な目標は,線形回帰分析を理解することです.そのために必要な微分積分と線形代数も学びます.微分積分は多変数の微分積分まで,線形代数は特異値分解までです.これで,大学教養レベルの数学はほぼ網羅できます. すべてが線形回帰分析につながるので,何の役に立つのかと疑うことはありません.面倒な計算はコンピュータにまかせるので,計算に迷い込んでしまうこともありません. 線形回帰分析はデータサイエンス(人工知能・機械学習)の出発点です.本書を読んで,データサイエンスにおいて必要とされる数学力とプログラミング力を身に付けましょう. 大学教養レベルの数学の全体像の把握,学び直しにも最適な一冊です. コードは全てウェブで公開されます. 第I部 入門 第1章 実行環境 第2章 数と変数 第3章 データ構造 第4章 可視化と方程式 第5章 論理式 第II部 統計 第6章 1次元のデータ 第7章 2次元のデータ 第8章 確率変数と確率分布 第9章 多次元の確率分布 第10章 推測統計 第11章 線形回帰分析 第III部 微分積分 第12章 関数の極限と連続性 第13章 微分 第14章 積分 第15章 多変数関数の微分積分 第IV部 線形代数 第16章 ベクトル 第17章 行列 第18章 ベクトル空間 第19章 固有値と固有ベクトル 第20章 特異値分解と擬似逆行列
  • 音楽で身につけるディープラーニング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 音楽を創りながらディープラーニングを身につける! 音楽の自動生成を題材に、ディープラーニングの代表的な手法を解説した入門書です。 音符一つひとつに文字を割り当てれば、自然言語と同じように音楽を扱うことができ、演奏内容をピアノロールという表現に変換すれば、画像として扱うこともできます。そのため、音楽という 1種類のデータを使ってさまざまな手法を広く学ぶことができます。 本書では、PythonとTensorFlowを使って、自分で音楽データを学習させます。現状で生成される音楽のクオリティは高くはありませんが、音楽を創りながら学ぶディープラーニングは体と耳になじみ、読者の力になるはずです。 第1章 音楽を題材にディープラーニングを学ぼう 第2章 音楽データを Python で読み書きしよう 第3章 長調・短調判定で学ぶ多層パーセプトロン 第4章 ハモリパート付与で学ぶ RNN 第5章 メロディのデータ圧縮で学ぶオートエンコーダ 第6章 メロディモーフィングで学ぶVAE 第7章 多重奏生成で学ぶ CNN 第8章 多重奏生成で学ぶ GAN
  • 基礎から学ぶ 量子コンピューティング ―イジングマシンのしくみを中心に―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 量子コンピューティングがやさしくわかる 「量子コンピューティング」は量子コンピュータを用いた計算手法です。量子コンピュータには、大別してゲート型量子コンピュータとアニーリング型量子コンピュータがあり、ほかにアニーリング型量子コンピュータに着想を得た疑似量子コンピュータがあります。 本書で特に力を入れて説明しているのは、イジングマシンを使った具体的な問題の解き方です。イジングマシンは、組合せ最適化問題を解く専用のコンピュータで、アニーリング型量子コンピュータと疑似量子コンピュータのことを指します。組合せ最適化問題は応用範囲が広いので、具体的な問題の解き方を知ることで、量子コンピューティングの役立つシーンがイメージしやすくなるはずです。そうしたイメージができて興味がわいてきたら、もう少し専門的な資料を読んだり、量子コンピュータを使ってみたりして、さらに上の段階に進めると思います。 量子コンピューティングのしくみと、量子コンピュータを使ってどんなように問題を解くのかを知りたい方に基礎からていねいに解説します。 1章 量子コンピューティングの概要 1.1 量子コンピューティングとは 1.2 量子コンピューティングの応用例 1.3 量子を使わない量子コンピューティング 2章 イジングマシンのしくみ 2.1 イジングマシンとイジング模型 2.2 イジングマシンの計算のしくみ 2.3 問題を解くために必要なこと 2.4 問題を解く前の注意点 3章 イジングマシンで問題を解く 3.1 最大カット問題 3.2 画像のノイズ除去 3.3 グラフ彩色問題 3.4 クラスタリング 3.5 巡回セールスマン問題 3.6 ナップサック問題 4章 イジングマシンを使った機械学習 4.1 二値分類 4.2 行列分解 4.3 ブラックボックス最適化 5章 ゲート型量子コンピュータ 5.1 ゲート型量子コンピュータの計算のしくみ 5.2 量子アルゴリズム 5.3 量子ビットと操作の方式 6章 量子コンピューティングの今後 6.1 イジングマシンの進化 6.2 ゲート型量子コンピュータの発展 6.3 量子コンピューティングへの期待 付録 A.行列とベクトル A.1 行列とベクトルの演算 A.2 行列の固有値と固有ベクトル B.ブラックボックス最適化の補足 B.1 損失関数の平方完成 B.2 多変数ガウス分布 C.量子アルゴリズムの補足 C.1 ブラケット記法 C.2 ドイチュ・ジョサのアルゴリズム C.3 グローバーの量子探索アルゴリズム 参考文献 索引
  • IT Text  データサイエンスの基礎
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 いま必要とされるデータサイエンスの素養がしっかり身につく一冊。 さまざまな場面で入手できるデータを価値に転換することが、データサイエンスの目的です。データサイエンスという言葉は、ビジネスやアカデミーを問わず、いまや多くの場面で聞かれるようになり、それだけ重要性が高まっている概念といえます。本書は、データサイエンスを理解し実践したいと考えている方に必要とされる、データサイエンスの素養がしっかり学べる一冊です。 データサイエンスは、統計的、計算的、人間的という3つの視点の有機的結合という一面があるといわれます。本書では、データ分析に必要な統計学や関連する数学を丁寧にフォローし、確率・統計的な考え方が自然に身に付くよう配慮しました。また、データを適切に処理するための計算法は、プログラミング言語としてRを用いつつ、近年注目度の高い機械学習を含む具体例を通して納得しながら理解できる構成です。さらに、データの前処理から分析結果のプレゼンテーションまでの過程には人間が関わるという観点で、データを取り扱ううえで心がけるべき倫理的側面も扱いました。 なお、本書は「数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム」、「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に準拠した授業の副読本・参考書としてもご利用いただけます。 第1章 イントロダクション 第2章 Rの基礎 第3章 データの記述・可視化 第4章 関連と因果,データ分析における注意事項 第5章 データ倫理 第6章 確率 第7章 確率分布 第8章 標本分布と中心極限定理 第9章 点推定・区間推定・仮説検定・p値 第10章 機械学習の基礎 第11章 回帰モデル 第12章 分類 第13章 ベイズ線形モデル 第14章 決定木とアンサンブル学習 第15章 スパース学習 演習問題略解 参考文献
  • 入門 ディープラーニング ―NumPyとKerasを使ったAIプログラミング―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 AIのしくみと,使いこなすための技術がいっぺんに身につくディープラーニングの入門書 ディープラーニングをゼロから始めて,しっかりと理解したい人のための入門書です.ディープラーニングの基礎を一歩一歩着実に理解しながら,NumPyとKerasを使った実践的なAIプログラミングを学ぶことができます。 本書は,ディープラーニングの原理を説明しているテキストでも,そのプログラミングを実践形式でまとめたチュートリアルのような本でもありません.それらの両方をバランスよく組み合わせた,本当の意味でディープラーニングをわかるように解説した本です.「AIの学習とは」から,「ディープラーニングによる画像認識プログラムの作成」までを,なるべくやさしい言葉で,しかし大事なところを省くことなく説明しています. これからディープラーニングを学ぶ人,また,いまいちディープラーニングについてわからないことがある人,プログラムがうまく実行できない人におすすめの書籍です. 第1章 AIプログラミングを始めよう 1.1 AIとAIプログラミング 1.2 NumPyを使ってみよう 1.3 Matplotlibを使ってみよう 第2章 AIの学習の基本的な考え方 2.1 AIはどうやって学習するのか 2.2 再帰計算法を理解しよう 2.3 学習アルゴリズムの基本形 2.4 勾配降下法を理解しよう 2.5 多変数関数の勾配降下法 第3章 AIの学習の基本的なしくみ 3.1 重みを導入しよう 3.2 損失関数と重みの最適解 3.3 確率的勾配降下法 3.4 簡単なデータセットをつくってみよう 3.5 確率的勾配降下法による重みの最適解を求めるプログラム 3.6 ミニバッチ勾配降下法 3.7 ミニバッチ勾配降下法による重みの最適解を求めるプログラム 第4章 ニューラルネットワークの導入 4.1 単純パーセプトロン 4.2 活性化関数(その1):ステップ関数 4.3 基本論理ゲートの学習問題 4.4 誤り訂正学習法 4.5 学習プログラムを作成するときの注意点(その1) 4.6 プログラム例:AND ゲートの学習問題 第5章 ニューラルネットワークに勾配降下法を適用する 5.1 活性化関数(その2):シグモイド関数 5.2 単純パーセプトロンに確率的勾配降下法を適用する 5.3 学習プログラムを作成するときの注意点(その2) 5.4 プログラム例:単純パーセプトロンの確率的勾配降下法 5.5 単純パーセプトロンにミニバッチ勾配降下法を適用する 5.6 プログラム例:単純パーセプトロンのミニバッチ勾配降下法 第6章 単純パーセプトロンを組み合わせる 6.1 パーセプトロンを「多出力」にする 6.2 活性化関数(その3):ソフトマックス関数 6.3 多出力のパーセプトロンに確率的勾配降下法を適用する 6.4 学習のためのデータを十分に用意しよう 6.5 プログラム例:アイリスの種類を判別する学習問題 第7章 ニューラルネットワークを2層にする 7.1 ニューラルネットワークの層を重ねる 7.2 1出力2層のニューラルネットワークの確率的勾配降下法 7.3 XORゲートの学習問題 7.4 プログラム例:XORゲートの学習問題 第8章 ニューラルネットワークを多層にする 8.1 多出力多層のニューラルネットワーク 8.2 一般的なニューラルネットワークの確率的勾配降下法 8.3 誤差逆伝播法 8.4 学習プログラムを作成するための補足説明 8.5 プログラム例:手書き数字を認識する学習問題 第9章 Kerasを使ってプログラミングする 9.1 Kerasとは何か 9.2 Kerasの導入 9.3 Kerasを用いたプログラムの基本構成 9.4 Kerasを用いたプログラムにおける損失関数 9.5 Kerasを用いたプログラムにおける学習アルゴリズム 9.6 Kerasを用いたプログラムにおける学習の評価指標 9.7 Kerasを用いた学習プログラムの例 第10章 CNNで時系列データを処理しよう 10.1 畳み込みとは何か 10.2 CNN(畳み込みニューラルネットワーク) 10.3 活性化関数(その4):tanh関数 10.4 1次元CNNのプログラム例 10.5 Kerasによる1次元のCNNの実現 10.6 Kerasによる1次元CNNのプログラム例 第11章 RNNで時系列データを処理しよう 11.1 簡単な再帰型システム 11.2 RNN 11.3 簡単なRNNの学習アルゴリズム 11.4 簡単なRNNのプログラム例 11.5 KerasによるRNNの実現 11.6 KerasによるRNNのプログラム例 第12章 ディープラーニングで画像認識を行おう 12.1 2次元畳み込み 12.2 活性化関数(その5):ReLU関数 12.3 画像処理の2次元CNNのプログラム例 12.4 Kerasによる2次元CNNの実現 12.5 Kerasによる2次元CNNのプログラム例
  • ハンズオンで分かりやすく学べる Google Cloud実践活用術 AI・機械学習編
    -
    クラウドのサービスが高度化を続けています。素の仮想コンピューターに一からシステムを構築するというのはもはや時代遅れ。用意されたさまざまなサービスを組み合わせて短期間で目的のシステムを構築することが重要になっています。  Google Cloud(旧名称Google Cloud Platform=GCP)にはさまざまなサービスがあり、これらを活用することで、開発・運用・保守の短縮化・低コスト化・安定化が可能です。本書はGoogleの監修を受けており、2巻構成でGoogle Cloudの「AI・機械学習」「ビッグデータ」「コンテナ」の機能と使い方を解説します。本巻ではこの中で「AI・機械学習」に焦点を当てます。  AI・機械学習は自分で一から作るのが困難な分野です。モデルを構築するのに専門知識が必要なだけでなく、数多くのデータを用意したり、それを学習させたりと、大変な労力がかかり、ノウハウも必要です。Google CloudではGoogleが培ってきた学習済みのモデルを使ったり、ユーザーが学習させたりすることで容易にシステムを構築できます。  本書ではハンズオンでこれらを学習できます。データはGoogleがビッグデータとして用意しているものを使っているので、実際に試すのも容易です。
  • 情報理論のエッセンス (改訂2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「情報理論」のエッセンスを詰め込んだ教科書 大学学部,情報通信系学科の必修課目「情報理論」のエッセンスを詰め込んだ教科書です. 多くの人が難しく感じるところをできるだけ丁寧に,本質をしっかり押さえて解説しています.補足的な説明やより進んだ説明をコラムとして配し,演習問題には難易度に応じて5段階のレベル分けを付し,学習上の区分けが明確になるよう配慮しています. また、改訂にあたっては,現行の大学・高専のカリキュラムに沿った見直しを行ったほか,読者の声をもとによりわかりやすい解説に改めています. 1.情報理論とは? 2.情報のとらえ方と情報量 3.平均情報量(エントロピー)の性質 4.情報源 5.情報源符号化 6.具体的符号化法 7.通信路と相互情報量 8.通信路符号化 9.誤り検出と訂正 10.線形符号 11.巡回符号
  • 基礎から学ぶ 人工知能の教科書
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能の構成技術を網羅的に概観する、やさしい教科書 本書は、人工知能のしくみを一から丁寧に解説する入門書です。 「人工知能とはなにか」という定義からはじまり、機械学習や画像処理といったさまざまな技術のしくみを、できるだけ数式を使わずに平易に説明します。 深層学習が火付け役となった人工知能ブームによって、人工知能は多くの方にとって馴染みのある存在になってきました。しかし、 ・ 機械学習 ・ ニューラルネットワーク ・ 進化的計算 ・ 自然言語処理 ・ 画像認識 などの個別のトピックのみが取り上げられることも多く、人工知能全体の体系はよくわからない、という方も多いのではないでしょうか。 本書では、上述したようなトピックを網羅的に扱い、人工知能を構成する技術の全体像を概観します。できるだけ数式を用いずに、平易に解説するよう心がけました。 業務上AIに関する知識が必要になった社会人や、情報系の学部・学科に所属する大学生はもちろん、人工知能に興味のある高校生にも読んでいただける内容です。 なお、各章の最後には、Pythonを使った演習を設けています。 エンジニアの方や、エンジニアを志す学生の方は、ぜひ演習問題にも取り組んでみてください。 第1章 人工知能とは 第2章 人工知能研究の歴史 第3章 学習 第4章 知識表現と推論 第5章 ニューラルネットワーク 第6章 深層学習 第7章 進化的計算と群知能 第8章 自然言語処理 第9章 画像認識 第10章 エージェントと強化学習 第11章 人工知能とゲーム 第12章 人工知能はどこに向かうのか
