深層学習作品一覧
-
3.61巻3,080円 (税込)AI時代の必携試験、G検定の「公式テキスト」第3版! 【本書の特徴】 ・大ベストセラー、ディープラーニング G検定 公式テキストの改訂版。 ・新シラバスに完全準拠。 ・試験運営団体である「日本ディープラーニング協会」が監修。 ・章末問題を一新!分かりやすい解説付き。 ・ディープラーニングに関する入門書としても最適。 【対象読者】 ・G検定を受験しようと思っている人 ・ディープラーニングについて概要を学びたい人 ・ディープラーニングを事業活用しようと思っている人 ・ChatGPT等生成AIの理解・活用のための知識習得したい人 【G検定とは】 ・内容:ディープラーニングの基礎知識を有し、適切な活用方針を決定して、事業活用する能力や知識を有しているかを検定する試験。 ・試験方式:知識問題(多肢選択式)、オンライン実施(自宅受験) ・試験時間:120分、出題数:200問程度 ・日程:年6回(2024年の場合。詳細は公式サイトにて公表) 試験の概要 第1章 人工知能(AI)とは 第2章 人工知能をめぐる動向 第3章 機械学習の具体的手法 第4章 ディープラーニングの概要 第5章 ディープラーニングの要素技術 第6章 ディープラーニングの応用例 第7章 AIの社会実装に向けて 第8章 AIの法律と倫理 Appendix 事例集 産業への応用 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【豊富な図と数式のコンビで、深層学習の基本原理が直感的に理解できる!】 本書では「深層学習に使用する数学」について、意味を直感的に理解できるように図を多用することで式を補完する。 第I部では深層学習についての基礎事項と次の部で使用する数学について、第II部ではニューラルネットワーク(深層学習)の中身について、第III部では深層学習の自動チューニングについてそれぞれ詳述。深層学習の実践・応用へステップアップするための基礎がじっくりと学べる、第一歩に相応しい一冊。
-
-AI開発に必要な 数学の基礎知識を しっかり習得! 【本書の目的】 本書は線形代数、確率、統計/微分といったAI開発に必要な数学の基礎知識をコードを動かしながらわかりやすく解説した書籍です。 【対象読者】 ・数学がAIや機械学習を勉強する際の障壁になっている方 ・ビジネスでAIを扱う必要に迫られた方 ・数学を改めて学び直したい方 ・文系の方、非エンジニアの方で数学の知識に自信のない方 ・コードを書きながら数学を学びたい方 【第2版のポイント】 ・Python 3.12に対応 ・Anaconda及びライブラリのバージョンアップに対応 【目次】 序章 イントロダクション 第1章 学習の準備をしよう 第2章 Pythonの基礎 第3章 数学の基礎 第4章 線形代数 第5章 微分 第6章 確率・統計 第7章 数学を機械学習で実践 Appendix さらに学びたい方のために 【著者プロフィール】 我妻 幸長(あづま・ゆきなが) 「ヒトとAIの共生」がミッションの会社、SAI-Lab株式会社(https://sai-lab.co.jp)の代表取締役。AI関連の教育と研究開発に従事。東北大学大学院理学研究科修了。理学博士(物理学)。法政大学デザイン工学部兼任講師。Web上のコミュニティ「自由研究室 AIRS-Lab」を主宰。オンライン教育プラットフォームUdemyで、20万人以上にAIを教える人気講師。複数の有名企業でAI技術を指導。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.5★最強最短の近道は、これだ!★ ・画像・自然言語処理の機械学習コンテストに取り組みながら、深層学習の具体的な知識をいち早く身につけよう! ・レジェンドたちの豊富な経験に基づくスキルアップのノウハウも満載! 【主な内容】 第1章 機械学習コンテストの基礎知識 1.1 機械学習コンテストのおおまかな流れ 1.2 機械学習コンテストの歴史 1.3 機械学習コンテストの例 1.4 計算資源 第2章 探索的データ分析とモデルの作成・検証・性能向上 2.1 探索的データ分析 2.2 モデルの作成 2.3 モデルの検証 2.4 性能の向上 第3章 画像分類入門 3.1 畳み込みニューラルネットワークの基礎 3.2 コンテスト「Dogs vs. Cats Redux」の紹介 3.3 最初の学習:CNNアーキテクチャ 3.4 最初の学習:データセットの準備と学習ループ 3.5 最適化アルゴリズムと学習率スケジューリング 3.6 データ拡張 3.7 アンサンブル 3.8 さらにスコアを伸ばすために 第4章 画像検索入門 4.1 画像検索タスク 4.2 学習済みモデルを使ったベースライン手法 4.3 ベースラインを実装する 4.4 距離学習を学ぶ 4.5 画像マッチングによる検証 4.6 クエリ拡張を学ぶ 4.7 Kaggleコンテストでの実践 第5章 テキスト分類入門 5.1 Quora Question Pairs 5.2 特徴量ベースのモデル 5.3 ニューラルネットワークベースのモデル
-
4.3※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 そのモデル、本質を理解して使っていますか? 本当にデータの全てを活用しきれていますか? 回帰分析、ResNet、方策勾配法、因子分析・主成分分析、階層ベイズモデリング、正準相関分析、カーネル回帰分析・・・実戦で頻出するデータ形式への対応に必須の分析モデル群を完全網羅! 【強化学習はいつ使うべきなのか?】 【なぜ、勾配決定木や畳み込みは強いのか?】 【結局、ベイスの定理は何に使えるのか?】 すべての疑問が間違いなく解消されます!
