作品一覧

  • 応用基礎としてのデータサイエンス 改訂第2版 AI×データ活用の実践
    -
    1巻2,860円 (税込)
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆生成AIを大幅加筆し,好評テキストが改訂!◆ ・いますぐ身につけるべき「データサイエンス」「データエンジニアリング」「AI」の基礎知識がここにある! ・「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に完全準拠した公式カラーテキスト! ・カラーで見やすく、練習問題も充実! 【主な内容】 1章 データサイエンス基礎 1.1 データ駆動型社会とデータ分析の進め方 (久野遼平) 1.2 データの記述 (宿久 洋) 1.3 データの可視化 (宿久 洋・久野遼平) 1.4 データ分析の手法 (原 尚幸) 1.5 数学基礎 (清 智也) 2章  データエンジニアリング基礎 2.1 ビッグデータとデータエンジニアリング (内田誠一) 2.2 データ表現、プログラミング基礎、アルゴリズム基礎 (辻 真吾) 2.3 データ収集と加工、データベース (森畑明昌) 2.4 ITセキュリティ (宮地充子) 3章  AI基礎 3.1 AIと社会 (松原 仁) 3.2 機械学習の基礎と予測手法 (赤穂昭太郎) 3.3 深層学習の基礎 (今泉允聡) 3.4 ロボット、認識、言語 (高野 渉) 3.5 生成AI(岡﨑 直観) ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
  • IT Text 自然言語処理の基礎
    5.0
    1巻3,300円 (税込)
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層学習をベースとした自然言語処理の基礎が体系的に身につく! 本書は、深層学習に基づく自然言語処理の基礎となる知識や考え方を、丁寧に展開し解説するものです。自然言語処理技術の概観から始め、機械学習の基本的枠組み、言語モデル・系列変換モデルとして非常に有用なTransformerとそれを活用した事前学習モデルの詳解、さらに自然言語処理の基本的なタスクである系列ラベリング、構文解析、意味解析と、自然言語処理を学ぶうえで必須の基礎知識や背景となる仕組みを幅広くカバーし、体系的に身につけることができる構成としました。 大学の学部上級から大学院の学生、さらには自然言語処理を学び始めた若手技術者にお薦めの教科書です。 第1章 自然言語処理の概要  1.1 自然言語処理の応用  1.2 コーパスと自然言語処理  1.3 自然言語処理の難しさ  演習問題 第2章 自然言語処理のための機械学習の基礎  2.1 機械学習とは  2.2 教師あり学習  2.3 特徴量表現  2.4 パーセプトロン  2.5 ロジスティック回帰  2.6 ソフトマックス回帰モデル  2.7 機械学習モデルの評価  2.8 正則化  2.9 ニューラルネットワーク  2.10 計算グラフと自動微分  2.11 ニューラルネットワークに関するその他の話題  演習問題 第3章 単語ベクトル表現  3.1 記号からベクトルへ  3.2 素性関数による単語のベクトル表現  3.3 分布仮説と単語文脈行列  3.4 特異値分解による次元削減  3.5 Word2Vec:ニューラルネットワークによる学習  3.6 単語ベクトルの応用  3.7 FastText:単語よりも小さな単位の利用  3.8 単語ベクトル表現の課題と限界  演習問題 第4章 系列に対するニューラルネットワーク  4.1 単語ベクトルの合成  4.2 再帰型ニューラルネットワーク(RNN)  4.3 勾配消失問題と勾配爆発問題  4.4 長期短期記憶(LSTM)  4.5 ゲート付き再帰ユニット(GRU)  4.6 畳込みニューラルネットワーク(CNN)  演習問題 第5章 言語モデル・系列変換モデル  5.1 言語モデル・系列変換モデルの導入  5.2 言語モデルの定式化  5.3 言語モデルの利用例  5.4 言語モデルの具体例1:nグラム言語モデル  5.5 言語モデルの具体例2:ニューラル言語モデル  5.6 系列変換モデル  5.7 言語モデルの評価:パープレキシティ  5.8 未知語問題への対応  演習問題 第6章 Transformer  6.1 Transformerの歴史的背景  6.2 自己注意機構(セルフアテンション)  6.3 Transformerの構成要素  6.4 学習時の工夫  演習問題 第7章 事前学習済みモデルと転移学習  7.1 事前学習済みモデルの背景  7.2 デコーダの事前学習:GPT  7.4 エンコーダ・デコーダの事前学習:BART  7.5 事前学習済みモデルと知識蒸留  7.6 事前学習済みモデル利用上の注意点  演習問題 第8章 系列ラベリング  8.1 系列ラベリングとは  8.2 系列ラベリングの定式化  8.3 点予測による系列ラベリング  8.4 線形連鎖に基づく条件付き確率場  演習問題 第9章 構文解析  9.1 構文解析とは  9.2 句構造解析  9.3 依存構造解析  9.4 さまざまな構文解析手法  演習問題 第10章 意味解析  10.1 意味解析とは  10.2 テキスト間含意関係認識  10.3 ニューラルネットワークによる意味解析  10.4 述語項構造解析  10.5 論理表現  10.6 セマンティックパージング  10.7 意味解析のその他の話題  演習問題 第11章 応用タスク・まとめ  11.1 機械翻訳  11.2 質問応答  11.3 対話  11.4 自然言語処理の過去・現在 演習問題略解 参考文献

ユーザーレビュー

新規会員限定 70%OFFクーポンプレゼント!