  • 観光情報学入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 情報で観光を実学する! 我が国は今日、観光を産業資源として外国人の来訪を積極的に進めようとしている。このような状況の中、観光を情報の切り口から体系的に学び、実学に結びつけるのは急務である。本書はこのような視点から、観光情報学という新たな領域を具体的な事例を数多く例示しながら解説している。観光情報に関心のある読者はもとより観光資源をいかに活用しようかと考えている読者にも最適の書である。
  • Rによるやさしいテキストマイニング [活用事例編]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Rによるテキストマイニングを豊富な事例で解説!  本書は、テキストマイニングの初心者に向けて活用事例を解説した入門書です。実務ですぐに応用したい人や、すでにほかの分析ツールを使っている方が参考にできる活用事例も豊富に掲載しています。  また、実際のレポートや、データの収集からテキスト整形などの前処理、分析対象とする単語や品詞の頻度集計、分析対象に合わせた統計手法の選定、分析結果の可視化まで、分析プロジェクトにおける一連の流れを省略せずに解説しました。  読者が実際にRによるテキストマイニングの分析ができるように最大限配慮しています。 はじめに Part I Rによるテキストマイニング 第1章 テキストマイニングの活用 第2章 Rの活用 Part II 日本語テキストマイニングの活用事例 第3章 授業評価アンケートの分析 第4章 オンラインレビューを用いたクチコミ分析 第5章 スクレイピングによる特徴語抽出 第6章 Twitterにおける話題と感情の抽出 第7章 警察白書のトピック分析 第8章 文学作品の著者推定 Part III 英語テキストマイニングの活用事例 第9章 政治演説の言語分析 第10章 文学テキストの類型化 おわりに
  • Google Cloud Platform エンタープライズ設計ガイド
    4.0
    Googleが提供するクラウドサービス AWSとの違いを軸に徹底解説  「Google Cloud Platform」(GCP)は、Amazon Web Services(AWS)やMicrosoft Azureと同じく、企業向けのクラウドサービスとして提供されている。後発であることは否めないが、後発であるからこその特徴を備えている。  一般的な用途では「マネージドサービス」の充実が特徴と言える。そのほか、今注目の「機械学習」「ビッグデータ」関連のサービスが特に充実しており、AI関連のシステム基盤として要注目であることは間違いない。  本書では、「コンピューティング」「ストレージ」「ネットワーキング」「ビッグデータ」「機械学習」「アカウント管理」「運用監視」という7つのカテゴリーに分類し、GCPの特徴を、AWSとの違いを軸に解説している。  また、GCPのサービスを解説するほか、エンタープライズ用途のユースケースに基づいて、GCPを用いた設計ガイドをまとめている。技術力に定評のあるGoogleのクラウドサービスを検討するのに最適な1冊である。
  • IoTの全てを網羅した決定版 IoTの教科書
    4.0
    IoTを知らずにこれからのビジネスはできない 「IoT」の全てを網羅した決定版! 日本だけではなく世界が「IoT(Internet of Things、もののインターネット)」の時代に突入しつつあります。IoTの時代には、身の回りのあらゆるものがセンサーや制御装置を介してインターネットにつながり、データを集める。こうして集めたビッグデータを人工知能(AI)を使って分析し、効率や性能を高めます。さらには、新たなサービスを生み出し、これまでにないビジネスモデルを構築する──。IoTは「第4次産業革命」を起こし、既存のビジネスの世界を激変させるとまで言われています。 こうしたIoTの時代には、全てのビジネスパーソンにIoTの基礎的な知識やスキルが必須となります。あらゆるビジネスがIoTをベースに動くため、IoTを知らなければ仕事ができず、時代に取り残される可能性すらあるのです。一方で、IoTという言葉はよく聞くものの、内容が複雑でよく分からないという人が多いというのも現実です。 本書は「IoT」とは何かについて、基礎から体系的に学べる唯一の書です。IoT分野で使われる用語を網羅し、定義はもちろん、図版や事例を多用しつつ分かりやすく解説しました。 第1章から読んで体系的に学ぶことはもちろん、知りたいことがあったときに参照するという使い方もできます。検定試験「IoT検定」の公式本でもあります。 これから本格化するIoT時代を勝ち残りたいビジネスパーソンにとって、決定版となり得る1冊です。
  • TensorFlowとKerasで動かしながら学ぶ ディープラーニングの仕組み 畳み込みニューラルネットワーク徹底解説
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、ディープラーニングの代表とも言える「畳み込みニューラルネットワーク(CNN)」を例として、その仕組みを根本から理解すること、そして、TensorFlowを用いて実際に動作するコードを動かしながら学べる書籍です。 ディープラーニングについて解説する書籍は多数発行されていますが、本書では、「きちんとニューラルネットワークの原理から理解すること」と、「その原理をどのようにコードとして書くか」の両方がバランスよく学べます。 表面的にコードを覚えるだけでは、応用力は身に付きません。本書で根本から理解しておくことで、現場に出てからも長く使える基礎力を身に付けましょう! ※本書では、プログラムの実行環境としてGoogle Colaboratoryを利用するため、面倒な環境構築は不要です。 ※本書は、2016/9発行の『TensorFlowで学ぶディープラーニング入門』をもとに、Python3系、TensorFlow 2.0ベースに書き換えたほか、全体的に解説を見直し、修正しています。そのほか、実行環境をGoogle Colaboratoryに変更、オートエンコーダーによるアノマリー検知やDCGAN による画像生成などのトピックを追加しています。
  • Pythonで動かして学ぶ!あたらしい数学の教科書 機械学習・深層学習に必要な基礎知識
    -
    AI開発に必要な数学の基礎知識がこれ1冊でわかる! 【本書の目的】 本書は以下のような対象読者に向けて、 線形代数、確率、統計/微分 といった数学の基礎知識をわかりやすく解説した書籍です。 【対象読者】 • 数学がAIや機械学習を勉強する際の障壁になっている方 • AIをビジネスで扱う必要に迫られた方 • 数学を改めて学び直したい方 • 文系の方、非エンジニアの方で数学の知識に自信のない方 • コードを書きながら数学を学びたい方 【目次】 序章 イントロダクション 第1章 学習の準備をしよう 第2章 Pythonの基礎 第3章 数学の基礎 第4章 線形代数 第5章 微分 第6章 確率・統計 第7章 数学を機械学習で実践 Appendix さらに学びたい方のために ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonで動かして学ぶ! あたらしい機械学習の教科書 第2版
    -
    数学の基礎知識とPythonコードを紐づけて機械学習の基本を学べる! 【本書の目的】 現在、人工知能関連のプロダクト・サービスが数多く見受けられるようになりました。 人工知能関連の開発に機械学習の基礎知識は必須です。 本書はそうした機械学習の基礎知識を学びたいエンジニアに向けた書籍です。 【本書の特徴】 本書は機械学習の基本について、数学の知識をもとに、 実際にPythonでプログラムしながら学ぶことができる書籍です。 ・最新のPython 3.7に対応 ・学習内容を「要点整理」で復習 ・数式とコードをつなげたわかりやすい解説 【読者が得られること】 本書を読み終えた後には、機械学習のしくみとプログラミング手法を理解できます。 【対象読者】 機械学習の基礎を学びたい理工学生・エンジニア 【目次】 第1章 機械学習の準備 第2章 Pythonの基本 第3章 グラフの描画 第4章 機械学習に必要な数学の基本 第5章 教師あり学習:回帰 第6章 教師あり学習:分類 第7章 ニューラルネットワーク・ディープラーニング 第8章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 第9章 教師なし学習 第10章 要点のまとめ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • やさしく学ぶ ディープラーニングがわかる数学のきほん ~アヤノ&ミオと学ぶ ディープラーニングの理論と数学、実装~
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「ディープラーニングをライブラリで実装できるけれど、よく意味が分かっていない」 「ディープラーニングの背景にある数式を理解して、何が行われているか知っておきたい」 本書はそんな人のための本です。 勉強中のプログラマ「アヤノ」と、友達の「ミオ」の会話を通じて、ディープラーニングでどんなふうに入力値から出力値までの計算がされているのか、楽しく学んでいきます。 ※本書は『やさしく学ぶ 機械学習を理解するための数学のきほん』の続刊となりますが、前作を読んでいない人でも問題なく読むことができます。 本書では、 ・ニューラルネットワークでは何ができるのか ・単層のパーセプトロンではどのような計算が行われているのか ・パーセプトロンではどうやって問題を解いているのか ・パーセプトロンにはどんな欠点があるのか などの基本的な部分から解説を始めます。 パーセプトロンが理解できたら、続いて多層のニューラルネットワークについて学んでいきます。 ・ニューラルネットワークではどうやって問題を解いているのか ・問題を正しく解くためのパラメーターはどうやって学習しているのか といったことについて、1つずつ数式を理解して、時には具体的な数値を当てはめて実際に計算しながら理解していきます。 ニューラルネットワークが理解できたら、いよいよ画像の分類などに向いている「畳み込みニューラルネットワーク」について学習を進めます。 何をやっているのか、図解と数式で確認しつつ学習し、どのようにして「畳み込みニューラルネットワーク」が分類のタスクを行っているのか丁寧に解説します。
  • 現場で使える!PyTorch開発入門 深層学習モデルの作成とアプリケーションへの実装
    -
    【本書について】 本書は、 杜世橋氏がKindle Direct Publishingを利用してKindleストアで販売している 『PyTorchで学ぶニューラルネットワークと深層学習』(ASIN: B078WK5CPK)を書籍化したものです。 書籍化にあたり、最新(2018年7月時点)のPyTorch v0.4に対応するなど大幅に加筆しています。 また、付録に無料で利用できるGPU環境である「Colaboratory」の利用方法の追加などを行っており、 GPU環境が利用できない読者でも様々なニューラルネットワークのモデル学習が体験できるようになっています。 【PyTorch(パイトーチ)とは】 PyTorchは主にFacebook社のメンバーが開発しているOSSの深層学習フレームワークです。 特徴としては動的ネットワーク方式を採用していてPythonの関数と同じ感覚でニューラルネットワークを構築できる点が挙げられます。 【本書の概要】 本書はPyTorchの基本から深層学習モデルの作成、そしてアプリケーション作成まで網羅した書籍です。 具体的には、PyTorchの基本から始まり、最尤推定と線形モデル、多層パーセプトロンについて解説します。 その後、画像処理と畳み込みニューラルネット、自然言語処理と再帰型ニューラルネットを扱います。 また、推薦システムやWebAPIの作成、アプリケーションのデプロイについても解説します。 さらに付録では、TensorBoardによる可視化、Colaboratoryの利用方法などを解説しています。 【対象読者】 深層学習エンジニア、機械学習エンジニア ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • 現場で使える!TensorFlow開発入門 Kerasによる深層学習モデル構築手法
    4.5
    【本書の特徴】 2015年11月にGoogleがオープンソース化したソフトウェアライブラリ「TensorFlow(テンソルフロー)」は、 多くの開発者に支持され、多企業で採用されています。 本書は、TensorFlowの導入から、高レベルAPIであるKerasを利用した実践的な深層学習モデルまで解説した、 エンジニア向けの入門書です。第1部の基本編では、深層学習とTensorFlow、Kerasの基礎について解説し、 第2部の応用編では画像処理における応用的なモデルのKerasを使った実装方法を解説します。 特に、第2部では、「ノイズ除去」「自動着色」「超解像」「画風変換」「画像生成」を取り上げています。 TensorFlowやKerasの機能面を押さえつつ、現場で使用できるような実践的な深層学習モデルまでフォローしています。 【対象読者】 深層学習に入門したいエンジニア 【目次】 第1部 基本編 第1章 機械学習ライブラリTensorFlowとKeras 第2章 開発環境を構築する 第3章 簡単なサンプルで学ぶTensorFlowの基本 第4章 ニューラルネットワークとKeras 第5章 KerasによるCNNの実装 第6章 学習済みモデルの活用 第7章 よく使うKerasの機能 第2部 応用編 第8章 CAEを使ったノイズ除去 第9章 自動着色 第10章 超解像 第11章 画風変換 第12章 画像生成 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • 先輩データサイエンティストからの指南書 -実務で生き抜くためのエンジニアリングスキル
    -