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層学習(ディープラーニング)の全体像が理解できる一冊。 日々進化し続ける深層学習技術の基礎をなす知識や考え方を体系的に,応用を俯瞰的にまとめた教科書。 本書は、人工知能(AI)技術の一つである深層学習(ディープラーニング)の全体像を体系的にまとめた教科書です。 SNS、スマートスピーカー、画像診断、自動運転、……などなど、身のまわりには深層学習の技術や手法が広く応用されています。このことからもわかるように、深層学習は今日に至るまでさまざまな場面で成功を収めていますが、その技術や手法は、今現在も、非常に速いスピードで進歩し続けています。「以前は当たり前のように利用されていた技術が、ある日突然、それを上回る別の技術に置き換えられた」ということも十分にあり得ます。しかし、そのような深層学習技術の基礎には、普遍的かつ不変的な知識や考え方があります。 本書は、現代の深層学習の技術や手法を理解するうえで基礎となる知識や考え方を、必要に応じて数式を用い、詳細に解説しています。また、代表的な応用例として、画像、音声、自然言語の処理を俯瞰的に解説し、深層学習の全体像が理解できるように構成しました。論文や国際会議等で深層学習技術の最新動向を追うためのベースは、本書で十分に学ぶことができます。 第1章 序論:深層学習登場の前と後 1.1 パターン認識とは 1.2 パターン認識の困難さと深層学習による成功 1.3 深層学習と従来のパターン認識手法の違い 第2章 深層学習以前のパターン認識手法 2.1 深層学習以前のパターン認識の概略 2.2 特徴抽出 2.3 機械学習・パターン認識手法 2.4 クラスタリング 2.5 評価指標 演習問題 第3章 深層学習ネットワーク 3.1 深層学習のアイディア 3.2 パーセプトロン 3.3 多層パーセプトロン 3.4 深層学習ネットワークにおける基本レイヤ群 3.5 基本ネットワーク構造 演習問題 第4章 ネットワークの学習 4.1 深層学習ネットワークの学習の基本的アイディア 4.2 誤差関数 4.3 確率的勾配降下法 4.4 誤差逆伝播法 4.5 畳込み層の学習 4.6 学習の実際 4.7 学習した畳込みフィルタの例 演習問題 第5章 学習のための技術 5.1 学習パラメータの初期値 5.2 学習率の設定 5.3 データ拡張 5.4 ドロップアウト 5.5 入力データの正規化 5.6 モデルアンサンブル 5.7 事前学習とファインチューニング 5.8 中間信号の画像特徴量としての利用 5.9 距離学習 5.10 マルチタスク学習 5.11 自己教師学習 5.12 ネットワークを小さくする工夫 演習問題 第6章 系列データへの対応 6.1 再帰型ネットワーク 6.2 1次元畳込み 6.3 Transformer 演習問題 第7章 画像認識への適用 7.1 主な画像認識ネットワーク 7.2 画像認識ネットワーク内部の可視化 7.3 物体検出 7.4 領域分割 7.5 人物姿勢推定 7.6 動画認識 演習問題 第8章 画像生成・変換への適用 8.1 エンコーダ・デコーダ型ネットワーク 8.2 オートエンコーダ 8.3 深層生成モデル 8.4 画像変換 8.5 画像最適化による画像変換 演習問題 第9章 音声処理への適用 9.1 音声認識ネットワーク 9.2 音声合成ネットワーク 演習問題 第10章 自然言語処理への適用 10.1 単語ベクトル 10.2 系列変換モデル 10.3 事前学習モデル 演習問題 第11章 マルチモーダル学習 11.1 マルチモーダル・クロスモーダル 11.2 画像と言語ル 11.3 画像・映像と音声 演習問題 演習問題略解 参考文献
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 信号処理の基礎から最新の理論まで解説! 信号処理は、さまざまなセンサー(カメラ、マイクなど)から得られる信号(音響、画像、映像など)をディジタル化してコンピュータで処理し、瞬時に伝送するのに加え、インターネットで流通、共有させるために不可欠な技術分野です。信号処理によって、人間が聞きやすく、見やすく、分かりやすくし、さらには人間や機械がより高度な分析や判断を行うことを可能にします。 「IoT」や「ビッグデータ」においても、実世界に存在する無数のセンサーからの大規模データ(信号)が実時間で記録、保存、解析されることが前提となっており、「可視化」「見える化」「イメージング」などが実現されます。信号処理がなければ、現代のスマート社会は成り立たないといっても過言ではありません。 本書は、信号処理の大学学部レベルの教科書を想定して書かれていますが、大学院レベルの内容も含まれています。第13章「新しい信号処理」では、深層学習の基礎となるディープニューラルネットワークと、近年注目されているグラフ信号処理についてもふれています。また、本文中には多くの問いを設け、その解答も掲載しています。 第1章 信号処理とは 第2章 信号の表現と演算 第3章 信号処理システム 第4章 連続時間フーリエ解析 第5章 サンプリング 第6章 離散時間フーリエ解析 第7章 高速フーリエ変換 第8章 窓関数と短時間フーリエ変換 第9章 z変換 第10章 ディジタルフィルタ 第11章 離散コサイン変換とウェーブレット変換 第12章 画像・映像の圧縮:JPEG・MPEG 第13章 新しい信号処理
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 主要なデータマイニング手法の理論の基礎を学べる!! データマイニングとは,玉石混淆であるたくさんのデータから必要な情報を読み出す作業です。データマイニングの手法として理解しておく必要があるものには,比較的基本的な知識である回帰分析、主成分分析、判別分析等からクラスタリング、サポートベクターマシン(SVM)、ベイズ推定、ニューラルネットワークなどがあります。最近ではこれらの応用として、深層学習等についても解説します。 第I部 多変量解析 第1章 データマイニング 第2章 回帰分析 第3章 主成分分析 第4章 判別分析 第5章 クラスタリング 第II部 機械学習 第6章 機械学習 第7章 サポートベクターマシン 第8章 ベイジアンネットワーク 第9章 ニューラルネットワーク 第10章 自己組織化マップ 第11章 深層学習 参考文献
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 私たちの日常生活で、人工知能が普通に使われる時代になりました。スマートフォンの顔認証、自動運転技術、SiriやAlexaのようなAI音声アシスタントなど身近な技術ばかりです。これからは機械学習や深層学習はエンジニアの基本教養となるかもしれません。本書は、機械学習や深層学習の分野から画像認識に重点をおいて、難しい数式をつかわず、図や写真を多用して解説する入門書です。必要な概念、用語、キーワードも網羅的に説明します。
-
-本書は著名な機械学習用データセットMNISTとその派生データセットを紹介しつつ、深層学習ライブラリPyTorchを活用し各種手法を動かしてみることに取り組みます。深層学習が動くことを体感するための、簡易なGUIアプリの作成方法についても解説しています。
-
4.3※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、自然言語処理について初歩から学べる書籍です。プログラミングについては、なんらかのプログラミング言語を使ったことのある開発者を対象に書いています。 自然言語とは、私たち人間が日常的に読み書きしたり、話したりするのに使っている言語のことです。そして、自然言語で書かれたテキストデータをコンピュータで処理するための技術を自然言語処理と呼びます。自然言語処理によって実行できるタスクの代表的な例としては、自動翻訳や質問応答、対話などがあります。 本書では、この自然言語処理について、今まで学習したことがない人でも学べるように、基礎から解説しています。自然言語をコンピュータで処理するために、事前にどのような処理をしておくのか、どのように単語や文章を解析するのか、自動翻訳などのタスクを実行させるためにどのような処理を行うのか、などについて、やさしく説明していきます。 基礎からはじめて、単語分散表現やテキスト分類、系列ラベリング、系列変換、アテンションといった、自然言語処理では欠かせない技術について、理論を解説した上で、Pythonを使って実装し、手を動かしながら理解できるようにしています。 また、現在の自然言語処理は、機械学習や深層学習とも切り離せません。ですので本書では、これらの技術についても基礎から説明し、Pythonを使って処理を実装していきます。基礎的な実装のみではなく、RNN、LSTM、CNNさまざまなモデルを使っての実装、特徴量エンジニアリングや正則化、ハイパーパラメータチューニングなど、実際の処理で必要になるところまで、詳しく解説しています。