    ◆実務で活躍できる、ワンランク上のデータサイエンティストへ!◆ データサイエンティストに求められるスキルは、いまや分析技術だけではありません。実務で活躍できるデータサイエンティストになるためには、チームでの働き方も身に付けなければいけないでしょう。本書では、分析環境の準備・分析データのチェックから、機械学習モデルの運用やプロトタイプ開発まで、データサイエンティストが抑えるべき「分析前後」の知識を身に付けられます。ワンランク上のデータサイエンティストになるための、強力なガイドとなる本です。 ■こんな方におすすめ ・新人データサイエンティスト ・分析技術は学んできて、これからチームで働く人 ■目次 第1章 実務で生き抜くためのエンジニアリングスキル ・1.1 データサイエンティストを取り巻く環境の変遷 ・1.2 プロジェクトで求められるエンジニアリングスキル ・1.3 まとめ 第2章 環境構築 ・2.1 分析の土台としての環境構築 ・2.2 リポジトリの構造を整える ・2.3 VS Codeでの開発環境の整備 ・2.4 Dev Container による仮想環境構築 ・2.5 uv によるパッケージ管理 ・2.6 まとめ 第3章 コードの品質管理 ・3.1 Notebookだけのデータサイエンティストからの卒業 ・3.2 コード品質とは ・3.3 品質の高いコードとその実現方法 ・3.4 コードレビューによる品質管理 ・3.5 まとめ 第4章 データの品質確認 ・4.1 データの品質確認の重要性 ・4.2 分析開始前のデータ確認 ・4.3 Panderaによるデータフレームのバリデーション ・4.4 データ品質管理の継続的な取り組み ・4.5 まとめ 第5章 機械学習モデルの実験管理 ・5.1 実験管理の意義 ・5.2 Hydraによるパラメータ管理 ・5.3 MLflowによる実験の比較 ・5.4 まとめ 第6章 プロトタイプ開発 ・6.1 プロトタイプ開発の意義 ・6.2 Streamlitによるプロトタイプ開発 ・6.3 まとめ ■著者プロフィール ●浅野 純季(あさの じゅんき):株式会社ブレインパッド リードデータサイエンティスト。プロジェクトマネージャーとしてECサイトのマーケティング分析、レコメンド、効果検証、ゲームのチート検知などのプロジェクトをリード。 また、データサイエンスpodcast「白金鉱業.FM」の配信、Meetupイベント「白金鉱業Meetup」の主催、大学での寄付講義などでも活動。 1章と3章の執筆を担当。 ●田中 冬馬(たなか とうま):株式会社ブレインパッド データサイエンティスト。デジタルマーケティングの領域での分析集計・機械学習モデルの構築や、LLMを活用したプロダクト開発などを担当。LLMに関する研究活動にも取り組み、論文の執筆や学会での発表を行なっている。社外では、AutoResというAIを活用した研究を自動化するプロジェクトに参画している。 2章の執筆を担当。 ●武藤 克大(むとう かつひろ):株式会社Citadel AI ソリューションエンジニア兼ソフトウェアエンジニア。新卒で株式会社ブレインパッドに入社し、機械学習エンジニアとして、製造業・小売・金融業を中心に、MLOpsの推進や生成AIを活用したシステムの検証・開発に携わる。現職では、AIセーフティーやAIガバナンスに関するプロダクトの導入支援や開発を行う。 3章と6章の執筆を担当。 ●木村 真也(きむら まさや):株式会社ブレインパッド データサイエンティスト。金融・食品業界におけるDX推進組織の立ち上げに携わる。DX推進組織のビジョンやアクションプランの策定といった上流の支援に加え、課題整理、分析、運用化までのデータ活用支援も担当。顧客のデータ活用人財の育成や社内コンペの主催など、データ・AI活用の民主化に向けた取り組みも実施。 4章の執筆を担当。 ●栁 泉穂(やなぎ みずほ):株式会社タイミー データサイエンティスト。新卒で株式会社ブレインパッドに入社し、通信や小売の領域を中心に、予測モデル開発やLLMアプリケーション開発、データ基盤整備などのプロジェクトに携わる。統計学を専攻していた知見を活かし、新卒研修の資料作成や講師も担当。 4章と5章の執筆を担当。
  • 仕組みから学ぶ生成AI入門――基礎から応用まで徹底理解
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆生成AIを基本からしっかり理解し、次の段階へステップアップ!◆ 近年続々と発表される実用レベルの生成モデル論文を深く理解するため、本書は変分オートエンコーダ(VAE)、LSTMといった基礎モデルから、VQ-VAE、拡散モデル、Transformerといった最先端モデルの先駆けとなったモデルの仕組みを、数学的な詳細に偏らず、シンプルなサンプルコードと演習を通して解説します。Kerasを用いた実装を通して、各モデルの主要機能と生成モデルとしての動作原理を、実際に手を動かしながら理解することを目的としています。 ■こんな方におすすめ ・機械学習の基礎から生成AIを学びたい方、生成AIのしくみをしっかりと基本から学びたい方。 ■目次 ●第1章 ディープラーニングの基礎知識 ・1.1 環境準備 ・1.2 分類モデルの仕組みと実装 ・1.3畳み込みニューラルネットワークによる画像分類 ●第2章 変分オートエンコーダによる画像生成 ・2.1 変分オートエンコーダの仕組み ・2.2 ラベルデータを活用した拡張 ●第3章 LSTMによる自然言語処理 ・3.1 LSTMによるテキスト分類 ・3.2 LSTMによるテキスト生成 ●第4章 トランスフォーマーによる自然言語処理 ・4.1 トランスフォーマーによる自然言語処理 ・4.2 トランスフォーマーによるテキスト分類 ・4.3 トランスフォーマーによるテキスト生成 ●第5章 拡散モデルの仕組み ・5.1 DCGANの仕組み ・5.2 拡散モデルの仕組み ・5.3 VQ-VAEの仕組み ●第6章 マルチモーダルモデルの実現 ・6.1 自然言語テキストによる画像生成 ・6.2 マルチモーダルモデルの実現 ■著者プロフィール 中井悦司(なかいえつじ): 1971年4月大阪生まれ。ノーベル物理学賞を本気で夢見て、理論物理学の研究に没頭する学生時代、大学受験教育に情熱を傾ける予備校講師の頃、そして、華麗なる(?)転身を果たして、外資系ベンダーでLinuxエンジニアを生業にするに至るまで、妙な縁が続いて、常にUnix/Linuxサーバーと人生を共にする。その後、Linuxディストリビューターのエバンジェリストを経て、現在は、米系IT企業のAI Solutions Architectとして活動。主な著書は、『[改訂新版]ITエンジニアのための機械学習理論入門』『Google Cloudで学ぶ生成AIアプリ開発入門――フロントエンドからバックエンドまでフルスタック開発を実践ハンズオン』(いずれも技術評論社)、『TensorFlowとKerasで動かしながら学ぶディープラーニングの仕組み』『JAX/Flaxで学ぶディープラーニングの仕組み』(いずれもマイナビ出版)など。
  • POSデータで学ぶ はじめてのマーケティングデータ分析
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 POSデータでマーケティング・リサーチの基本を学ぼう! この本は、POSデータ(販売状況の管理データ)の分析を通じて、マーケティング・リサーチにおけるデータの集計・分析・可視化の基礎を身につける入門書です。以下4つのコンセプトに沿って構成しました。 ① POSデータのダミーデータを用い ② 現実に近い分析のストーリーをもたせ ③ なるべく簡単なExcel 操作で ④ 分析の手順やコツを自然に学べる 各章の冒頭で「スーパーのマーケティング部の新人が、部長から集計や分析を依頼される」というストーリーが示され、そこで提示された課題に沿って学習を進めていきます。高度な理論の説明は控えて、実際にPOSデータの分析で求められる内容を中心に扱っています。本書を通読することで、単純集計やクロス集計、集計結果のグラフ化や検定、データ間の相関や回帰、同時に購買されやすい商品の分析方法やPOSデータから得られる指標(店頭カバー率、PI値など)の解釈などを身につけることができます。 数学が苦手な方、Excelの複雑な操作が苦手な方にもおすすめです。 <おすすめの用途> ・インターンや就職前の独習教材として ・大学のデータリテラシーの授業の教科書として ・ゼミ活動の準備段階の参考書として ・企業の新人、若手研修の補助教材として <本書のポイント> ・ダミーデータを使って、実際にPOSデータの分析でよくぶつかる課題の解決方法を学ぶため、小売り業の現場に近いかたちでデータ分析の基礎を身につけられます。 ・数式をほとんど使わないため、数学や統計学が苦手でも読み進めることができます。 ・Excelの高度な操作は行わず、初出の操作は都度説明するため、Excelが苦手でも読み進めることができます。 第0章 この本の読みかた 第1章 「売り上げをまとめた資料を作っといて!」-データを集計してみよう- 第2章 「売り上げ、顧客層で違うよね?」-属性ごとに集計して検定してみよう- 第3章 「季節ごとの売上傾向ってわかる?」-時系列データを集計してみよう- 第4章 「なにが売り上げに影響したんだろう?」-データ間の関係性を調べよう- 第5章 「どの商品を同じ棚に置いたら売れやすい?」-併売の分析をしてみよう- 第6章 「売れる商品を狙って入荷しよう!」-店頭カバー率とPI値から売れ筋商品を見つけよう- 第7章 「新店舗、うまくいくかな?」-回帰分析で新店舗の売り上げを予測しよう-
  • 自然言語処理の教科書
    5.0
    【普遍的な知識・技術を解説する自然言語処理の「教科書」】 深層学習の登場により、人工知能分野の技術が広く注目されています。特に自然言語処理は、我々の生活の中に深く浸透してきました。例えば検索システム、SiriやAlexaなどの音声対話システム、DeepLといった機械翻訳が挙げられます。いまや多くの企業や研究機関が、自然言語処理を用いた様々なプロジェクトを進めています。 本書はどの時代の自然言語処理にも必要となる技術について解説します。新しい技術が次々と生み出されていく中で、自然言語処理の実装に関する知識は古びてしまう可能性を孕んでいますが、本書では自然言語処理システムの開発で必要となる普遍的な知識を中心に掲載します。 解説の特色として、はじめに開発方法やデータ、評価基準など自然言語処理システムの開発全体に関する内容を載せます。続いて自然言語処理のタスク別に各システムの開発について取り上げ、どのような方針で設計するか、必要となってくる技術は何かを伝えます。最後に、類書でほとんど取り上げられていないにもかかわらず自然言語処理システムの構築には欠かせない知識となる辞書やコーパスの構築方法についても解説します。 ■目次 ●第1章 自然言語処理システムのデザイン   1-1 入力と出力を決定する   1-2 アプローチ:どのように解くか決定する   1-3 データ:辞書やコーパス   1-4 評価:評価尺度とエラー分析   1-5 フロー:自然言語処理システムの開発サイクル   1-6 まとめ ●第2章 分類・回帰問題の解き方   2-1 評価極性分析:ポジネガを判定する   2-2 文書分類:記事の自動分類   2-3 文章の品質推定:人手で書いた文章の品質を推定する   2-4 演習:品質推定   2-5 まとめ ●第3章 系列ラベリング問題の解き方   3-1 固有表現認識:固有表現を見つける   3-2 形態素解析:単語分割・品詞推定・見出し語化   3-3 誤り検出:誤り箇所の検出と訂正   3-4 演習:文法誤り検出・訂正   3-5 まとめ ●第4章 言語生成問題の解き方   4-1 文書要約:長い文章の要点をまとめる   4-2 機械翻訳:同じ意味の別の言語で表現する   4-3 対話:チャットのやり取りをする   4-4 演習:機械翻訳   4-5 まとめ ●第5章 言語資源のつくり方   5-1 言語資源の入手方法   5-2 言語資源構築のデザイン:継続的な品質管理   5-3 辞書作成   5-4 コーパス作成   5-5 ツールキット作成   5-6 演習:フレーズ分類ラベルアノテーション   5-7 まとめ ■著者プロフィール 小町守:2005年東京大学教養学部基礎科学科科学史科学哲学分科卒業。2010年奈良先端科学技術大学院大学情報科学研究科博士後期課程修了。博士(工学)。在学中、Microsoft ResearchやAppleなどで研究開発に携わる。同年奈良先端大助教、2013年首都大学東京(現東京都立大学)システムデザイン学部准教授および教授を経て、2023年より一橋大学大学院ソーシャル・データサイエンス研究科教授。2023~2024年ケンブリッジ大学客員研究員。最近は深層学習を用いた自然言語処理の研究に取り組んでいる。『自然言語処理の基本と技術』(翔泳社,2016)監修。
  • 最短突破  データサイエンティスト検定(リテラシーレベル)公式リファレンスブック  第3版
    3.5
    【読めば読むだけ力になる、新スキルチェックリスト対応の公式リファレンスブック!】 集めたデータから価値を創出し、ビジネス課題に答えを出すデータサイエンティストは、ますます必要とされてきています。そんなデータサイエンティストには、様々なスキルが求められています。 ・情報処理、人工知能、統計学などの情報科学系の知恵を理解し使う、データサイエンス力 ・データサイエンスを意味のある形に使えるようにし実装・運用できるようにする、データエンジニアリング力 ・課題背景を理解した上でビジネス課題を整理し解決する、ビジネス力 さらに、これらのスキルを日常生活や仕事等の場で活かすための学修目標を示した「数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム」も公表されています。データサイエンティスト検定(リテラシーレベル)では、これらの基礎的な部分を総合的に問われます。 本書では、問われる項目をひとつひとつピックアップし、現場の第一線でで活躍する著者が詳しく解説しています。読み込めば読み込むほど力になる、試験対策のための一冊です。 ■目次 第1章 DS検定とは 第2章 データサイエンス力 第3章 データエンジニアリング力 第4章 ビジネス力 第5章 数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム データサイエンティスト検定TMリテラシーレベル模擬試験 問題 データサイエンティスト検定TMリテラシーレベル模擬試験 解答例 ■著者プロフィール ●菅 由紀子(かん ゆきこ):株式会社Rejoui(リジョウイ) 代表取締役、一般社団法人データサイエンティスト協会 スキル定義委員、広島大学 客員教授。 ●佐伯 諭(さえき さとし):一般社団法人データサイエンティスト協会 スキル定義委員会副委員長、事務局長、ビーアイシーピー・データ株式会社 取締役COO。 ●高橋 範光(たかはし のりみつ):株式会社ディジタルグロースアカデミア 代表取締役会長、株式会社チェンジホールディングス 執行役員、一般社団法人データサイエンティスト協会 スキル定義委員。 ●田中 貴博(たなか たかひろ):株式会社日立製作所 人財統括本部 デジタルシステム&サービス人事総務本部 直轄人事部 シニアHRビジネスパートナー、一般社団法人データサイエンティスト協会 スキル定義委員。 ●大川 遥平(おおかわ ようへい):株式会社AVILEN 取締役、一般社団法人データサイエンティスト協会 スキル定義委員。 ●大黒 健一(だいこく けんいち):株式会社日立アカデミー 事業戦略本部戦略企画部部長、一般社団法人データサイエンティスト協会 学生部会副部会長、博士(農学)。 ●森谷 和弘(もりや かずひろ):データ解析設計事務所 代表、データアナリティクスラボ株式会社 取締役CTO、一般社団法人データサイエンティスト協会 スキル定義委員。 ●參木 裕之(みつぎ ひろゆき):株式会社大和総研 フロンティア研究開発センター データドリブンサイエンス部、チーフグレード/主任データサイエンティスト、一般社団法人データサイエンティスト協会 スキル定義委員。 ●北川 淳一郎(きたがわ じゅんいちろう):LINEヤフー株式会社、一般社団法人データサイエンティスト協会 スキル定義委員。 ●守谷 昌久(もりや まさひさ):日本アイ・ビー・エム株式会社 シニアアーキテクト、一般社団法人データサイエンティスト協会 スキル定義委員。 ●山之下 拓仁(やまのした たくひと):一般社団法人データサイエンティスト協会 スキル定義委員。 ●苅部 直知(かりべ なおと):一般社団法人データサイエンティスト協会 スキル定義委員、LINEヤフー株式会社。 ●孝忠 大輔(こうちゅう だいすけ):日本電気株式会社 アナリティクスコンサルティング統括部長、一般社団法人データサイエンティスト協会 スキル定義委員。 ●福本 信吾(ふくもと しんご):一般社団法人データサイエンティスト協会 スキル定義委員。
  • データ×AI人材キャリア大全 職種・業務別に見る必要なスキルとキャリア設計
    5.0
    データ×AI領域のキャリア設計を徹底解説! 自分に合った道筋と戦略がわかる ビッグデータや人工知能の活用が本格化されつつある現代、 データ×AIの領域で活躍できる人材が、様々な業界で求められています。 本書は、そんなデータ×AI人材への就職・転職を目指す方に向けて、 職種やプロジェクトごとの具体的な仕事内容、 求められるスキルなどを、網羅的に解説した書籍です。 【本書で扱う職種】 ・データサイエンティスト ・データエンジニア ・機械学習エンジニア ・データアナリスト ・BIエンジニア 【本書で扱うプロジェクト】 ・機械学習システム構築プロジェクト ・データ分析プロジェクト ・データ可視化・BI構築プロジェクト 本書を読めば、ファーストキャリアを獲得するために取るべきアクション、 自分の市場価値を高めてキャリアアップするための戦略がわかります。 これからデータ×AI領域で活躍したい方、 どのようなキャリアを描いていけばいいのか知りたい方にお薦めの一冊です。 【目次】 ■第1部 データ×AI業界の全体像 第1章 データ×AIによる社会の変革 第2章 データ×AI活用に関する基礎知識 ■第2部 データ×AIプロジェクトの全体像と各職種の果たす役割 第3章 データ×AIプロジェクトの種類と概要 第4章 機械学習システム構築プロジェクト 第5章 データ分析プロジェクト 第6章 データ可視化・BI構築プロジェクト ■第3部 データ×AI人材になるために必要なこと 第7章 データ×AI人材になるためのロードマップ 第8章 データ×AI人材としての転職を決めるポートフォリオ(概要編) 第9章 データ×AI人材としての転職を決めるポートフォリオ(作成編) 第10章 10年後を見据えたキャリア設計 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • 入門 情報処理 ―データサイエンス、AIを学ぶための基礎―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データサイエンス・AIを学ぶ前に読んでおきたい教科書 前版発行後のソフトウェア周りの進展にあわせて内容を見直すとともに今後重要度が増していくであろうデータサイエンス、AI寄りのテクニカルな内容を増強して改訂するものです。情報科学を扱ううえでの基本的なリテラシーやコンピュータサイエンスの基礎、Word、PowerPoint、Excelの操作の基本、Excelによる統計処理の基礎などを文理問わず学部学部生にわかりやすく解説する教科書です。 1章 情報社会とビジネス  1.1 情報社会とは  1.2 プライバシーと個人情報  1.3 ユビキタス社会  1.4 IoT  1.5 Web2.0  1.6 人工知能  1.7 人工知能の応用 2章 コンピュータネットワーク  2.1 コンピュータネットワークとは  2.2 ネットワークの形態  2.3 ネットワークの構成  2.4 インターネット  2.5 有線接続手段  2.6 無線接続手段  2.7 プロトコル  2.8 ネットワークセキュリティ  2.9 パーソナルセキュリティ  2.10 暗号化 3章 コンピュータシステム(ハードウェア)  3.1 コンピュータの歴史  3.2 コンピュータの種類  3.3 コンピュータの機能  3.4 コンピュータの構成要素  3.5 パソコンの内部構成  3.6 記憶装置  3.7 演算装置 4章 コンピュータの動作原理  4.1 演算処理の原理  4.2 論理素子の歴史  4.3 論理素子の動作原理  4.4 論理回路  4.5 基 数  4.6 2進数と10進数の変換  4.7 桁数の多い足し算  4.8 引き算  4.9 掛け算・割り算  4.10 数学関数 5章 情報量  5.1 ディジタルとアナログ  5.2 情報量  5.3 情報量の単位  5.4 英文字の情報量  5.5 日本語の情報量  5.6 文字コード  5.7 音声の情報量  5.8 静止画像の情報量  5.9 動画像の情報量  5.10 通信の情報量  5.11 情報圧縮  5.12 誤り検出・訂正 6章 ソフトウェア  6.1 オペレーティングシステム(OS)   6.1.1 オペレーティングシステムとは   6.1.2 OSの種類   6.1.3 OSの機能  6.2 プログラム   6.2.1 プログラミング言語とは   6.2.2 プログラムの内部動作   6.2.3 高級言語の基本処理  6.3 データベース   6.3.1 データベース理論   6.3.2 データベースの表現法   6.3.3 関係的表現のデータ操作 7章 人工知能のアルゴリズム  7.1 学 習  7.2 教師あり学習の代表的な手法  7.3 教師なし学習の代表的な手法  7.4 深層学習  7.5 手法の評価 8章 メディアリテラシー  8.1 メディアの定義  8.2 メディアリテラシーの必要性  8.3 メール  8.4 Twitter  8.5 Facebook  8.6 LINE  8.7 Instagram 9章 ビジネス文書の基礎(Word)  9.1 画面構成  9.2 文書全体の設定  9.3 文章の編集と保存/印刷  9.4 表の作成  9.5 オブジェクトの配置 10章 ビジネスプレゼンの基礎(Power Point)  10.1 画面構成  10.2 スライドのデザイン  10.3 画面切り替え効果  10.4 アニメーション  10.5 リハーサル  10.6 スライドショーの実行 11章 データ処理の実践  11.1 Excel操作の基本  11.2 グラフ作成   11.2.1 折れ線グラフ   11.2.2 複合グラフ  11.3 数式の計算   11.3.1 複利計算   11.3.2 損益分岐点   11.3.3 共有地の悲劇  11.4 帳票の作成   11.4.1 見積書   11.4.2 確定申告書  11.5 データ集計   11.5.1 データの分類   11.5.2 フィルター   11.5.3 検索表   11.5.4 データベース関数   11.5.5 クロス集計  11.6 統計処理   11.6.1 ヒストグラム   11.6.2 偏差値   11.6.3 相関分析   11.6.4 t検定   11.6.5 カイ2乗検定 索   引
  • AI・データ分析モデルのレシピ
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 マーケティングプロジェクトを成功に導く分析プロセスがサクッと学べる!  ビジネスの現場では多くのデータやAIの活用に関する取り組みが行われています。このようなプロジェクトが増える一方で、思うような結果が得られずにプロジェクトを中止せざるを得なかったとの声も聞こえてきます。  そこで本書では、正しく的確にAIを活用したデータ分析を導入できるよう、具体的な活用シーンに示しながら、「要件定義」「分析マスターデータ作成」「基礎集計・可視化」「モデリング」「評価・実装」の分析プロセスにおける知識やテクニックを丁寧に解説します。 Part 1 プロセスの一般論 Part 2 顧客データ × クラスタリング分析モデル Part 3 広告効果データ × 重回帰分析モデル Part 4 キャンペーンデータ × ロジスティック回帰分析モデル Part 5 調査データ × コレスポンデンス分析モデル Part 6 Eコマースデータ × 協調フィルタリング分析モデル Appendix AI開発の成功パターン(EDA)と失敗パターン(LISA)
  • AIリテラシーの教科書
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AI(人工知能)の知識を正しく理解し、適切に使いこなす能力を伸ばすことを目的とした教科書。「AIの全体像の把握」「基本原理の理解」「活用方法の習得」の3ステップで構成。大学の半期で学べる全14章。文・理を問わず学習できるよう「AI関連用語解説集」も収録。
  • 医療AIの知識と技術がわかる本 事例・法律から画像処理・データセットまで
    3.7
    AI活用がもたらす医療技術の変革! AI技術は病理学や医用工学、解剖学、神経科学、細胞生物学、 脳神経外科や内科学、眼科学、放射線医学、手術医学など、 基礎医学から臨床医学まで幅広い領域に浸透し始めています。 しかし、データの量や用途に応じて技術のラインナップの中から 適切な武器を選ぶ必要があるため、正しく活用するのは一苦労です。 さらにAIを医療機器としてリリースするためには、 資金調達、人材戦略、知財戦略などに抜かりがあってはいけません。 本書では、最新の事例、技術、法律と行政の取組みについて解説しており、 国内において医療AIをより活用できる1冊となっています。 【本書の概要】 ・AIと医療に関わる昨今の社会状況やAIの医療応用に関する法律を解説 ・AIが医療にどのように貢献しているかを、実際に事業化されている事例を中心に紹介 ・医療関連の画像を扱う技術や、電子カルテなど医療関連の自然言語や数値などの系列データを扱う技術など、 開発に必要な技術を紹介 ・医療AIの開発に使われる有名な公開データと提供元をリストアップし、データを扱う心構え、 標準的な開発の流れまで踏み込む ・医師かつ起業家の視点から、医療AIの事業化において役立つ情報が満載 ・韓国の医療AIベンチャーであるVUNO社とのインタビューと、日本が学ぶべき事柄を考察 【本書の読者層】 ・医療AIの開発に携わるエンジニア ・基礎知識として医療AIの基本事項を押さえておきたいエンジニア ・医療AIハード・ソフトウエアメーカやベンダーの企画、営業担当 ・医師 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonで動かして学ぶ!Kaggleデータ分析入門
    3.8
    世界最大のデータ分析コンペサイト Kaggle(カグル)に挑戦して データ分析の基礎知識を身に付けよう! 【本書の概要】 本書はこれからデータ分析をはじめたいと思っている方や、 Kaggleに興味のあるデータ分析の初心者に向けて、 Pythonの実際のコードとともに丁寧に解説した書籍です。 データ分析で必要な一般的な知識とともに、 Kaggleへチャレンジするフローや、 Kaggleの初心者向けコンペへの取り組み方を紹介します。 データ分析や機械学習の一端に触れ、 実際に課題を解決するプロセスを体感できます。 【本書の対象読者】 ・データサイエンティストを目指す学生 ・データ分析に興味はあるが、あまり経験や知見がないデータ分析の初学者の方 【本書のポイント】 Kaggleの初心者向けチュートリアル「Titanicコンペ」「House Pricesコンペ」について、 分析の準備から結果の考察、そして精度を上げるプロセスを ステップバイステップでコードとともに、わかりやすく解説しています。 【本書より扱うコンペの特徴:本書より抜粋】 ・Titanicコンペの特徴 乗客ごとに性別や年齢、乗船チケットクラスなどのデータが、 生存したか死亡したかのフラグとともに与えられています。 生死に影響する属性の傾向をデータから分析して、 生死がわからない(予測用に隠されている)乗客について、 生死結果を予測することが目的です。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • コンピュータ概論 未来をひらく情報技術
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 現代的な「情報リテラシー」と「情報技術」の基本が身に付く。 これまでの「理工系情報学科の入門書」としての基礎知識は踏まえた上で、「Python」の紹介、「人工知能(AI)」「ビッグデータの解析」等の基礎概念を加え、高度情報化社会に求められる人材育成に向けた「コンピュータ概論」の入門書。 コンピュータの原理から、基礎となる理論、「n進数」等の情報数理、ネットワーク技術、AI、ビッグデータ処理の基本までをコンパクトにまとめ、わかりやすく解説(各章末に練習問題掲載)。 1章 コンピュータの原理 2章 情報の基礎理論 3章 ハードウェア構成 4章 ソフトウェア構成 5章 コンピュータシステムと情報セキュリティ 6章 知識情報処理 7章 人工知能 8章 ビッグデータ 9章 マネジメント 練習問題/付録/参考文献/練習問題略解/索引
  • CoBRA法入門-「勘」を見える化する見積り手法-
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 習熟者の勘とデータにより正確な見積り計算を行う。  ソフトウェア開発現場の熟練者は、これまでの経験からソフトウェア規模を推定し必要な工数を「勘」を働かせて調整します。例えば、今回のプロジェクトは「開発 期間の制約が厳しい」、「信頼性要求のレベルが高い」、「要件がかなりあいまいだ」、といった状況を念頭において工数を予測します。ただし、勘も完璧ではありません。過去の実績データを使って「勘」の確からしさを評価する必要があります。  CoBRA法は、このベテランの勘と過去の実績データとを相互補完させること で、信頼できる工数見積りモデルを構築する手法です。容易に取り組め、精度が高い特徴があります。ソフトウェア工数見積りの世界のKKDのDを「データ」に置き換え、「勘(K)」、「経験(K)」に科学的アプローチを導入するものです。  また、 ・国立情報学研究所の教育プログラム「トップエスイー」 ・情報処理推進機構SECセミナー にもCoBRA法は取り上げられており、実用的・合理的な見積り手法です。 第1章 本書の読み方 第2章 やってみよう工数見積り -30分で工数見積り- 第3章 CoBRA見積りモデルでできること 第4章 CoBRA法とは 第5章 CoBRA見積りモデルの構築手順詳細 第6章 CoBRA見積りモデルの保守 第7章 構築・活用ベストプラクティス
  • 強化学習と深層学習 C言語によるシミュレーション
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 人工知能研究における諸分野を、C 言語による具体的な処理手続きやプログラム例によりやさしく解説する!!  強化学習は、一連の行動の結果だけから行動知識を学習する手法です。 本書では、この強化学習と深層学習の基礎を紹介した上で、深層強化学習のしくみを具体的に説明します。単に概念を説明するだけでなく、アルゴリズムを実際にC言語のプログラムとして実装することで、実際にプログラムを動かすことで具体的な処理方法の理解を深めます。 主要目次 第1章 強化学習と深層学習 第2章 強化学習の実装 第3章 深層学習の技術 第4章 深層強化学習
  • 最強囲碁AI アルファ碁 解体新書 深層学習、モンテカルロ木探索、強化学習から見たその仕組み
    3.0
    「神の一手」の謎にせまる! 【概要】 2017年5月にAlphaGoと柯潔(カ・ケツ)九段の最終決戦が行われ、 AlphaGoの3連勝となりました。AlphaGoは今回の対戦で さらに進化をとげました。 このようにAIの技術進化は日進月歩で進んでおり、国内でも 企業で研究開発が進んでいます。中でも目されているのは、 機械学習・深層学習・強化学習です。 本書はネイチャーで提供されているAlphaGoに関する 難解な学術論文を著者のほうで読み解き、「AlphaGo」で 利用されている深層学習や強化学習、モンテカルロ木探索の 仕組みについて、実際の囲碁の画面も参照しながら、 わかりやすく解説した書籍です。 本書を読むことで、最新のAIに深層学習、強化学習、 モンテカルロ木探索がどのように利用されているかを 知ることができ、実際の研究開発の参考にすることができます。 【読者対象】 ・人工知能関連の開発に携わる開発者、研究者 ・ゲームAI開発者 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonによる機械学習入門