-
4.5
-
4.0
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『機械学習と深層学習 C言語によるシミュレーション』のPython版登場!! 本書は人工知能研究における機械学習の諸分野をわかりやすく解説し、それらの知識を前提として深層学習とは何かを示します。具体的な処理手続きやプログラム例(Python)を適宜示すことで、これらの技術がどのようなものなのかを理解できるように紹介していきます。 まえがき 第1章 機械学習とは 1.1 機械学習とは 1.1.1 深層学習の成果 1.1.2 学習と機械学習・深層学習 1.1.3 機械学習の分類 1.1.4 深層学習に至る機械学習の歴史 1.2 本書例題プログラムの実行環境について 1.2.1 プログラム実行までの流れ 1.2.2 プログラム実行の実際 第2章 機械学習の基礎 2.1 帰納学習. 2.1.1 演繹的学習と帰納的学習 2.1.2 帰納的学習の例題 ―株価の予想― 2.1.3 帰納学習による株価予想プログラム 2.2 強化学習 2.2.1 強化学習とは 2.2.2 Q学習 強化学習の具体的方法 2.2.3 強化学習の例題設定 迷路抜け知識の学習 2.2.4 強化学習のプログラムによる実現 第3章 群知能と進化的手法 3.1 群知能 3.1.1 粒子群最適化法 3.1.2 蟻コロニー最適化法 3.1.3 蟻コロニー最適化法の実際 3.2 進化的手法 3.2.1 進化的手法とは 3.2.2 遺伝的アルゴリズムによる知識獲得 第4章 ニューラルネット 4.1 ニューラルネットワークの基礎 4.1.1 人工ニューロンのモデル 4.1.2 ニューラルネットと学習 4.1.3 ニューラルネットの種類 4.1.4 人工ニューロンの計算方法 4.1.5 ニューラルネットの計算方法 4.2 .バックプロパゲーションによるニューラルネットの学習 4.2.1 パーセプトロンの学習手続き 4.2.2 バックプロパゲーションの処理手続き 4.2.3 バックプロパゲーションの実際 第5章 深層学習 5.1 深層学習とは 5.1.1 従来のニューラルネットの限界と深層学習のアイデア 5.1.2 畳み込みニューラルネット 5.1.3 自己符号化器を用いる学習手法 5.2 深層学習の実際 5.2.1 畳み込み演算の実現 5.2.2 畳み込みニューラルネットの実現 5.2.3 自己符号化器の実現 付 録 A 荷物の重量と価値を生成するプログラム kpdatagen.py B ナップサック問題を全数探索で解くプログラム direct.py 参考文献 索 引
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 イラストを使って初心者にわかりやすく解説!! 現在扱われている各種機械学習の根幹とされる「ボルツマン機械学習」を中心に、機械学習を基礎から専門外の人でも普通に理解できるように解説し、最終的には深層学習の実装ができるようになるまでを目指しました。 さらに機械学習の本では、当たり前になってしまっている表現や言葉、それが意味していることを、この本ではさらにときほぐして解説しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 人工知能研究における諸分野を、C 言語による具体的な処理手続きやプログラム例によりやさしく解説する!! 強化学習は、一連の行動の結果だけから行動知識を学習する手法です。 本書では、この強化学習と深層学習の基礎を紹介した上で、深層強化学習のしくみを具体的に説明します。単に概念を説明するだけでなく、アルゴリズムを実際にC言語のプログラムとして実装することで、実際にプログラムを動かすことで具体的な処理方法の理解を深めます。 主要目次 第1章 強化学習と深層学習 第2章 強化学習の実装 第3章 深層学習の技術 第4章 深層強化学習
-
-「ビッグデータ(Big Data)」という用語は、2010年頃から特にビジネスの分野を中心によく見かけるようになり、2012年の米国大統領選をきっかけに爆発的なブームとなりました。しかし、多くの人は、ビッグデータとはいったい何なのかを未だによくわかっていないのが現状だと思います。本書は、データベース研究者である著者が「ビッグデータとは何か」、「ビッグデータに関わる技術や課題とは何か」について常日頃から考えている内容を整理して執筆したものです。 1章では、まずビッグデータおよびその解析技術について概観します。2章では、ビッグデータ解析の応用事例について、代表的なものを紹介します。3章では、以降の章における技術的な解説の理解を促進するために、ビッグデータ解析の典型的な流れについて、データ収集とデータ解析に焦点を当てて解説します。4~7章では、ビッグデータを支える技術として、分散処理フレームワーク、ストリーム処理エンジン、データベース、機械学習について代表的な技術をそれぞれ紹介します。次に8章では、ビッグデータ解析が今以上に広く浸透するために重要となるオープンデータについて、国内外の動向を踏まえて解説します。最後に9章では、本書のまとめとして、ビッグデータに関する将来の動向、可能性について議論します。 ビッグデータについて知りたい、学びたいと思っている読者が、押さえておくべき重要な事項を一通り学ぶことができる1冊になっています。
-
-本書は、GoogleがGCP(Google Cloud Platform)上で提供している機械学習関連のツールやAPIを活用し、実際に機械学習の環境やデータに触れながら、その原理と動作を体験的に学ぶことができる機械学習入門書です。 ●Googleは、機械学習にも有用な優れた環境を提供しており、特にDatalabはブラウザ上でPythonのコードを実行でき、グラフ・表を出力できるほか、ビッグデータを高速で処理するBigQueryや便利な各種APIにも簡単にアクセスできるツールです。 ●本書では、Datalabを通じて、Googleが膨大なリソースを使い初めから用意している機械学習環境にアクセスし、高度な機能と豊富な資源を十分に活用できるよう読者を導いていきます。 ●本書の学習では、数式はほとんど使わず、簡単なコードとそのグラフィカルな実行結果により、理解を深めていきます。 まずは識別の基礎から入り、各種識別関数を通じて機械学習の原理や手法を学びます。 続いて実践的にデータを扱いながら、データの評価方法やチューニングを学び、さらに深層学習(ディープラーニング)へと進んでいきます。 深層学習では、画像識別による具体例から始まり、より高度なニューラルネットワークまで学んだ後、実際にGoogleの深層学習用ライブラリー(TensorFlow)を使ってニューラルネットワークをモデリングする方法を学びます。 最後に、画像識別を代表するCNN(畳み込みニューラルネットワーク)の実装法を学び、実運用の入り口へと案内します。
-
3.5最新のAI開発プラットフォームで 機械学習・深層学習・強化学習の 基礎技術を学ぼう! 【本書の概要】 本書はUdemyで大人気の講座 『AIパーフェクトマスター講座 -Google Colaboratoryで隅々まで学ぶ実用的な人工知能/機械学習-』をもとにした書籍です。 ・機械学習(回帰、k平均法、サポートベクターマシン) ・深層学習(画像識別や画像生成、RNN) ・強化学習(Cart Pole問題、深層強化学習) といった、AI開発でニーズの高い人工知能技術を、深層学習を中心に解説しています。 また本書ではサンプルを用意していますので、サンプルを動かしながら、AI技術の仕組みを理解できます。 開発環境にはGoogle Colaboratoryを使用します。 【Google Colaboratoryとは】 ブラウザ上で利用できる機械学習や深層学習向けの開発環境です。 GPUを無料で利用できるので、コードの実行時間を大幅に短縮できます。 【本書ポイント】 ・機械学習・深層学習・強化学習の基礎知識を一気に学べる ・Pythonでコードを動かしながら機械学習・深層学習・強化学習の理論を学べる 【対象読者】 ・何らかのプログラミング経験のある方 ・機械学習・深層学習・強化学習を学ぶ意欲のある方 ・高校数学以上の数学知識のある方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。 人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-待望の第2版! 定番のAI開発プラットフォームで 機械学習や深層学習、強化学習、転移学習の 基礎を習得 【本書の概要】 本書はUdemyで大人気の講座『AIパーフェクトマスター講座 -Google Colaboratoryで隅々まで学ぶ実用的な人工知能/機械学習-』をもとにした書籍です。 ●機械学習(回帰、k平均法、サポートベクターマシン) ●深層学習(画像識別や画像生成、RNN) ●強化学習(Cart Pole問題、深層強化学習) などのAI開発で必要となる人工知能技術について解説します。 サンプルを動かしながら、AI技術の仕組みを理解できます。 開発環境にはGoogle Colaboratoryを使用します。 【Google Colaboratoryとは】 ブラウザ上で利用できる機械学習や深層学習向けの開発環境です。 GPUを無料で利用できるので、コードの実行時間を大幅に短縮できます。 【本書ポイント】 ●機械学習・深層学習・強化学習の基礎知識を一気に学べる ●Pythonでコードを動かしながら機械学習・深層学習・強化学習の理論を学べる 【第2版の変更点】 ●Google Colaboratory環境のアップデート(2024年8月時点) ●各種ライブラリのアップデート ●データセット(住宅データ)の変更 【対象読者】 ●何らかのプログラミング経験のある方 ●機械学習・深層学習・強化学習を学ぶ意欲のある方 ●高校数学以上の数学知識のある方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.5【本書の特徴】 2015年11月にGoogleがオープンソース化したソフトウェアライブラリ「TensorFlow(テンソルフロー)」は、 多くの開発者に支持され、多企業で採用されています。 本書は、TensorFlowの導入から、高レベルAPIであるKerasを利用した実践的な深層学習モデルまで解説した、 エンジニア向けの入門書です。第1部の基本編では、深層学習とTensorFlow、Kerasの基礎について解説し、 第2部の応用編では画像処理における応用的なモデルのKerasを使った実装方法を解説します。 特に、第2部では、「ノイズ除去」「自動着色」「超解像」「画風変換」「画像生成」を取り上げています。 TensorFlowやKerasの機能面を押さえつつ、現場で使用できるような実践的な深層学習モデルまでフォローしています。 【対象読者】 深層学習に入門したいエンジニア 【目次】 第1部 基本編 第1章 機械学習ライブラリTensorFlowとKeras 第2章 開発環境を構築する 第3章 簡単なサンプルで学ぶTensorFlowの基本 第4章 ニューラルネットワークとKeras 第5章 KerasによるCNNの実装 第6章 学習済みモデルの活用 第7章 よく使うKerasの機能 第2部 応用編 第8章 CAEを使ったノイズ除去 第9章 自動着色 第10章 超解像 第11章 画風変換 第12章 画像生成 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-【概要】 本書は、深層学習の開発環境の準備とPythonの基本、各種深層学習モデルの解説、そして実際の現場での利用方法について解説した書籍です。 ニーズの高い、人気の深層学習モデルを利用した画像処理モデルの構築方法を解説しています。 また最終章では深層学習のモデルをGoogle Cloud Platform(GCP)にデプロイする手法を解説しています。 【読者対象】 人工知能関連の開発に携わる開発者、研究者 【著者】 株式会社アイデミー 木村優志(きむら・まさし) 博士(工学)。ATR-trek、富士通を経て、現在はConvergence Lab.の代表として多数のAI案件を手がける。 アイデミー技術顧問。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0注目の最新AI技術!深層強化学習の開発手法がわかる! 第一線で活躍する著者陣の書下ろしによる待望の1冊! 【本書の目的】 AlphaGo(アルファ碁)でも利用されている深層強化学習。 AIサービスのみならずロボティクス分野でもその応用が期待されています。 本書は、AI開発に携わる第一線の著者陣が深層強化学習の開発手法について書き下ろした注目の1冊です。 【本書の特徴】 第1部では、まず、深層強化学習の概要について説明します。 次いで、強化学習の基礎(Q学習、方策勾配法、Actor-Critic法)と深層学習の基礎(CNN、RNN、LSTM)を解説します。 さらに、簡単な例題として倒立振子制御を取り上げ、DQNとActor-Critic法による実装例を紹介します。 第2部では、具体的な応用例として3つのアプローチを実装込みで解説します。 1つ目は、連続動作制御です。ヒューマノイドシミュレータの2足歩行制御を試みます。 2つ目は、パズル問題の解法です。巡回セールスマン問題(TSP)やルービックキューブの解探索について説明します。 3つ目は、系列データ生成です。文書生成(SeqGAN)やニューラルネットワークのアーキテクチャ探索(ENAS)を解説します。 全体を通して、行動の制御を担うエージェントのモデル化と、方策ベースの強化学習によるエージェントの学習法について学ぶことができます。 【読者が得られること】 深層強化学習による開発手法を学ぶことができます。 【対象読者】 深層強化学習を学びたい理工学生・エンジニア ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-【本書について】 本書は、 杜世橋氏がKindle Direct Publishingを利用してKindleストアで販売している 『PyTorchで学ぶニューラルネットワークと深層学習』(ASIN: B078WK5CPK)を書籍化したものです。 書籍化にあたり、最新(2018年7月時点)のPyTorch v0.4に対応するなど大幅に加筆しています。 また、付録に無料で利用できるGPU環境である「Colaboratory」の利用方法の追加などを行っており、 GPU環境が利用できない読者でも様々なニューラルネットワークのモデル学習が体験できるようになっています。 【PyTorch(パイトーチ)とは】 PyTorchは主にFacebook社のメンバーが開発しているOSSの深層学習フレームワークです。 特徴としては動的ネットワーク方式を採用していてPythonの関数と同じ感覚でニューラルネットワークを構築できる点が挙げられます。 【本書の概要】 本書はPyTorchの基本から深層学習モデルの作成、そしてアプリケーション作成まで網羅した書籍です。 具体的には、PyTorchの基本から始まり、最尤推定と線形モデル、多層パーセプトロンについて解説します。 その後、画像処理と畳み込みニューラルネット、自然言語処理と再帰型ニューラルネットを扱います。 また、推薦システムやWebAPIの作成、アプリケーションのデプロイについても解説します。 さらに付録では、TensorBoardによる可視化、Colaboratoryの利用方法などを解説しています。 【対象読者】 深層学習エンジニア、機械学習エンジニア ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ゲームAI手法を技術開発に必要な基礎的な内容から解説! 本書は、最近のゲームAI手法をさまざまな実例で解説するとともに、実際にゲームAIを構築できるような技法の習得を目指します。さらに、人工知能の最新の話題として、人間らしいゲームAIや深層学習、機械学習、強化学習についても解説しています。 第1章 パズルとゲームのAI今昔物語 第2章 パズルを解くAI 第3章 制約従属のパズルと非単調な推理 第4章 ゲームを解くAI 第5章 学習・進化とゲームAI 第6章 ゲームAIと人間らしさ 参考文献 索引
-
3.0「神の一手」の謎にせまる! 【概要】 2017年5月にAlphaGoと柯潔(カ・ケツ)九段の最終決戦が行われ、 AlphaGoの3連勝となりました。AlphaGoは今回の対戦で さらに進化をとげました。 このようにAIの技術進化は日進月歩で進んでおり、国内でも 企業で研究開発が進んでいます。中でも目されているのは、 機械学習・深層学習・強化学習です。 本書はネイチャーで提供されているAlphaGoに関する 難解な学術論文を著者のほうで読み解き、「AlphaGo」で 利用されている深層学習や強化学習、モンテカルロ木探索の 仕組みについて、実際の囲碁の画面も参照しながら、 わかりやすく解説した書籍です。 本書を読むことで、最新のAIに深層学習、強化学習、 モンテカルロ木探索がどのように利用されているかを 知ることができ、実際の研究開発の参考にすることができます。 【読者対象】 ・人工知能関連の開発に携わる開発者、研究者 ・ゲームAI開発者 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.0【本書の概要】 本書は学術論文(NatureやGoogleのサイト)などで提供されている難解なアルファ碁およびアルファ碁ゼロの仕組みについて、 著者がとりまとめ、実際の囲碁の画面を見ながら、 アルファ碁およびアルファ碁ゼロで利用されている深層学習や強化学習の仕組みについてわかりやすく解説した書籍です。