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。検索やハイライト等の機能が使用できません。 初心者でもPythonを用いて機械学習が実装できる!   本書は、今後ますますの発展が予想される人工知能の技術のうち機械学習について、入門的知識から実践まで、できるだけ平易に解説する書籍です。「解説だけ読んでもいまひとつピンとこない」人に向け、プログラミングが容易なPythonにより実際に自分でシステムを作成することで、そのエッセンスを実践的に身につけていきます。 また、読者が段階的に理解できるよう、「導入編」「基礎編」「実践編」の三部構成となっており、特に「実践編」ではシステム計画研究所が展示会「Deep Learning実践」で実際に展示した「手形状判別」を実装します。 詳細目次 第1部 導入編  第1章 はじめに  1.1 機械学習とは  1.2 Python と機械学習  1.3 インストール&セットアップ  1.4 Python 早分かり ― NumPy とmatplotlib  1.5 クイックツアー   小話 深層学習って何だ?  第2 章 機械学習の様々な側面 33  2.1 機械学習をとりまく環境.. 33  2.2 関連分野. 34  2.3 学習法による分類. 35  2.4 手法や課題設定による分類. 36  2.5 応用例. 37 第2部 基礎編  第3章 分類問題  3.1 分類問題とは  3.2 最初の分類器  3.3 学習データとテストデータ   ミニ知識 色々な用語 ―学習・訓練・教師 vs テスト・評価・バリデート・検証   ミニ知識 k- 分割交差検証  3.4 分類器の性能を評価しよう   ミニ知識 正答率(Accuracy)と適合率(Precision)   ミニ知識 色々な平均.調和平均・算術平均・幾何平均  3.5 色々な分類器  3.6 まとめ  第4章 回帰問題  4.1 回帰問題とその分類  4.2 最初の回帰 ― 最小二乗法と評価方法  4.3 機械学習における鬼門 ― 過学習  4.4 過学習への対応 ― 罰則付き回帰  4.5 様々な回帰モデル  4.6 まとめ  第5章 クラスタリング  5.1 iris データセット   ミニ知識 フィッシャーのあやめ  5.2 代表的なクラスタリング手法 ― k-means  5.3 その他のクラスタリング手法  5.4 まとめ 第3部 実戦編  第6章 画像による手形状分類  6.1 課題の設定  6.2 最初の学習  6.3 汎化性能を求めて ― 人を増やしてみる  6.4 さらに人数を増やしてみる   ミニ知識 学習データに含める人数について  6.5 データの精査と洗浄 ― データクレンジング  6.6 特徴量の導入  6.7 パラメータチューニング  6.8 まとめ  第7章 センサデータによる回帰問題  7.1 はじめに  7.2 準備  7.3 センサデータの概要  7.4 データの読み込み  7.5 高松の気温データと四国電力の消費量  7.6 もっと色々、そしてまとめ  7.7 終わりに 第4部 付録  付録A Python で作る機械学習  A.1 この付録の目的  A.2 最小二乗法  A.3 行列計算による解析解の導出  A.4 反復法  A.5 コードを書く前に  A.6 実装例  付録B 線形代数のおさらいと代表的な非線形モデル  B.1 この付録の目的  B.2 そもそも「線形」とは  B.3 線形変換とアフィン変換  B.4 ノルムと罰則項  B.5 線形回帰の最小二乗解を考える  B.6 機械学習における「非線形」
  • 量子コンピュータ入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 量子コンピュータの根底にある考え方を、計算機科学の立場から平易に解説。
  • わけがわかる機械学習 ─現実の問題を解くために、しくみを理解する
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 機械学習が話題に上ることも増えてきましたが,実際には手っ取り早くできるものではなく,ライブラリを使うだけではやりたいことをうまく実現できません。もとになる考えかたや基礎的なモデルを知っていなければ,パラメータの意味がわからなかったり,目の前の問題に対してまったく向いていないモデルを使ってしまうからです。こういった状況に対し本書では,機械学習の理論を知ることで,機械学習を実際に活用していくための基礎をきっちりと固めることを目的とします。
  • 進化する銀行システム 24時間365日動かすメインフレームの設計思想
    4.3
    人々の生活や企業活動を支える銀行のオンラインシステム。地震などの大規模災害対策として,銀行の国際競争力を高める手段(振込の24時間化や休日・夜間の即時決済など)として,24時間365日止まらずに稼動し続けることが求められています。本書は,多くの銀行システムで採用されているメインフレームのしくみ,とくに信頼性,可用性,保守性を高める技術をわかりやすく解説します。銀行システムの歴史や特性,メインフレームやそのOS「z/OS」の特徴や機能を学びたい人,システムの障害・災害対策を検討したい人に役立つ1冊です。
  • GPTsでChatGPTを優秀な部下にしよう! GPTsパーフェクト作成ガイド
    4.0
    1巻2,799円 (税込)
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最新アップデートに対応!! 話題の『GPTs』を解説!!! オリジナルのChatGPTが作れる!!! 今話題のGPTs(ジー・ピー・ティーズ)はこんな事が可能です。 ・ノーコードでオリジナルのChatGPTを手軽に作成できる ・開発したChatGPTを共有できる ・外部サービスとAPI連携できる 本書では、GPTsの概要やCreateモードとConfigureモードによる作成方法だけでなく、チャットボット・文章生成・画像生成・データ分析・外部API利用などの開発事例を上げながら、GPTsの利用方法を、ビジネスマンなどを対象に徹底解説!
  • これ1冊で丸わかり 完全図解 最新セキュリティー
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ネットワーク管理者にとってセキュリティーへの対応は終わることがありません。ある時点で安全なシステムであっても、新たな攻撃手法が出てきたり、脆弱性が見つかったりすることで、危険にさらされる恐れがあります。 本書は、日経NETWORKに掲載したセキュリティーに関連する最近の主要な記事をまとめたたものです。最新の攻撃手法や、セキュリティーの事例などを詳しく紹介しており、最近のセキュリティー関連で知っておかなければいけないことを1冊で理解できるようになっています。 「Gmail届かない問題」や「CrowdStrikeによる大規模障害」といった知っておきたい事件についても解説しています。また「コスパで考えるセキュリティー対策」といった、現実的な対策法についても紹介しています。 ≪目次≫ ●第1部 インシデント対応  第1章 解剖!日本警察のサイバー捜査  第2章 被害を抑える初動対応  第3章 「史上最大規模」の障害起こしたCrowdStrike  第4章 神奈川県教育委員会「Gmail届かない問題」の全貌  第5章 「内部不正」との闘い方 ほか ●第2部 攻撃を知る  第1章 脆弱性対応「必勝」のポイント  第2章 ランサムウエア解体新書  第3章 防止不可能「ソフトウェアサプライチェーン攻撃」の脅威  第4章 改めて備えるDDoS攻撃  第5章 生成AI時代のサイバー防衛最前線 ほか ●第3部 守りを固める  第1章 コスパで考えるセキュリティー対策  第2章 ファイアウオール徹底解説  第3章 セキュリティー製品 利用実態調査  第4章 プラットフォーム型セキュリティーサービスの真実  第5章 動き出すIoTセキュリティーの評価制度 ほか
  • DX時代のプライバシー戦略 ―個人データ保護とビジネス強化両立の実践ガイド―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 個人データ活用ビジネスの指南書!  ユーザーの行動や購買のデータをもとに、サービスが最適化されることが当然の時代となりました。ネットで買いものをするときは閲覧や購買の履歴に基づいて商品の推薦が行われますし、動画を閲覧するときは過去の視聴履歴に基づいてホーム画面に表示される動画が変わります。データに基づいた調整によって、ユーザーはより適切なサービスを受けられるようになりました。  しかしユーザーに紐づくデータ(≒個人データ)は、うまく活用すればビジネス強化につながる反面、使いかたを間違えれば社会的に大きな非難を受ける可能性があります。近年ではプライバシー保護に対する社会の目が厳しくなっており、グローバルプラットフォーマーがGDPRで高額な罰金を課せられたり、これまで明確な法規制のなかった国に日本の個人情報保護法に相当する法律が次々と制定されるなど、国際社会は法規制を強める方向に動いています。日本国内でも、データの不適切な取扱いにより問題となった事例は枚挙に暇がありません。いままさに個人データを活用するサービスを開発・運用している実務担当者であっても、以下のような不安を抱えている人は多いのではないでしょうか。 ・いま行っている個人データ活用の施策が、プライバシー法規制に抵触するリスクはないか? ・ユーザーの同意はどんなときに必要で、必要となる場合はどうやって合意を取得するべきか? ・事業者間でのコラボレーションや第三者機関での分析を考えるとき、適法性やセキュリティをどのように担保すればよいか? ・データ処理過程で個人が特定されるリスクはないか? ・レピュテーションリスクを想定したとき、どんな情報を公表しユーザーへ提供するべきか? 本書では、こういった疑問への解答を示し、顧客の個人データを扱う当事者が実務レベルで適切な対応をとれるよう導きます。まずはビジネスでの個人データ活用の利点と懸念点を概説し、関連する法律や技術を説明したのち、どう対応していけばよいか具体例を示していきます。   <本企画のポイント> ・国内外のプライバシー規制の動向を理解できる ・企業におけるプライバシー保護体制(プライバシーガバナンス)の具体的な確立方法がわかる ・ビジネスにおける個人データ活用のリスクを適切に評価し、必要な対策がとれるようになる はじめに/目次 1章 なぜ個人データの活用が注目を集めているのか? 2章 プライバシー保護と炎上 3章 個人データと法規制 4章 プライバシーガバナンスを構築する 5章 個人データの定義と活用における注意点 6章 個人データを守るプライバシーテック 7章 プライバシーテックを活かした個人データ活用のフレームワーク おわりに/索引
  • データ可視化の基本が全部わかる本 収集・変換からビジュアライゼーション・データ分析支援まで
    4.0
    データの海から本質をつかみ、洞察を得る データ可視化は膨大なデータから意思決定に役立つ洞察を導き出すための必要不可欠なスキルです。 同時に、専門外の方へ知識を伝えたり説得するためのコミュニケーション術としても活用できます。 本書は、情報デザイン、コンピュータサイエンス、データサイエンス、統計学、記号学、インタラクションデザイン、ストーリーテリングなどさまざまな分野に分散しているデータ可視化の知見を統合し、ビジネスの最前線で役立つ内容に整理しています。 データ可視化の実践と普及に10年以上携わってきた著者が、本当に必要な基礎的な知識から実務でのワークフローや可視化の実践法、最適なチャートの選び方までをやさしく解説します。 ツール不要でプログラミング言語に依存しない記述なので、本質的な理解につながる内容です。 とくに次のような方にはおすすめの一冊です。 ・データ分析の実務者 ・UI・UXデザイナーやエンジニア ・プロダクトマネージャー、プロジェクトマネージャー ・マーケティングや事業戦略の担当者 ・企業の広報・コミュニケーションの担当者 【読者特典】手軽に使えるデータ可視化・データ処理ツール47選付き! 【目次概要】 〈基礎編〉 第1章 なぜデータを可視化するのか 第2章 データ可視化とは何か 第3章 どんな分野で用いられているか 第4章 チャートの文法とは何か 第5章 可視化表現の三層モデルとは何か 第6章 色はどのように選ぶか 第7章 コミュニケーションとしての可視化 〈実務編〉 第8章 ワークフローを理解する 第9章 ゴールを設定する 第10章 タスクを抽象化する 第11章 データの実務知識をおさえる 第12章 データを収集し処理する 第13章 チャートの選び方を知る 第14章 数値(How Many)を可視化する 第15章 言葉(What)を可視化する 第16章 時間(When)を可視化する 第17章 場所(Where)を可視化する 第18章 関係(To Whom)を可視化する 第19章 インタラクティブに操作する 第20章 レイアウトする 第21章 制作ガイドラインとしての価値観と原理原則 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • これ1冊で丸わかり 完全図解 セキュリティー実践
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 企業にとってシステムを守ることは大きな課題です。不正アクセスやランサムウエアなどサーバー攻撃による企業の被害は増える一方であり、ひとたび被害に遭えばその影響も業績に直接響いてきます。 本書では、企業のセキュリティーを向上させる方法を様々な角度から紹介しています。万が一、被害に遭ったときにどう対処するかといったインシデント対応についても詳しく説明しています。図解を中心としており、これまでセキュリティー分野について詳しくなかった人でも理解しやすいようになっています。用語解説も豊富に盛り込んでいます。 ≪目次≫ ●第1部 製品とサービス  第1章 セキュリティー製品 利用実態調査  第2章 法人向けパソコンのセキュリティー機能  第3章 2024年こそ「脱パスワード」  第4章 「SASE」を読み解く  第5章 知っておくべき「ID」の基礎 ●第2部 攻撃を知る  第1章 詐欺メール撲滅大作戦  第2章 メールは危ない  第3章 ランサムウエア解体新書  第4章 ランサムウエア攻撃対策の勘所  第5章 多要素認証を破る「プロンプト爆撃」の罠  第6章 「USBメモリー」の罠に気をつけろ ●第3部 インシデント対応  第1章 インシデント対応「虎の巻」  第2章 「内部不正」との闘い方  第3章 CSIRT体験記  第4章 ドメイン管理トラブル撲滅術  イラストで学ぶ ネットワークキーワード SIEM  第5章 クラウドセキュリティー総点検 ●第4部 キーワード  第1章 セキュリティーキーワード  第2章 セキュリティー基準「NIST SP800-171」の正体  第3章 身に付けるべきネットワーク技術
  • メタバースの教科書 ―原理・基礎技術から産業応用まで―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 メタバースを形造る技術を徹底的に解説した、いまだかつてない書! 「メタバース」は、VR・AR・MRなどの技術を駆使して、仮想空間上に設けられた環境上でさまざまな形のエンターテインメント、コミュニケーション、ビジネス(例えば、アパレル/不動産/建設/小売業/観光/広告/医療/製造業/金融など)を展開する概念で、ここ数年でバズワード化しています。 本書は、メタバースの概念が生まれてきた背景・経緯やその目指すところをはじめ、メタバースを実現するための種々の要素技術・仮想化技術やその原理・応用と魅力を取り上げて、具体的に解説した書籍です。 1章 メタバース/VRとは  1.1 VRの歴史  1.2 VR/AR/MRとは  1.3 メタバースの歴史  1.4 メタバースロードマップ  1.5 メタバースとは  1.6 ソーシャルVRとメタバース  1.7 デジタルツインとメタバース  1.8 NFTとメタバース  1.9 アバタとメタバース  参考文献 2章 メタバース/VRを構成する基礎技術 ~感覚・提示~  2.1 視覚ディスプレイ  2.2 聴覚ディスプレイ  2.3 体性感覚ディスプレイ  2.4 嗅覚・味覚ディスプレイ  2.5 前庭感覚・移動感覚ディスプレイ  2.6 感覚間相互作用  2.7 内受容感覚・内臓感覚  2.8 錯覚を応用した情報提示技術  2.9 物理量と感覚量の関係  参考文献 3章 メタバース/VRを構成する基礎技術 ~計測・表現~  3.1 物理世界のセンシング  3.2 情報世界のモデリングとレンダリング  3.3ネットワーク・サーバ技術  参考文献 4章 メタバース/VRと身体  4.1 アバタと身体  4.2 サイバーシックネス・VR酔い  4.3 身体と環境の相互作用  4.4 体験する姿勢と状態の効果  参考文献 5章 メタバース/VRを使った産業応用  5.1 メタバースの産業応用  5.2 教育訓練  5.3 デジタルツイン  5.4 エンターテインメント  5.5 イベント・パブリックビューイング  5.6 バーチャルマーケット  5.7 広告・マーケティング  5.8 メタバースで生まれるビジネス  5.9 その他  参考文献 6章 メタバース/VRの今後の展望  6.1 時空間を超えるメタバース  6.2 意識を超えるメタバース  6.3 橋渡しするメタバース  6.4 基盤化するメタバース  6.5 メタバースのUI  6.6 メタバースの課題  参考文献