特にデュアルネットワークはまったく新しい深層学習の手法で国内外の技術者の関心を集めています。 本書を読むことで、最新AIの深層学習、強化学習の仕組みを知ることができ、 自身の研究開発の参考にできます。また著者の開発したDeltaGoを元に実際に囲碁AIを体験できます。 【増補改訂のポイント】 Chapter1から5の部分は、よりわかりやすく内容を加筆修正しています。 またChapter6はアルファ碁ゼロに対応しています。 改訂にあたり、色数も2Cに変更。よりわかりやすいビジュアルになっています。 【対象読者】 人工知能関連の開発者、研究者 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 こちらの書籍は、2023/4/12発行の紙版 3刷に合わせて更新しました。 人気のAIフレームワーク「PyTorch」で、ディープラーニングプログラミングができるようになる本です。ディープラーニングのアルゴリズムが原理からわかります。 初心者でも他書に頼らず、本書1冊でマスターできます! (本書掲載のコードは、2023年3月にリリースされたPyTorch 2.0でも、そのまま動作します) 本書は、次のような読者を想定しています。 1. 企業でディープラーニングプログラムを業務で利用している、あるいはこれから利用しようとしているITエンジニアや研究者 2. 理工系の大学・大学院の学生で研究の一環としてディープラーニングのプログラムを開発する必要がある方 3. まだPythonもKeras/TensorFlowも知らないが、ディープラーニングプログラミングをこれから勉強してみたいという方 本書は、新しい概念は一気には詰め込まず、できるだけ細分化して一歩一歩確実に進めます。 機械学習の基本から、「CNN」などを使った画像認識ディープラーニングモデルの開発・チューニングまでをじっくり学べます。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 自然言語処理と深層学習が一緒に学べる!! 本書は、人工知能研究における主軸の一つである「自然言語処理」について、わかりやすく解説するものです。人工知能研究における自然言語処理分野でよく用いられる機械学習の理論をわかりやすく解説し、それらの知識を前提として深層学習とは何かを示します。単に概念を羅列するのではなく、豊富な実装例や演習問題を通して、自然言語処理の理論と実践をバランスよく学べるように紹介していきます。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 化学の研究開発ではマテリアルズインフォマティクス(機械学習・深層学習を用いた新素材探索や新材料設計)の技術が導入され始めています。一方で、有機化学・無機化学のどの領域かによって構造情報の扱いや解析ノウハウが異なり、それぞれの場面で適切な手法が存在するという実情があります。本書では深層学習の基礎事項をはじめ、実際に深層学習を化学研究に利用する上での留意点を詳述するとともに、有機化学・無機化学分野でのデータの具体的な扱い方、さらには様々な深層学習手法とその具体的利用の理解を助けるための応用事例など、注目すべき多数の研究成果を体系的に整理しています。深層学習の初学者および具体的な応用研究を目指す方を対象に、データから様々な可能性を模索できるよう編集された一冊です。
-
4.01巻5,060円 (税込)AI研究の一分野として注目を集める深層学習(ディープラーニング)に関する教科書として世界的な評価を受けている解説書。深層学習の理解に必要な数学、ニューラルネットワークの基礎から、CNN(畳み込みニューラルネットワーク)やRNN(回帰結合型ニューラルネットワーク)などのすでに確立した手法、さらに深層学習の研究まで、深層学習の基礎を理論を含めてしっかり学習したい人に最適な内容になっている。近年の深層学習研究をリードする著名な研究者たちが執筆した入門者必読の書である。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 深層(多段層)ニューラルネットワークの構築は人工知能を模索する研究者にとっては、長年の課題であり夢でもあり、まさに研究対象でもあった。しかしただ単に多層化するだけでは、能力をうまく発揮することは出来なかった。近年、大きなブレークスルーがあり深層学習の手法を使うことにより、機械が自ら表現を学習出来ることが分かった。しかし、新しい手法でもあり、未解決な課題も多く存在している。 本書は、この分野の最先端の著者らが、人工知能学会誌に掲載した連載解説を、大幅に加筆再編したものである。今までの到達点、今後の課題が、具体的な研究成果と共に書かれている。深層学習の理論・応用を、自らの研究に取り込むことを考えている読者には、まさに必携必読の書籍である。
-
5.0◆ベストセラーの改訂版。最高最強のバイブルが大幅にパワーアップ!!◆ ・トランスフォーマー、グラフニューラルネットワーク、生成モデルなどをはじめ、各手法を大幅に加筆。 ・深層学習のさまざまな課題と、その対策についても詳しく解説。 [本書まえがきより抜粋] ないもの(=理論)ねだりをしても仕方がありません.それでも皆が研究を進めるのは,そうすることに意義があるからです.なぜうまく働くのか,なぜそうすべきか,数学的な証明はなくても,正しい説明は必ずあるはずです.それを手にできれば,目の前の課題を解決するのに,また次に進むべき道を知るうえで役に立つでしょう. そこで本書では,それぞれの方法について,今の時点で最も納得できる説明をきちんと与えることにこだわりました.名前の通った方法であっても,理屈が成り立たない,あるいは役に立たない方法や考え方については,はっきりそう書きました.著者の主観といわれても仕方がない場合もあるかもしれませんが,そのほうが有益であると信じています. また,現在の深層学習の広がりを把握できるように,定番となった問題・方法に加えて,重要だと思われる問題については,必ずしもそれほど有名でない方法も含めてなるべく網羅するようにしました.その取捨選択には,深層学習が実践的技術であることを踏まえ,実用性を最も重視しました.そこには,この間に著者が企業の実務家たちと行ってきた共同研究での経験が反映されています. [主な内容] 第1章 はじめに 第2章 ネットワークの基本構造 第3章 確率的勾配降下法 第4章 誤差逆伝播法 第5章 畳み込みニューラルネットワーク 第6章 系列データのためのネットワーク 第7章 集合・グラフのためのネットワークと注意機構 第8章 推論の信頼性 第9章 説明と可視化 第10章 いろいろな学習方法 第11章 データが少ない場合の学習 第12章 生成モデル
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 「E2024#2」試験から適用される新シラバスに完全対応! 〈本書の特長〉 ●受講生の高い試験合格率を誇る講師陣の合格メソッドに基づいた、精選問題集。 ●E2024#2以降の試験に対応した、唯一の問題集! ●良質な重要問題282問と解説を収録。 ⇒出題範囲が広いE資格の中で優先して押さえるべき重要な論点をマスターできる。 ●出題範囲を幅広くカバーした「総合問題」1回分をダウンロード提供。 ⇒学習を終えた後に、復習や力だめしができる。 ●読者特典として、本書の内容に完全対応した「AI読者アシスタント」付き! ⇒難解な用語や問題・解説に関する質問に、瞬時に回答してくれる! 〈監修〉 ●岩澤有祐(いわさわ・ゆうすけ) 東京大学大学院工学系研究科准教授。2017年東京大学大学院工学系研究科技術経営戦略学専攻博士後期課程修了。博士(工学)、修士(情報理工学)。『深層学習』(KADOKAWA)共訳。 〈著者〉 ●小林範久(こばやし・のりひさ) 株式会社Present Square 最高技術責任者(CTO)。 早稲田大学大学院修了。AI技術を活用したシステムサービスの開発やAI導入のコンサルティングに従事。東京大学松尾・岩澤研究室輪読会会員。 ●小林寛幸(こばやし・ひろゆき) 株式会社Present Square 創業者/最高経営責任者(CEO)。 慶應義塾大学大学院修了。経営、事業企画及びAIを含む教育・コンサルティングに従事。社外取締役、非常勤講師等を歴任。東京大学AI経営寄付講座修了(2022)。 〈編者〉 ●株式会社Present Square 日本ディープラーニング協会(JDLA)より認定を受けたエンジニア育成講座『DeepSquare』(認定No.00016)、AI動画像解析『Smart Counter-スマカチ-』等のサービスを提供。E資格、G検定、Generative AI Test等の専門資格を保有するコンサルタント及びエンジニアが、初学者から実務者向けの講義、PoC、サービス開発を支援。 <目次> 第1章:数学的基礎 第2章:機械学習 第3章:深層学習の基礎 第4章:深層学習の応用 第5章:開発・運用環境 Web提供:総合問題 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.11巻3,080円 (税込)大好評!デジタル時代の必携リテラシー、G検定の「公式テキスト」の改訂版! 【本書の特徴】 ・大ベストセラー、ディープラーニング G検定 公式テキストの改訂版。 ・改訂された新シラバスに完全準拠。 ・試験運営団体である「日本ディープラーニング協会」が監修。 ・章末問題を大増量。分かりやすい解説付き。 ・ディープラーニングに関する入門書としても最適。 【対象読者】 ・ G検定を受験しようと思っている人 ・ディープラーニングについて概要を学びたい人 ・ディープラーニングを事業活用しようと思っている人・DX推進を検討している人 【G検定とは】 ・内容:ディープラーニングを事業に活かすための知識を有しているかを検定する ・試験方式:知識問題(多肢選択式)、オンライン実施(自宅受験) ・日程:年3回(詳細は公式サイトにて公表) 【目次】 試験の概要 第1章 人工知能(AI)とは 第2章 人工知能をめぐる動向 第3章 人工知能分野の問題 第4章 機械学習の具体的手法 第5章 ディープラーニングの概要 第6章 ディープラーニングの手法 第7章 ディープラーニングの社会実装に向けて Appendix 事例集 産業への応用 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.7ディープラーニングの知識を測る検定試験(G検定)の「公式テキスト」登場! 【本書の特徴】 1)試験運営団体である「日本ディープラーニング協会」が執筆。 2)各章末には、練習問題つき。試験勉強に最適。 3)最新シラバス「JDLA Deep Learning for GENERAL 2018」に完全準拠。 4)ディープラーニングについて最新事情も踏まえ学ぶことができる。 【対象読者】 ・「ディープラーニング G検定(ジェネラリスト検定)」を受験しようと思っている人 ・ディープラーニングについてこれから広く学びたい人 ・ディープラーニングを事業活用しようと思っている人 【G検定とは】 ・目的:ディープラーニングを事業に活かすための知識を有しているかを検定する ・受験資格制限:なし ・試験概要:120分、知識問題(多肢選択式)、オンライン実施(自宅受験) ・出題問題:シラバスより出題 ・日程:公式サイトにて公表 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層学習、進化計算、メタヒューリスティクス...人工知能キーワード!! 本書は、深層学習・ディープラーニング、進化計算、メタヒューリスティクスについて解説します。深層学習は画像処理や自然言語処理などさまざまに応用され、人工知能の重要手法です。またメタヒューリスティクスは生物や物理化学現象をもとにした最適化・AI手法です。 本書ではDeep Neural Evolutionの基礎から応用までをわかりやすく説明します。また、メタヒューリスティクス、進化計算についてデモンストレーションとなるサンプルプログラム(C++、Java等)を提供します。 第1章 AIのための進化論 第2章 深層学習とディープラーニング 第3章 メタヒューリスティクス 第4章 生物らしい計算知能 第5章 ニューロ進化と遺伝子ネットワーク 第6章 ディープ・ニューラルエボリューション
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 CNNとViTによる画像認識を本格的に学ぶために! 本書は、深層学習(ディープラーニング)に基づく2つの技術、畳込みニューラルネットワーク(CNN)とVision Transformer(ViT)を通して、画像認識の基礎を実践例とともに解説するものです。 画像認識技術は、顔認証や異常検知など、現代社会に欠かせない技術として広く応用されており、研究開発も盛んに行われています。本書では、確かな理解のもとに画像認識技術の研究開発が可能となるよう、前半において理論的な基盤(深層学習の基本事項、畳込みニューラルネットワーク(CNN)、Vision Transformer(ViT))を、紙数を割いてわかりやすく解説していきます。また後半では、画像認識の基本的手法である物体検出と領域分割、学習データの大規模化に欠かせない自己教師あり学習を実例とともに解説し、最終章では今後ますます重要になると見込まれるVision and Languageのマルチモーダル処理を詳細に扱います。 全体を通して、擬似コードなどでアルゴリズムを把握できるようにしたほか、Python(PyTorch)のサンプルコードも用意し、読者自身が手を動かして画像認識を実践することができるようにしました。 第1章 画像認識の概要 第2章 深層学習の基礎 第3章 畳込みニューラルネットワーク 第4章 Vision Transformer(ViT) 第5章 物体検出 第6章 領域分割 第7章 自己教師あり学習 第8章 画像と自然言語
-
4.0
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能は作曲家の夢を見るか? 【本書のポイント】 ・深層学習による自動作曲技術の全体像を知る ・Colaboratoryを使った自動作曲のお試し ・データセットを多数紹介 機械学習による自動作曲(AI作曲)技術を解説した専門書です。機械学習やメディアアート関係の研究者、学生、音楽産業の技術者を主な読者対象として、現在の自動作曲技術をまとめています。また、実践要素(Python/Colaboratoryを使った自動作曲の実践)を設けて、情報科学の知識のないクリエイターやアマチュア作曲者、動画制作者などが自動作曲にチャレンジできるようにしました。 近年、画像生成を中心にAI(機械学習)によるメディア生成が注目を集めています。自動作曲はその名の通り、音楽を生成する技術で、近年では機械学習・深層学習による自動作曲・音楽分析が盛んに研究されています。 本書では、言語・音声などの従来の時系列データと異なる音楽データの特徴に基づく分析や、音声の生成のような「それっぽい」にとどまらない美的な質の学習方法や評価といった、音楽に特化した機械学習のアプローチを解説します。 読者は本書によって、現時点での深層学習による自動作曲の全体図を理解でき、またGoogleのMusic TransformerやOpenAIのJukeboxなど、最先端の重要モデルの仕組みや性能を学ぶことができます。自身のAI作曲の性能向上や実用性の改善を図ることが可能となります。 第 1 章 AI による自動作曲とは 1.1 背景 ── AI と作曲 1.2 自動作曲の歴史 1.3 本書の目的と構成 1.4 本章のまとめ 第 2 章 音楽の基礎知識 2.1 音楽の存在形式 2.2 平面的な要素 2.3 立体的な要素 2.4 音楽制作の流れ 2.5 本章のまとめ 第3章 AI モデル 3.1 時系列モデル 3.1.1 RNN・LSTM・GRU 3.2 畳み込みネットワークネット (CNN) 3.3 生成モデル 3.4 強化学習 3.5 本章のまとめ 第4章 楽譜(MIDI)としての自動作曲 1:時系列学習による自動作曲 4.1 RNN 基盤の自動作曲 4.2 トランスフォーマー基盤の自動作曲 4.3 本章のまとめ 第5章 楽譜(MIDI)としての自動作曲 2:生成モデルによる自動楽曲 5.1 GAN 基盤の自動作曲 5.2 VAE 基盤の自動作曲 5.3 拡散モデルによる自動作曲 5.4 本章のまとめ 第6章 楽譜(MIDI)としての自動作曲 3:強化学習による自動作曲 6.1 報酬の設定 6.2 他モデルとの融合 6.3 強化学習の二つのアプローチ 6.4 本章のまとめ 第7章 波形としての自動作曲 7.1 なぜ難しいのか 7.2 音声生成 7.3 波形としての音楽生成 7.4 本章のまとめ 第 8 章 データセットおよび評価指標 8.1 データセット 8.2 評価指標 8.3 本章のまとめ 第 9 章 前処理とデータ拡張 9.1 前処理 9.2 データ拡張 9.3 本章のまとめ 第 10 章 AIの他の音楽分野への応用 10.1 音源推薦 10.2 ジャンル識別 10.3 音源分離 10.4 自動ミックスダウンおよびマスタリング 10.5 本章のまとめ 第 11 章 まとめと今後の課題 11.1 今後の課題 11.2 音楽への関わり方の変化と意義 11.3 本章のまとめ 参考文献 索引
-
4.1第三次人工知能(AI)ブームの中核的役割を果たす深層学習(ディープ・ラーニング)は,その高い信頼性と汎用性ゆえに様々な領域に応用されていく一方で,「なぜうまくいくのか」すなわち「なぜ優れた性能を発揮するのか」ということは分かっていない.深層学習の原理を数学的に解明するという難題に,気鋭の研究者が挑む.