  • 実践スクラム ―スクラム開発プレイヤーのための事例―
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 エヌアイデイ流スクラムのトリセツ&スクラムの品質管理 【雛型】プロジェクト計画書兼報告書解説付き  本書は、筆者が実施してきたスクラム開発の経験を基に、「これからスクラム開発プロジェクトに参画しようとしているが、どのように進めてよいかよくわからない方」や、「すでにスクラム開発に従事しているが、あまりうまくいっていない方」のために開発の進め方やアプローチの方法を具体的にガイドしているものです。プロジェクト計画書の雛形も掲載しており、共通認識としてスクラムチームで活用参照してほしい書籍です。 発刊にあたって はじめに 第1部 アジャイル開発の基礎 第1章 アジャイル開発とは 1.1 なぜアジャイル開発が求められるのか 1.2 アジャイルソフトウェア開発宣言とその意図 1.3 アジャイル宣言の背後にある原則 1.4 ウォータフォール開発とアジャイル開発との違い 第2章 アジャイル開発の手法 2.1 アジャイル開発の手法と特徴 2.2 開発手法の適用状況 第3章 スクラム開発 3.1 スクラム開発とは 3.2 スクラム開発の理論 3.3 スクラム開発の価値基準 3.4 スクラム開発の流れとフレームワーク 3.5 スクラム開発の進め方 第4章 スクラム開発での契約 4.1 契約の前に 4.2 契約形態について(請負契約と準委任契約) 4.3 顧客と当社の役割分担 4.4 契約前チェックリスト 第2部 開発の現場 第5章 受  注 5.1 契約前の合意および確認事項 5.2 見積りおよび契約 第6章 計画・立ち上げ 6.1 スクラムチームの編成と立ち上げ計画策定 6.2 インセプションデッキ作成 6.3 プロダクトバックログ作成 6.4 プロダクトバックログ見積り 6.5 初期リリース計画 6.6 スプリント準備 6.7 プロジェクト計画書の作成 第7章 スクラム開発のフレームワーク 7.1 スプリントプランニング 7.2 開発(技術プラクティス) 7.3 デイリースクラム 7.4 問題・障害・リスクの共有 7.5 進捗管理 7.6 スプリントレビュー 7.7 スプリント・レトロスペクティブ 7.8 リリース 7.9 プロダクトバックログ・リファインメント 第8章 品質管理 8.1 スクラム開発での品質の考え方 8.2 品質管理活動 8.3 品質データの収集および分析について 第9章 終 結 9.1 プロジェクトの実績評価とふりかえり 9.2 プロジェクト完了報告 9.3 プロジェクト実績の保管 第3部 各種資料 資料1 インセプションデッキの作り方・注意点 項目1:我われはなぜここにいるのか 項目2:エレベーターピッチを作る 項目3:パッケージデザインを作る 項目4:やらないことリストを作る 項目5:「ご近所さん」を探せ 項目6:解決案を描く 項目7:夜も眠れなくなるような問題は何だろう 項目8:期間を見極める 項目9:優先順位は? 項目10:何がどれだけ必要なのか 資料2 プロジェクト計画書の解説 1 管理表 2 体制 3 リスク管理 4 予算・要員計画 5 マスタスケジュール 6 進捗管理 7 品質管理 8 完了報告書 資料3 【雛型】プロジェクト計画書兼報告書 資料4 見積リスク評価表 資料5 スクラム開発プロセス俯瞰図 資料6 スクラムの実例紹介 1 プロジェクトの背景 2 プロジェクトの概要 3 インセプションデッキ 4 プロダクトバックログ 5 スプリントバックログ 6 デイリースクラム 7 スプリントレビュー 8 レトロスペクティブ 資料7 用語集 参考文献 あとがき
  • 世界をリードする8つの最新テクノロジー Web3からメタバース 量子コンピュータまで
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 世界を変える技術は絶えることなく誕生している。SNS(交流サイト)やチャットアプリはコミュニケーションの世界を、EC(電子商取引)はビジネスの世界を一変させた。ほかにも、2010年代のスマートフォンやAI(人工知能)、さかのぼれば1990年代のインターネット、さらに1970年代のPCなど、枚挙にいとまがない。本書では、現在にとどまらずこれからの世界の変化をリードするであろう注目の技術を選び解説する。  主なものを挙げれば、Web3、メタバース、ブロックチェーン、デジタルツイン、量子コンピューター、クラウド、5Gを含むネットワーク技術、セキュリティーとなる。これらは独立して存在するのではなく、互いに関連しながら社会への影響度を高めていく。  今まさに、Web1.0、Web2.0に続く、10年、あるいは20年に一度のインターネットの変革が起ころうとしている。この変化にあらがうことはできない。どんな技術が存在し、どういった変化を起こしていくのかを知ることが最良の対応であり、本書はそのガイドとなるものである。 ≪目次≫ 第1章 Web3/メタバース最新動向 第2章 量子コンピューター最新動向 第3章 クラウド/ネットワーク最新動向 第4章 セキュリティー最新動向 第5章 挑戦者たち 第6章 シリコンバレー最新動向 第7章 GAFA深読み最新動向 第8章 サイバー攻撃最新動向
  • DXがわかる本 動き出す金融・流通・公共、大変革の時代へ
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ポストコロナ時代、企業はどうあるべきか?生き残りにはDXによる変革が一段と重要に――。 ポストコロナ時代、企業の在り方が問われる時代になった。本書では、単なる概論にとどまらず、金融、公共、流通といった業界を中心にDXの最新動向を追いかける。さらにデジタル庁のトップ、日本を代表する大手金融機関トップのインタビューを含め、ほかでは読めない独自コンテンツを満載した1冊。 ■総合解説 ポストコロナ、DXはこう進む ■金融DX最新動向 地銀の反転攻勢 東京海上、正攻法のDX インタビュー 東京海上ホールディングス社長 小宮暁氏 勘定系の新常態 インタビュー SBIホールディングス社長 北尾吉孝氏 「eKYC」急拡大/岐路の全銀システム/CAFISの葛藤 求められる競争原理 迷走、給与デジタル払い 賛否拮抗で解禁見えず ほか ■公共DX最新動向 激変する行政システム/デジタル庁 その理想と課題 役所・銀行・薬局 マイナカード利用に挑む/デジタル庁の試金石 ワクチン接種DX 政府テレワークの今 拒むのは技術にあらず ほか ■流通DX最新動向 クルマも化粧品も 「ノールック商売」台頭 デジタル直販「D2C」 最新EC誰でも手軽に 物流、再発明 ほか ■DXコラム システムの保守運用体制が瓦解 他人事ではない、みずほの惨事 量子コンピューターとメタバース IT産業と社会を変える技術はこれ 2022年に日本のDXの真価を問う 「地獄の沙汰」が意味するもの 日本のDXを阻む規制を見直す デジタル臨調への期待と不安 公取委がIT業界の暗部を調査 ESGで「見ぬふり」は許されず 岸田新政権
  • データサイエンスの考え方 ―社会に役立つAI×データ活用のために―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」準拠テキスト データ活用社会を生きる学生・社会人に必須の【データ分析・解析の基本的な考え方と手法】をわかりやすく解説! データサイエンスは、さまざまなデータを分析・解析し、そこから新しい知見や価値を生み出していく技術・手法です。統計学などの数学を基礎とし、必要に応じコンピュータを活用して、さまざまな分野の専門知識と融合しながら、データから新しい価値を生み出していくデータサイエンスは、いまや大学生・社会人にとって必須の教養といえます。 本書は、政府の「AI戦略2019」での議論を経て策定・公表された「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に準拠した内容です。具体的な事例と分析手法を扱いながら、社会のさまざまな場面で必要とされるデータサイエンスの考え方を、関連する数学とともに丁寧に解説します。また、大学におけるリテラシーレベルの授業に続く、半期の授業に対応した構成としました。 【著者一覧】 第1章  小澤誠一 神戸大学数理・データサイエンスセンター 第2章  大川剛直 神戸大学大学院システム情報学研究科情報科学専攻 第3章  藤井信忠 神戸大学大学院システム情報学研究科システム科学専攻 第4章  青木 敏 神戸大学大学院理学研究科数学専攻 第5章  光明 新 神戸大学数理・データサイエンスセンター 第6章  為井智也 神戸大学数理・データサイエンスセンター 第7章  大森敏明 神戸大学大学院工学研究科電気電子工学専攻 第8章  為井智也 神戸大学数理・データサイエンスセンター 第9章  寺田 努 神戸大学大学院工学研究科電気電子工学専攻 第10章 熊本悦子 神戸大学情報基盤センター 第11章 高島遼一 神戸大学都市安全研究センター 第12章 村尾 元 神戸大学大学院国際文化学研究科 第13章 白石善明 神戸大学大学院工学研究科電気電子工学専攻 第14章 小澤誠一 神戸大学数理・データサイエンスセンター 第15章 羽森茂之 神戸大学大学院経済学研究科 第1章 データサイエンスの考え方 1.1 データサイエンスとは 1.2 データサイエンスを学ぶ理由 1.3 データから価値を生み出すプロセス 第2章 アルゴリズムとデータ構造 2.1 はじめに 2.2 データサイエンスにおけるアルゴリズムとデータ構造 2.3 アルゴリズムの基礎 2.4 基本的なデータ構造 2.5 探索 2.6 ソーティング 第3章 システム最適化 3.1 最適化問題とは 3.2 線形計画問題 3.3 非線形計画問題 3.4 整数計画問題 第4章 統計的データ解析の考え方 4.1 標本調査 4.2 信頼区間と仮説検定 4.3 分布の近似と標準誤差 4.4 線形回帰モデル 4.5 非線形回帰モデル 第5章 教師なし学習 5.1 クラスタリング 5.2 高次元データの次元削減と可視化 第6章 教師あり学習 6.1 教師あり学習とは 6.2 学習モデルとトレーニング(パラメータ最適化) 6.3 データのセットの分割とテスト(モデルの評価) 6.4 実データへの適用例(回帰) 第7章 確率モデル・確率推論 7.1 はじめに 7.2 確率モデルとベイズの定理 7.3 確率推論 7.4 確率推論の応用 第8章 強化学習 8.1 強化学習とは 8.2 強化学習の理論 8.3 強化学習アルゴリズム 8.4 探索と利用のトレードオフと意思決定モデル 第9章 情報センシング 9.1 情報センシングとは 9.2 センサデータ処理 9.3 センシング応用 第10章 画像解析・深層学習 10.1 画像解析 10.2 デジタル画像の特徴とフィルタ処理 10.3 深層学習 第11章 時系列データ解析・音声解析 11.1 時系列データ解析 11.2 音声解析 第12章 テキスト解析 12.1 はじめに 12.2 テキストデータの収集 12.3 テキストクレンジング 12.4 トークン化 12.5 ベクトル化 12.6 探索的データ分析 12.7 テキスト分析 第13章 情報セキュリティ 13.1 情報資産と情報セキュリティ 13.2 情報セキュリティの基本:アクセス制御 13.3 情報セキュリティのCIA 第14章 プライバシー保護技術 14.1 データが価値を生む仕組みと提供リスク 14.2 匿名化によるプライバシー保護 14.3 差分プライバシーによるプライバシー保護 14.4 準同型暗号によるプライバシー保護 14.5 協調学習によるプライバシー保護 第15章 意思決定論 15.1 意思決定の基本的枠組み 15.2 相関関係と因果関係 参考文献 索引
  • 基本を学ぶ  コンピュータ概論 (改訂2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 基本事項をコンパクトにまとめ,親切・丁寧に解説したコンピュータの基礎の教科書!現場のニーズに応じて,さらに内容をブラッシュアップしました.  基本事項をコンパクトにまとめ,親切・丁寧に解説したコンピュータの基礎の教科書です。今回の改訂で現場のニーズに応じて,さらに内容をブラッシュアップしました.  大学1,2年生向けの教科書として適切な内容として,ハードウェア,ソフトウェアの両面からコンピュータやネットワークの内部構成や動作原理について,基礎的かつ重要な事項に的をしぼって解説しています. 1章 コンピュータシステム  1 コンピュータの歴史  2 コンピュータの基本構成と動作原理  3 現代社会におけるさまざまなコンピュータ  練習問題 2章 情報の表現  1 2進符号  2 2進数による数の表記法  3 数値データの表現  4 文字データの表現  5 音声・画像データの表現  練習問題 3章 論理回路とCPU  1 ブール代数と論理回路  2 論理回路と中央演算処理装置(CPU)  3 CPUの動作  練習問題 4章 記憶装置と周辺機器  1 記憶装置  2 インタフェースとバス  3 入出力装置  練習問題 5章 プログラムとアルゴリズム  1 プログラムとプログラミング言語  2 アルゴリズム  3 プログラミング言語と言語処理プログラム  練習問題 6章 OSとアプリケーション  1 OS  2 制御プログラムの役割  3 アプリケーションとミドルウェア  4 仮想化ソフトウェア  練習問題 7章 ネットワーク  1 コンピュータネットワーク  2 インターネットとTCP/IP  3 インターネットサービス  4 コンピュータシステムの構成と信頼性  練習問題 8章 セキュリティ  1 セキュリティ技術  2 暗号化技術  練習問題 練習問題解説・解答 索 引
  • 暗号と量子コンピュータ ―耐量子計算機暗号入門―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 来る量子コンピュータ時代の暗号を徹底解説! 暗号技術は、われわれの生活のさまざまな場面で利用されており、情報化社会の安全基盤として重要性を増しています。たとえば、暗号技術がなければネットショッピングも安心してできませんし、ブロックチェーンを用いた仮想通貨も生まれることはありませんでした。  ですが、現在これらのサービスに用いられている暗号技術は従来型のコンピュータによる計算を前提として開発されています。そのため、近年注目されている量子コンピュータによる異なったアルゴリズムで計算を行うと、現在の暗号は高速に解かれてしまうのではないか、という懸念があります。具体的には、素因数分解を前提としたRSA暗号などは危殆化する状況にあります。  本書は、量子コンピュータが暗号技術に与える影響について多角的な切り口から考察し、読者に、来る量子コンピュータ時代における暗号技術の基礎知識を提供します。読者は、量子コンピュータが与える情報化社会へのインパクトを知るとともに、自身のかかわる情報セキュリティにおいて、今後知っておくべき、対策する必要がある必須の情報を得ることができます。  情報セキュリティに携わる技術者・エキスパートのみならず、暗号や量子コンピュータに興味をもつ一般の方にも向けて、やさしくていねいに解説しています。 1章 社会で利用される暗号技術 2章 暗号の危殆(きたい)化リスク 3章 量子コンピュータについて 4章 量子コンピュータによる暗号解読 5章 ブロックチェーンなど暗号応用技術に対する量子コンピュータの影響 6章 暗号のディレンマ - 設計者と攻撃者の攻防 7章 耐量子計算機暗号とは 8章 耐量子計算機暗号の標準化活動 9章 今後の課題 参考図書 索引