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 GAN(Generative Adversarial Networks):敵対的生成ネットワークは機械学習技術の一種で、2つの分離したニューラルネットワークを使い実物と区別が付かないほどリアルな画像を生成することを可能とします。 本書はGAN:敵対的生成ネットワークを学びたい方のために入門から実装まで、理論を交えつつ解説していきます。本書全体を通じてJupyter Notebookを使い、実装はPython、Kerasで行っていきます。 機械学習とニューラルネットワーク、Pythonプログラミングについてある程度の経験がある方を主な対象読者としており、数学に関しては最小限のものに絞って解説します。 本書の目的は、GANが達成してきたことを理解するための知識と道具を提供し、そこから新しい応用を見つけ作り出す力をつけていただくことです。GANは多くの可能性に満ちていますから、意欲的な方々であれば学術界・実世界に大きなインパクトを与えられることでしょう。 Part 1 GANと生成モデル入門 Part 2 GANの発展的な話題 Part 3 ここからどこへ進むべきか
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 深層学習を用いたマテリアルズインフォマティクスの実用的専門書第2弾。本書では厳選した事例を対象に、深層学習を有機化学・無機化学分野のデータに適用する場合のポイントについてを解説している。序章では『詳解 マテリアルズインフォマティクス』でも掲載したデータセットについて詳述し、第1章から有機化合物に対する予測モデル構築、第2章で無機材料に対する予測モデル構築、第3章で生成モデルを活用した材料・医薬品の設計についてをケーススタディとして紹介する。具体的なテクニックを読み解くことで、材料開発における深層学習の活用を更に飛躍させることができる。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 機械学習で、マスク判定だ! 好評「AI・機械学習・深層学習アプリのつくり方」が「TensorFlow2に対応!」 Withコロナ時代に対応した「マスクの有無を判定する」サンプルを新たに加えました。 ◇もくじ◇ ■第1章 機械学習 / ディープラーニングについて ■第2章 機械学習入門 ■第3章 OpenCV と機械学習 - 画像・動画入門 ■第4章 自然言語処理 ■第5章 ディープラーニング( 深層学習) について ■第6章 機械学習で業務を効率化しよう ■Appendix 本書のための環境を整える
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 大好評既刊書のTensorFlow編。『電子工作×深層学習』をテーマとし、深層学習を電子工作で利用するための方法を紹介。電子工作と深層学習のどちらか一方の知識しか持ち合わせていない場合でも理解できるよう、電子回路と深層学習の双方について丁寧に説明。深層学習だけではなく深層強化学習までを幅広くカバー。深層学習フレームワークの内部構造を可視化することで一層の理解が深まる。
-
4.0Chainerは2015年にPreferred InfrastructureがPythonのライブラリとして開発・公開したフレームワークです。 本書は、Pythonの拡張モジュールであるNumPyの使い方やニューラルネットの基本をおさらいした後に、Chainerの基本的な使い方を示します。次にAutoEncoderを題材にして、それを確認し、最後に、自然言語処理でよく使われるword2vecとRNN(Recurrent Neural Network)を解説し、それらシステムをChainerで実装します。既存にない複雑なネットワークのプログラムを作る際の参考となるものです。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Chainerのバージョン2でディープラーニングのプログラムを作る 本書はChainer を使ってディープラーニングのプログラムの作り方を示すものです。ディープラーニングは複雑なネットワークで表現された関数の回帰の問題と見なせます。そしてこのような問題は勾配法で解きます。この観点から Chainer によるプログラムの作成法を示しました。Chainerが2にバージョンアップしたため、2に対応し発行するものです。畳み込みニューラルネットワークについても解説しています。 主要目次 はじめに 第0章 Chainer とは 第1章 NumPy で最低限知っておくこと 第2章 ニューラルネットのおさらい 第3章 Chainer の使い方 第4章 Chainer の利用例 第5章 Trainer 第6章 Denoising AutoEncoder 第7章 Convolution Neural Network 第8章 word2vec 第9 章Recurrent Neural Network 第10章 翻訳モデル 第11章 Caffe のモデルの利用 第12章 GPU の利用 参考文献 ソースプログラム
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonでデータサイエンスの理論と実践を学ぶ データサイエンスは、「データを科学的に扱う」学問分野です。近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。 本書は、データサイエンスの基礎となる統計分析からパターン認識(機械学習)、時系列データ分析、深層学習などを、Pythonを使って実際に分析しながら学ぶものです. データの取り扱い、確率・統計の基礎といった基本的なところから、パターン認識、深層学習といった統計・機械学習手法、時々刻々と変化する時系列データの分析などの解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。 Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。 第2版にあたっては深層学習を大幅に拡充し、自然言語処理、生成系(AutoEncoder、GAN)などの近年重要視されるテーマを取り上げました。 1章 はじめに 2章 データの扱いと可視化 3章 確率の基礎 4章 統計の基礎 5章 回帰分析 6章 パターン認識 7章 時系列データ分析 8章 深層学習の基礎 9章 深層学習による画像処理 10章 深層学習による自然言語処理 11章 生成系深層学習 12章 深層強化学習 索引
-
3.5本書は,わずか11行のプログラム解説からはじまります。たったそれだけで深層学習を体験できるのが,いまの状況です。自らがハマってコードを書いて習得した著者が,Deel,Chainer,TensorFlowといった深層学習用フレームワークを使い,畳込みニューラルネットワークやリカレントニューラルネットワークのしくみをコードを読み解きながら解説します。ニューラルネットワークの学習には,画像と自然言語を対象に,GUIツール(CSLAIER)を使って行う方法を紹介。さらに後半では,AlphaGoにも使われた深層強化学習,ファインチューニングの手法,深層化の本命と目されているオートエンコーダについても知ることができます。
-
-【本書の概要】 本書は株式会社アイデミーで大人気の講座『ディープラーニングで画像認識モデルを作ってみよう!』を書籍化したものです。 機械学習の基本からはじまり、Pythonの基礎、データの処理、深層学習の基本から応用ついて、 サンプルを元に実際に動かしながら、わかりやすく解説します。 各項には練習問題がありますので、学習効果を確かめながら読み進めることができます。 本書を読めば、機械学習から深層学習の基本を一気通貫で学習できます。 これから深層学習をはじめたい、初学者の方におすすめの1冊です。 【本書の対象】 人工知能関連の開発に携わる初学者(開発者、研究者、理工系学生) 【本書の構成】 第1章から第3章で機械学習の基本を、 第4章から第6章ではPythonの基礎知識を、 第7章から第9章ではNumPyやPandasの基礎知識を、 第10章から第13章では可視化の基礎知識を、 第14章から第15章ではデータの扱い方の基本を、 第16章から第18章では教師あり学習やハイパーパラメータとチューニングを、 第19章から第22章では深層学習について基本から応用まで、 丁寧に解説します。 【著者プロフィール】 石川 聡彦(いしかわ・あきひこ) 株式会社アイデミー 代表取締役社長 CEO。 東京大学工学部卒。株式会社アイデミーは2014年に創業されたベンチャー企業で、 10秒で始める先端テクノロジー特化型のプログラミング学習サービス「Aidemy」を提供。 様々な企業のアプリケーション制作・データ解析を行った。現在の主力サービス「Aidemy」は AIやブロックチェーンなどの先端テクノロジーに特化したプログラミング学習サービスで、 リリース100日で会員数10,000名以上、演習回数100万回以上を記録。 早稲田大学主催のリーディング理工学博士プログラムでは、AIプログラミング実践授業の講師も担当した。 著書に『人工知能プログラミングのための数学がわかる本』(KADOKAWA/2018年)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-AI開発に必要な数学の基礎知識がこれ1冊でわかる! 【本書の目的】 本書は以下のような対象読者に向けて、 線形代数、確率、統計/微分 といった数学の基礎知識をわかりやすく解説した書籍です。 【対象読者】 • 数学がAIや機械学習を勉強する際の障壁になっている方 • AIをビジネスで扱う必要に迫られた方 • 数学を改めて学び直したい方 • 文系の方、非エンジニアの方で数学の知識に自信のない方 • コードを書きながら数学を学びたい方 【目次】 序章 イントロダクション 第1章 学習の準備をしよう 第2章 Pythonの基礎 第3章 数学の基礎 第4章 線形代数 第5章 微分 第6章 確率・統計 第7章 数学を機械学習で実践 Appendix さらに学びたい方のために ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ストーリーでPythonと機械学習がわかる!! 『機械学習入門―ボルツマン機械学習から深層学習まで―』、『ベイズ推定入門 モデル選択からベイズ最適化まで』につづく、お妃さまシリーズの第3弾を刊行するものです。Pythonの学習を主軸としたものであり、機械学習を実践したくなった人、およびカジュアルでわかりやすいPython入門本を探している人をターゲットとします。Pythonのコードとコードの説明をイラストでわかりやすく解説します。現在注目されているGAN(敵対的生成ネットワーク)についても解説。 第1章 魔法の鏡との出会い 第2章 機械学習の発見 第3章 思い出のアヤメ 第4章 器用な鏡、不器用な小人 第5章 あなたは誰?顔認識システム 第6章 表情豊かな鏡に戻れ!
-
5.0大人気の機械学習フレームワーク「PyTorch」で 深層学習モデルとAIアプリを開発しよう! 【PyTorchについて】 PyTorch は、主に深層学習で利用されている機械学習フレームワークです。 世界中で幅広く利用されており、国内でもここ数年で多くの方が利用し始めています。 【本書の概要】 Udemyで公開中の大人気講座『【PyTorch+Colab】PyTorchで実装するディープラーニング -CNN、RNN、人工知能 Web アプリの構築』の書籍化企画です。 PyTorch を使い、CNN による画像認識、RNN による時系列データ処理、深層学習モデルを利用した AI アプリの構築方法を学ぶことができます。 本書で PyTorch を利用した深層学習のモデルの構築からアプリへの実装までできるようになります。 【本書で得られること】 ・機械学習フレームワーク「PyTorch」の基礎が身につきます。 ・PyTorchのコードの読み書きができるようになります。 ・CNN、RNN などを実装できるようになります。 ・自分で調べながら、ディープラーニングのコードを実装する力が身につきます。 ・最終的に人工知能アプリを構築し、公開できるようになります。 【目次】 Chapter0 イントロダクション Chapter1 PyTorchと深層学習 Chapter2 開発環境 Chapter3 PyTorchで実装する簡単な深層学習 Chapter4 自動微分とDataLoader Chapter5 CNN(畳み込みニューラルネットワーク) Chapter6 RNN(再帰型ニューラルネットワーク) CHapter7 AIアプリの構築と公開 APPENDIX さらに学びたい方のために 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab 株式会社を起業。「ヒトと AI の共生」がミッション。人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 理学博士(物理)。解決策のモデル化、数式化が得意で、プログラミング教育も行う。 近著に『Google Colaboratoryで学ぶ!あたらしい人工知能技術の教科書 機械学習・深層学習・強化学習で学ぶAIの基礎技術』、 『Pythonで動かして学ぶ!あたらしい数学の教科書』(いずれも翔泳社)がある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-PyTorchは、世界で主流の深層学習ライブラリのひとつ「Torch」(松明の意)のPython対応版です。Facebookが開発を主導したオープンソースとして非常に注目されています。本書はこのライブラリを初めて触るところから手ほどきし、Pythonによる異常検知や画像認識の実装までを体験。機械学習・深層学習を初めて学ぶITエンジニア向けに、数式なしで丁寧に解説します。 ◆本書の特徴 機械学習・深層学習のアルゴリズムを数式なしで理解できる。 Pythonを使って少ないコードで簡単に実装できる。 異常検知や画像認識など、様々なケースの実装を体験できる。 ◆本書の構成 ・第I部 AI技術の最新動向やPyTorchライブラリの概要、実装環境の構築方法 ・第II部 機械学習の全体像、ニューラルネットワーク・アルゴリズムを使った学習の実装方法 ・第III部 深層学習のアルゴリズム(DNN、CNN、Deep Q Network)を使った学習の実装方法
-
5.0「読んでいて本当に心地がいい」と大好評の前著『ベイズ推論による機械学習入門』からの第2弾! 「深層学習とベイズ統計の融合」がすべて詰まった 「欲張り」本! 基礎からはじめ、深層生成モデルやガウス過程とのつながりまでをていねいに解説した。本邦初の成書!本書のサポートページ:https://github.com/sammy-suyama/BayesianDeepLearningBook 【主な内容】第1章 はじめに 1.1 ベイズ統計とニューラルネットワークの変遷 1.2 ベイズ深層学習/第2章 ニューラルネットワークの基礎 2.1 線形回帰モデル 2.2 ニューラルネットワーク 2.3 効率的な学習法 2.4 ニューラルネットワークの拡張モデル/第3章 ベイズ推論の基礎 3.1 確率推論 3.2 指数型分布族 3.3 ベイズ線形回帰 3.4 最尤推定,MAP推定との関係/第4章 近似ベイズ推論 4.1 サンプリングに基づく推論手法 4.2 最適化に基づく推論手法/第5章 ニューラルネットワークのベイズ推論 5.1 ベイズニューラルネットワークモデルの近似推論法 5.2 近似ベイズ推論の効率化 5.3 ベイズ推論と確率的正則化 5.4 不確実性の推定を使った応用/第6章 深層生成モデル 6.1 変分自己符号化器 6.2 変分モデル 6.3 生成ネットワークの構造学習 6.4 その他の深層生成モデル/第7章 深層学習とガウス過程 7.1 ガウス過程の基礎 7.2 ガウス過程による分類 7.3 ガウス過程のスパース近似 7.4 深層学習のガウス過程解釈 7.5 ガウス過程による生成モデル
-
4.2