  • ITエンジニアのためのUXデザイン実践ノウハウ
    4.0
    企業のデジタルトランスフォーメーション(DX)への取り組みが加速する中、システムやサービスにおけるUX(ユーザーエクスペリエンス)の重要性は高まっています。システム開発において、質の高いUXデザインが強く求められるようになっているのです。  しかしシステム開発を手掛けるITエンジニアの中には、UXデザインを見栄えを良くすることだと限定的に捉えている人が少なからずいます。ユーザーにとって価値のある使いやすいシステムをつくるには、見栄え以外にも改善すべき項目がたくさんあります。  またUXデザインに取り組みたくても、その方法がわからないという声も少なくありません。本書は、ITエンジニアがシステム開発の中でより良いUXデザインを実現するための知識やノウハウを、基本と実践の2部構成で解説した一冊です。  基本編となる第1章では、UXデザインのプロセスをシステム開発と同様に上流から「戦略」「要件」「構造」「骨格」「表層」の5 つのフェーズに分け、各フェーズで取り組むことや進め方、よく利用されるメソッドやつまずきポイントなどをわかりやすく解説します。  実践編となる第2章では、基本編で紹介した5つのフェーズの実践に必要な体制や仕組み、実際に取り組んだ事例などを、具体的な勘どころも交えて解説しています。UXデザインに取り組んでいくうえで組織的に準備しておきたいことや、UXデザインの活用方法など、実践を支えるヒントや心構えなどにも触れています。  著者が実際のシステム開発現場で積み重ねた豊富な経験を基に、UXデザインの実践的なノウハウをITエンジニアの目線で整理し、解説しています。ぜひご活用ください。
  • やさしくわかるデジタル時代の情報モラル 【(5)動画・ゲーム・ショッピング編】
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネットが普及し、待ったなしで求められている教育が「情報モラル」です。炎上、なりすまし、拡散、誹謗中傷など、さまざまな問題があります。この情報モラルは、一般的なモラル(倫理や道徳)を基盤として、PCやインターネットに関する「技術」と、社会のルールである「法律」を両輪として、合わせて学んでいくことがポイントです。本書は、児童生徒の身近な題材を用い、モラル、技術、法律、情報、健康をテーマとして取り上げ、「情報モラル」をわかりやすく解説し、理解できるようになっています。動画・ゲーム・ショッピング編では、YouTubeやヤフーオークション、メルカリなど、人気サービスを具体的に取り上げながら、しくみや気をつけたいこと、便利に上手に使う方法を解説します。
  • やさしくわかるデジタル時代の情報モラル 【(4)SNS編】
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネットが普及し、待ったなしで求められている教育が「情報モラル」です。炎上、なりすまし、拡散、誹謗中傷など、さまざまな問題があります。この情報モラルは、一般的なモラル(倫理や道徳)を基盤として、PCやインターネットに関する「技術」と、社会のルールである「法律」を両輪として、合わせて学んでいくことがポイントです。本書は、児童生徒の身近な題材を用い、モラル、技術、法律、情報、健康をテーマとして取り上げ、「情報モラル」をわかりやすく解説し、理解できるようになっています。SNS編では、LINEやTwitterなどの人気サービスを具体的に取り上げながら、便利に上手に使う方法を解説します。
  • やさしくわかるデジタル時代の情報モラル 【(3)インターネット・メール・セキュリティ編】
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネットが普及し、待ったなしで求められている教育が「情報モラル」です。炎上、なりすまし、拡散、誹謗中傷など、さまざまな問題があります。この情報モラルは、一般的なモラル(倫理や道徳)を基盤として、PCやインターネットに関する「技術」と、社会のルールである「法律」を両輪として、合わせて学んでいくことがポイントです。本書は、児童生徒の身近な題材を用い、モラル、技術、法律、情報、健康をテーマとして取り上げ、「情報モラル」をわかりやすく解説し、理解できるようになっています。インターネット・メール・セキュリティ編では、インターネットやメールのしくみや特徴、便利なサービスや危険、セキュリティなどについて触れています。
  • やさしくわかるデジタル時代の情報モラル 【(2)スマホ編】
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネットが普及し、待ったなしで求められている教育が「情報モラル」です。炎上、なりすまし、拡散、誹謗中傷など、さまざまな問題があります。この情報モラルは、一般的なモラル(倫理や道徳)を基盤として、PCやインターネットに関する「技術」と、社会のルールである「法律」を両輪として、合わせて学んでいくことがポイントです。本書は、児童生徒の身近な題材を用い、モラル、技術、法律、情報、健康をテーマとして取り上げ、「情報モラル」をわかりやすく解説し、理解できるようになっています。スマホ編では、初めて手にしたときの設定や、使い方の注意点、無くしたときや、上手な使い方、しくみなどについてわかるようになります。
  • やさしくわかるデジタル時代の情報モラル 【(1)基本編】
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネットが普及し、待ったなしで求められている教育が「情報モラル」です。炎上、なりすまし、拡散、誹謗中傷など、さまざまな問題があります。この情報モラルは、一般的なモラル(倫理や道徳)を基盤として、PCやインターネットに関する「技術」と、社会のルールである「法律」を両輪として、合わせて学んでいくことがポイントです。本書は、児童生徒の身近な題材を用い、モラル、技術、法律、情報、健康をテーマとして取り上げ、「情報モラル」をわかりやすく解説し、理解できるようになっています。基本編では、モラル、技術、法律についてバランスよく解説し、情報モラルの基本な考え方がわかるようになります。
  • 人間知能と人工知能 あるAI研究者の知能論
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能に向けて、人間知能のメカニズム解明  現在は、人工知能ブームであり、機械学習・進化学習が花盛りです。本書は、生物は進化のなかでどのように知能を発展させてきたか、そして人工知能はどういうものであるかについて、著者の長年の研究にもとづいた最新の成果をまとめたものです。  コンピュータですぐに実践できるといった派手さのない書籍ですが、人工知能と言われるものが増えていくと考えられる現在、自分たち人間の知能がいったいなんであるかを認識しておくことは大切なことです。 まえがき 第1章 知能とは何か 1.1 知能の構造 1.2 知能構造の進化 1.3 知能への期待 1.4 外界との関わり 1.5 知能化メカニズムの諸様相 1.6 知能をつくる細胞組織 第2章 生命の時代[知能化メカニズムの基盤=生命構造] 2.1 生命構造の各部機能 2.2 教師あり学習─制御学習 第3章 記号化の時代[知能化メカニズムの基盤=原生言語] 3.1 記号化の始まり 3.2 形態素表現への進化 3.3 生命構造の機能拡大─複文の生成 3.4 文化継承としての知能深化 第4章 論理の時代[知能化メカニズムの基盤=意味言語] 4.1 意味言語への進化 4.2 意味言語の基本形式 4.3 ニューラルネットワークによる遷移知および推論の実現 4.4 遷移知の源 4.5 知能活動の原型─規格型の問題解決 4.6 物語生成と表現能力 4.7 意味言語ベースの知能化メカニズム 第5章 知能進化の新たな段階[問題の多様な現れ方] 5.1 知能活動の高度化の例 5.2 高度化問題へのアプローチ 5.3 統合知能論 むすび 参考文献 索  引
  • 機械学習ガイドブック RとPythonを使いこなす
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習を理解し実践するために必要な要素を選抜して解説した、実践的ガイドブック!  本書は、機械学習の入門者から中級者までをおもな対象として、機械学習を理解し実践するために必要なさまざまな要素を選抜して解説した、機械学習のガイドブックです。  機械学習の概要から解説をはじめ、機械学習の歴史と主要なアルゴリズム、機械学習を実践するためのプログラミング言語であるRとPythonそれぞれの説明と連携、機械学習を正しく使いこなすためのさまざまな注意点、Kerasを活用したディープラーニングの実践、そして強化学習の例としてアルファゼロを取り上げています。付録には機械学習の理論的裏付けとなる数学の概要も取り上げています。  入門者の方はまず本書の第1章「機械学習とは何か、どんな働きをするのか」を読み、第5章「さあ機械学習の本質を体験してみよう」の実践を繰り返してみてください。だんだんと機械学習に関する多くのことが見えるようになってきて、中級者への道が開けるでしょう。  中級者の方には前半はやや簡単かもしれませんが、第8章「Kerasを使ったディープラーニングの実践」、第9章「さまざまなゲームの攻略法をゼロから学習するアルファゼロ」の内容が十分に理解できたのであれば、かなりのレベルに達したのだと思います。簡単かもしれない前半部分にも、参考になるさまざまな要素を仕込みました。  機械学習の入門から中級者への道をガイドする1冊となっています。 はじめに 第1章 機械学習とは何か、どんな働きをするのか 第2章 機械学習小史:機械学習ブームの基盤を作った主人公たち 第3章 ぜひ使ってみたい役に立つアルゴリズム 第4章 RとPython 第5章 さあ機械学習の本質を体験してみよう 第6章 機械学習を上手に使いこなすコツ 第7章 RとPythonの連携 第8章 Kerasを使ったディープラーニングの実践 第9章 さまざまなゲームの攻略法をゼロから学習するアルファゼロ 付録A 機械学習の基盤となる数学の概要 A.1 機械学習の数学的基盤となるベクトル空間 A.2 ベクトル空間、ノルム空間、内積空間、ユークリッド空間とその関係 A.3 ドット積、行列、行列積 A.4 さまざまな行列の性質とその演算 A.5 行列と線形写像、固有値、テンソル、カーネル関数と射影 A.6 確率空間、確率変数、確率分布 A.7 統計的推定 A.8 最適化の手法 付録B RとPythonのデータ分析に関連する基本的コマンドの比較 B.1 基本的機能 B.2 ベクトル、行列などの作成と操作および数値計算(NumPy機能の対応) B.3 データフレームの作成・操作など(Pandas機能の対応) おわりに 参考文献とそのガイド
  • テキストマイニング入門 ExcelとKH Coderでわかるデータ分析
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 テキストマイニングの手法がよくわかる!! 本書はテキストマイニングの基礎と事例について、フリーの計量テキスト分析ソフトKH Coderを利用したテキストの解析と、Excelによるその分析手法を通して解説する入門書です。  テキストマイニングをいかに業務に活かしていくか、つまづきがちなポイントをマンガやイラスト、図解を用いてわかりやすく解説します。 はじめに 登場人物 プロローグ 第1部 テキストマイニング 基礎編  第1章 テキストマイニングとは  第2章 テキストマイニングで実現できること  第3章 気軽に始めるテキストマイニング  第4章 テキストデータを準備する  第5章 KH Coderで伝える!分析アウトプット5選  第6章 分析の精度を高める!データクレンジング 第2部 テキストマイニング 実践編  第7章 アンケートのテキストマイニング 付録 A.1 Jaccard係数の計算方法 A.2 先輩おすすめの参考書籍 索引
  • 実装 強化学習 Cによるロボットプログラミング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 強化学習の基礎からロボットへの実装までがわかる!!  本書は、強化学習の基礎からロボットへの実装までを解説した実務書です。プログラミングは、C言語でロボットへの実装までが解説された、実践的な内容となっております。ロボットへの実装は、誰でも購入できるライントレースロボットを使った例と、ソフトロボット(柔らかい素材を使ったロボット)を使った例で、具体的な方法を解説しています。 はじめに 第1章 人工知能とロボット 第2章 強化学習 第3章 C 言語による強化学習のプログラム 第4章 実ロボットへの適用 付録 Excel VBA による実装 参考文献 索引
  • Amazon Web Services 定番業務システム14パターン 設計ガイド
    -
    AWSのサービスはこう組み合わせる! 大事な業務システムの作り方 “定番”ともいえる14パターンの業務システムについて、Amazon Web Servicesのサービスの選び方、組み合わせ方を解説します。業務システムのように複雑な仕組みを構築するには、AWSの特性を十分理解してインフラを設計する必要があります。そうしたAWSを使った業務システム設計の勘所を、パターン別に分かりやすく説明します。 本書はWebシステム、ストレージシステム、データ分析システムといったテーマごとに、AWSのサービスを組み合わせて、特定の要求を満たすシステムを作るための「設計パターン」を解説します。2016年6月発行の「Amazon Web Services 定番業務システム12 パターン設計ガイド」を基に、「マイクロサービスの運用基盤」「AIとIoT」の2パターンを追加し、全体を通して加筆・修正・再構成しました。AWSの最新サービスに対応しています。 基本的なパターンから入り、徐々に応用的なパターンへと深く説明していきます。例えばWebシステムでは、仮想サーバー1台の単純な構成のWebサイトの設計方法から、性能や可用性の要件が厳しい場合の設計パターンまで紹介します。 後半では、仮想サーバーを使わない“クラウドネイティブ”なシステム、AWSをフル活用してアプリケーションの高速開発、オンプレミス環境と連携動作させる“ハイブリッドクラウド”など応用的な設計パターンも解説します。 クラウド初心者からベテランまで、AWSを使ったインフラ設計のあらゆる局面に役立つ一冊です。
  • Rで学ぶデータサイエンス データマイニングの基礎から深層学習まで
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 主要なデータマイニング手法の理論の基礎を学べる!!  データマイニングとは,玉石混淆であるたくさんのデータから必要な情報を読み出す作業です。データマイニングの手法として理解しておく必要があるものには,比較的基本的な知識である回帰分析、主成分分析、判別分析等からクラスタリング、サポートベクターマシン(SVM)、ベイズ推定、ニューラルネットワークなどがあります。最近ではこれらの応用として、深層学習等についても解説します。 第I部 多変量解析 第1章 データマイニング 第2章 回帰分析 第3章 主成分分析 第4章 判別分析 第5章 クラスタリング 第II部 機械学習 第6章 機械学習 第7章 サポートベクターマシン 第8章 ベイジアンネットワーク 第9章 ニューラルネットワーク 第10章 自己組織化マップ 第11章 深層学習 参考文献
  • ITエンジニアのための体感してわかるデザイン思考
    3.0
    要求仕様ゼロから価値を生み出す! IT現場の上流工程が変わる! ITを使って新しいサービスやビジネスを生み出したり、既存のビジネスの仕組みを変えたりする、いわゆる「デジタルシフト」のニーズが急速に高まっています。そしてデジタルシフトの実践に当たって、「デザイン思考」を情報システムの開発に活用する動きが広がりつつあります。 デザイン思考は、課題を発見し、それを解決する新しいサービスやビジネスを創り出すための考え方のこと。ユーザー自身がどのようなシステムを開発すべきか分からない、要求仕様が何もないところから開発を始めなければならないようなときに、デザイン思考が役立ちます。 本書は、ITエンジニアがデザイン思考をシステム開発で活用するときに必携の一冊です。デザイン思考を全く知らないというITエンジニアはもちろん、デザイン思考の勉強を始めたが難解で今ひとつピンとこないというITエンジニアにも、理解しやすく説明しています。デザイン思考は何となく理解したが、システム開発でどのように活用すればよいか分からないというITエンジニアにも、現場で役立つ実践的な情報が満載です。 第1章「デザイン思考の基本を学ぶ」では、デザイン思考における一般的なプロセスについて、その基本を解説します。実践的なイメージを想像しやすいように、架空のデザイン思考活用プロジェクトのストーリーを挿入しました。 第2章「現場で使える実践ノウハウ」では、デザイン思考を活用したプロジェクトでつまずきやすいポイントとそれを乗り越えるための処方箋をまとめました。 ITで新たな価値を生み出すために、ぜひ本書をご活用ください。
  • 機械学習と深層学習 Pythonによるシミュレーション
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『機械学習と深層学習 C言語によるシミュレーション』のPython版登場!!  本書は人工知能研究における機械学習の諸分野をわかりやすく解説し、それらの知識を前提として深層学習とは何かを示します。具体的な処理手続きやプログラム例(Python)を適宜示すことで、これらの技術がどのようなものなのかを理解できるように紹介していきます。 まえがき 第1章 機械学習とは 1.1 機械学習とは 1.1.1 深層学習の成果 1.1.2 学習と機械学習・深層学習 1.1.3 機械学習の分類 1.1.4 深層学習に至る機械学習の歴史 1.2 本書例題プログラムの実行環境について 1.2.1 プログラム実行までの流れ 1.2.2 プログラム実行の実際 第2章 機械学習の基礎 2.1 帰納学習. 2.1.1 演繹的学習と帰納的学習 2.1.2 帰納的学習の例題 ―株価の予想― 2.1.3 帰納学習による株価予想プログラム 2.2 強化学習 2.2.1 強化学習とは 2.2.2 Q学習 強化学習の具体的方法 2.2.3 強化学習の例題設定 迷路抜け知識の学習 2.2.4 強化学習のプログラムによる実現 第3章 群知能と進化的手法 3.1 群知能 3.1.1 粒子群最適化法 3.1.2 蟻コロニー最適化法 3.1.3 蟻コロニー最適化法の実際 3.2 進化的手法 3.2.1 進化的手法とは 3.2.2 遺伝的アルゴリズムによる知識獲得 第4章 ニューラルネット 4.1 ニューラルネットワークの基礎 4.1.1 人工ニューロンのモデル 4.1.2 ニューラルネットと学習 4.1.3 ニューラルネットの種類 4.1.4 人工ニューロンの計算方法 4.1.5 ニューラルネットの計算方法 4.2 .バックプロパゲーションによるニューラルネットの学習 4.2.1 パーセプトロンの学習手続き 4.2.2 バックプロパゲーションの処理手続き 4.2.3 バックプロパゲーションの実際 第5章 深層学習 5.1 深層学習とは 5.1.1 従来のニューラルネットの限界と深層学習のアイデア 5.1.2 畳み込みニューラルネット 5.1.3 自己符号化器を用いる学習手法 5.2 深層学習の実際 5.2.1 畳み込み演算の実現 5.2.2 畳み込みニューラルネットの実現 5.2.3 自己符号化器の実現 付 録 A 荷物の重量と価値を生成するプログラム kpdatagen.py B ナップサック問題を全数探索で解くプログラム direct.py 参考文献 索  引
  • システム設計の先導者 ITアーキテクトの教科書 改訂版
    3.0
    ITアーキテクトを目指すエンジニア必携の一冊 マイクロサービスやDevOpsにも対応! エンタープライズの情報システム開発において、ITアーキテクトの重要性がますます高まっています。スマートフォンやタブレットを生かした新たなシステムの構築や、クラウドサービスを利用したスモールスタートのシステム開発など、システムアーキテクチャーをゼロから考えなければならない場面が増えているからです。 しかしITアーキテクトを名乗るエンジニアの数はまだまだ少なく、またITアーキテクトのタスクや役割についても曖昧なのが実情です。本書では、そんなITアーキテクトがすべきことや求められるスキルを、システム開発の工程に沿って体系的にまとめました。ITアーキテクトが各工程で実施するタスクを、その成果物とともに解説しています。この一冊で、ITアーキテクトがシステム開発プロジェクトの中で何を考え、何をしているのかが見えてきます。 改訂版では、掲載内容を最新の情報にアップデートするとともに、注目の最新技術である「マイクロサービス」や「DevOps」に対応するパートを追加しました。 企業システムのデジタルシフトに伴って、システム開発では想定外の機能要件の追加や変更にも柔軟に対応し、その変更の影響範囲を極小化できるアーキテクチャーが求められます。改訂版で追加した第7章には、こうしたニーズに対応する際に取り得るアーキテクチャー戦略をまとめています。 ITアーキテクトは、アーキテクチャー設計というタスクを通じて、企業のビジネスおける様々な課題をITの力で解決します。本書はその問題解決力を磨くために必携の一冊です。
  • Pythonによる数値計算とシミュレーション
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『C による数値計算とシミュレーション』のPython版登場!!  本書は、シミュレーションプログラミングの基礎と、それを支える数値計算の技術について解説します。数値計算の技術から、先端的なマルチエージェントシミュレーションの基礎までをPythonのプログラムを示しながら具体的に解説します。  アルゴリズムの原理を丁寧に説明するとともに、Pythonの便利な機能を応用する方法も随所で示すものです。 まえがき 第1章 Pythonにおける数値計算 1.1 Pythonによる数値計算プログラムの構成 1.1.1 Pythonによる数値計算プログラム 1.1.2 Pythonモジュールの活用 1.2 数値計算と誤差 1.2.1 数値計算における誤差 1.2.2 数値計算における誤差の実際 1.2.3 Pythonモジュールの活用 章末問題 第2章 常微分方程式に基づく物理シミュレーション 2.1 質点の1次元運動シミュレーション 2.1.1 自由落下のシミュレーション 2.1.2 着陸船のシミュレーション 2.2  ポテンシャルに基づく2次元運動シミュレーション 2.2.1 ポテンシャルに基づく2次元運動 2.2.2 2次元運動シミュレーション 2.3 Pythonモジュールの活用 章末問題 第3章 偏微分方程式に基づく物理シミュレーション 3.1 偏微分方程式の境界値問題 3.1.1 ラプラスの方程式 3.1.2 ラプラスの方程式の境界値問題 3.1.3 境界値問題の数値解法 3.1.4 ガウスの消去法による境界値問題の計算 3.1.5 逐次近似による境界値問題の計算 3.1.6 その他の二階偏微分方程式 3.2 ラプラスの方程式による場のシミュレーション 3.2.1 ラプラスの方程式の反復解法プログラム 3.2.2 より複雑な形状の領域の場合 3.3 Pythonモジュールの活用 章末問題 第4章 セルオートマトンを使ったシミュレーション 4.1 セルオートマトンの原理 4.1.1 セルオートマトンとは 4.1.2 セルオートマトンの計算プログラム 4.2 ライフゲーム 4.2.1 ライフゲームとは 4.2.2 ライフゲームのプログラム 4.3 交通流シミュレーション 4.3.1 1次元セルオートマトンによる交通流のシミュレーション 4.3.2 交通流シミュレーションのプログラム 章末問題 第5章 乱数を使った確率的シミュレーション 5.1 擬似乱数 5.1.1 乱数と擬似乱数 5.1.2 乱数生成アルゴリズム 5.1.3 Pythonの乱数生成モジュール 5.2 乱数と数値計算 5.2.1 数値積分と乱数 5.2.2 乱数と最適化 5.3 乱数を使ったシミュレーション 5.3.1 ランダムウォーク 5.3.2 ランダムウォークシミュレーション 5.4 Pythonモジュールの活用 章末問題 第6章 エージェントベースのシミュレーション 6.1 エージェントとは 6.1.1 エージェントの考え方 6.1.2 Pythonによるエージェントシミュレーションの実現 6.1.3 マルチエージェントへの拡張 6.1.4 相互作用するマルチエージェント 6.2 マルチエージェントによる相互作用のシミュレーション 6.2.1 マルチエージェントによるシミュレーション 6.2.2 マルチエージェントシミュレーションプログラム 章末問題 付録 A.1 4次のルンゲ=クッタ法の公式 A.2 ラプラスの方程式が周囲4点の差分で近似できることの説明 A.3 ナップサック問題の解法プログラムrkp30.py A.4 シンプソンの公式 章末問題略解 参考文献 索  引
  • Pythonによるテキストマイニング入門
    3.5
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Python 3を使ったテキストマイニングの入門書! 本書は、Pythonを使ったテキストマイニングの入門書です。Pythonのインストールから基本文法、ライブラリパッケージの使用方法などについてもていねいに解説していますので、Pythonに触れたことがない方でも問題なく使用できます。また、テキストマイニングも、概要から実例に至るまで一から解説していますので、Python・テキストマイニング両方の知識が全くない方にとって最適な入門書となっています。 目次 第1章 テキストマイニングの概要 1.1 テキストマイニングとは 1.2 応用の例 第2章 テキストデータの構造 2.1 テキストの構成要素 2.2 統計分析・データマイニングの基本的な手法 2.3 テキストマイニング固有の考え方 第3章 Pythonの概要と実験の準備 3.1 Pythonとは 3.2 プログラムを作って動かす環境 3.3 Pyrhonの書き方ルール 3.4 テキストマイニングに役立つライブラリパッケージ 3.5 データの準備 第4章 出現頻度の統計の実際 4.1 文字単位の出現頻度の分析 4.2 単語の出現頻度の分析 第5章 テキストマイニングの様々な処理例 5.1 連なり・N-gramの分析と利用 5.2 共起(コロケーション)の分析と利用 5.3 語の重要性とTF-IDF分析 5.4 KWICによる検索 5.5 単語のプロパティを使ったネガポジ分析 5.6 WordNetによる類語検索 5.7 構文解析と係り受け解析の実際 5.8 潜在的意味論に基づく意味の分析とword2vec 付録 Python, Jupyter notebook のインストール
  • Chainer v2による実践深層学習
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Chainerのバージョン2でディープラーニングのプログラムを作る 本書はChainer を使ってディープラーニングのプログラムの作り方を示すものです。ディープラーニングは複雑なネットワークで表現された関数の回帰の問題と見なせます。そしてこのような問題は勾配法で解きます。この観点から Chainer によるプログラムの作成法を示しました。Chainerが2にバージョンアップしたため、2に対応し発行するものです。畳み込みニューラルネットワークについても解説しています。 主要目次 はじめに 第0章 Chainer とは 第1章 NumPy で最低限知っておくこと 第2章 ニューラルネットのおさらい 第3章 Chainer の使い方 第4章 Chainer の利用例 第5章 Trainer 第6章 Denoising AutoEncoder 第7章 Convolution Neural Network 第8章 word2vec 第9 章Recurrent Neural Network 第10章 翻訳モデル 第11章 Caffe のモデルの利用 第12章 GPU の利用 参考文献 ソースプログラム
  • 図解即戦力 IT投資の評価手法と効果がこれ1冊でしっかりわかる教科書
    -
    本書は、IT投資の評価手法とその効果を図解でわかりやすく解説した書籍です。汎用機などの IT資産を対象にした従来の評価手法に加え、モバイル機器や情報セキュリティなどの投資効果を定量的に測定する手法も解説しています。モデル例も含めて解説しているため、誰でも即、実務に使えるガイドラインとなるでしょう。さらに、役員向けにIT投資の稟議申請をするときの効果的な企画書の書き方についても紹介しています。職業柄、多くのリーディングカンパニーで幾多もの社内稟議書に目を通してきた著者だからこそ言える貴重なアドバイスも満載です。
  • さわって学ぶ Linux入門テキスト
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 1.はじめてのLinuxでもつまずかずに学習できます はじめて学習する方が疑問に思ったり理解しづらい、つまずきやすいポイントを丁寧に解説してあります。 本書を読み進めていくことで、Linuxに関わる基礎知識が得られるだけでなく、LPI Linux Essentialsに合格に必要となる知識が得られます。 2.LPIC-1、LinuC-レベル1にも対応 LPI Linux Essentialsの試験範囲だけでなく、LPIC-1、LinuC-レベル1の試験範囲もできるだけカバーしました。 101試験範囲はすべてカバーしてあります。 LPI Linux Essentials合格後にLPIC-1、LinuC-レベル1を受験する予定のある方はこの1冊で続けて学習できます。 3.ハンズオンでさわって学べる 本書は学習環境の構築(CentOS)もやさしく解説しております。はじめてのLinuxだからこそ、実際にコマンドを叩きながら学習ことをオススメします。 入力コマンドや実行結果がひと目でわかるように構成してあります。 ■対象試験: LPI Linux Essentials、LPIC-1(101、102は途中まで)、LinuC-レベル1(101、102は途中まで)
  • 音楽・動画・ゲームに活用! ソフトシンセ 音作り大全
    4.0
    DTMアプリ(DAW)で使用する音源「ソフトシンセ」。今やソフトシンセは,音楽の音源としてだけでなく,ゲームやムービーの効果音にも利用されており,すべてのメディア制作の現場でなくてはならない存在になっています。本書は,すべてのクリエーターに向けたソフトシンセの使いこなしガイドブックです。前半でソフトシンセの基本概念と使用方法を解説し,後半ではプリセットでは飽き足らない上級者に向けて,必要なサウンドを手にするための音色エディットのテクニックを目的別に解説しています。この1冊を読めば,多種多様なソフトシンセを自在に操れるようになります!

最近チェックした作品からのおすすめ