検索結果

非表示の作品があります

  • Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析
    4.0
    ★ 実験を効率化する強い味方 ★ もう実験で疲弊しない。次に試す実験条件は、データと統計学が教えてくれる! ベイズ最適化とPythonを駆使して、効率よく研究・開発を進めよう! 《すぐに試せるサンプルデータセット・サンプルコード付き》 ■ データ解析の初歩から、モデルの設計、実践的な応用事例までを導く。 ■ 実験時間や人数が限られる今、絶対に役立つスキルが身につく! ■ 入門書であり、実践書。フルカラー! 【目次】 第1章 データ解析や機械学習を活用した分子設計・材料設計・プロセス設計・プロセス管理 ・ケモ・マテリアルズ・プロセスインフォマティクス ・分子設計 ・材料設計 ・なぜベイズ最適化が必要か ・プロセス設計 ・プロセス管理 ・データ解析・人工知能(モデル)の本質 第2章 実験計画法 ・なぜ実験計画法か ・実験計画法とは ・適応的実験計画法 ・必要となる手法・技術 第3章 データ解析や回帰分析の手法 ・データセットの表現 ・ヒストグラム・散布図の確認 ・統計量の確認 ・特徴量の標準化 ・最小二乗法による線形重回帰分析 ・回帰モデルの推定性能の評価 ・非線形重回帰分析 ・決定木 ・ランダムフォレスト ・サポートベクター回帰 ・ガウス過程回帰 第4章 モデルの適用範囲 ・モデルの適用範囲とは ・データ密度 ・アンサンブル学習 第5章 実験計画法・適応的実験計画法の実践 ・実験候補の生成 ・実験候補の選択 ・次の実験候補の選択 ・ベイズ最適化 ・化学構造を扱うときはどうするか 第6章 応用事例 ・複雑な非線形関数を用いた実験計画法・適応的実験計画法の実践 ・分子設計 ・材料設計 ・プロセス設計 第7章 さらなる深みを目指すために ・Gaussian Mixture Regression(GMR) ・GMR-Based Optimization(GMRBO)(GMRに基づく適応的実験計画法) ・複雑な非線形関数を用いたGMRBOの検証 第8章 数学の基礎・Anaconda・Spyder ・行列やベクトルの表現・転置行列・逆行列・固有値分解 ・最尤推定法・正規分布 ・確率・同時確率・条件付き確率・確率の乗法定理 ・AnacondaとRDKitのインストール・Spyderの使い方
  • Pythonで学ぶ数理最適化による問題解決入門
    -
    PyQの大人気コンテンツ書籍化第2弾 Pythonで数理最適化と問題解決手法を学んでみよう! 【本書の背景】 今日、数理最適化は、生産計画の最適化や勤務シフト表の作成、効率的なリソース配分の計画など幅広い分野で使われています。しかし、その理論的な深さや応用範囲の広さから、初学者が挫折感を覚えることも多いです(「はじめに」より抜粋)。 【本書の内容】 理論や詳細な内容を最小限に抑えて、Pythonのコードを動かしながら最適化を体験できるようにしました。さらに、簡単な確認問題を解くことで、理解度を確認しながら読み進められるように構成しました。(「はじめに」より抜粋)。 【PyQ(パイキュー)とは】 株式会社ビープラウドが運営する、ブラウザだけで学べるオンラインPython学習サービス。 【学習環境】 実行環境:PyQ、または、PC上のJupyterLab 利用言語:Python 3.11 利用ライブラリ:mip(1.15.0)、mip-tool(0.3.2)、pandas(2.1.3)、JupyterLab(4.0.9)、 Matplotlib(3.8.2) 【対象読者】 ・数理最適化を使って、社会や身近な問題解決に活かしたいという方 ・数理最適化を勉強したけど身につかず挫折した方 【前提知識】 ・高校数学のベクトルの知識 ・Pythonの文法知識 【目次】 Prologue PyQでPythonや数理最適化を学ぶ 第0章 本書の使い方 第1章 数理最適化による問題解決 第2章 数理モデルって何だろう 第3章 Pythonで数理モデルを作ろう 第4章 たくさんの変数はベクトルで 第5章 混合整数最適化って何だろう 第6章 Python-MIPのクラス 第7章 問題解決ってどうやるの? 第8章 輸送費を減らしたい 第9章 もっと食べたくなる献立を 第10章 お酒をわけよう 第11章 シフト表を作りたい 第12章 pandasで数理モデルを作ろう 第13章 pandasで再モデル化 【著者プロフィール】 ・株式会社ビープラウド ・PyQチーム ・斎藤 努(さいとう・つとむ)  株式会社ビープラウドにてPyQなどを担当。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonで学ぶ線形代数学 (第2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonを使って線形代数学を見える化して学ぼう! 本書は、大学初年次に学ぶ基礎数学科目の一つであり、具体的なところでは機械学習やコンピュータグラフィックス、ゲームプログラミングなどの基礎となる線形代数を、Pythonを使って学ぶものです。 線形代数は、微分・積分とならび基礎的な数学の一つですが、ふつうに勉強するとベクトル・行列計算が面倒くさく、また定義や概念が多く抽象的な表現も多いため、なかなか理解しづらい学問といえます。 そこで本書は、Pythonによるプログラミングを用いて以下の工夫を施すことで、よりわかりやすく、またビジュアルにベクトルを見るなどの体験を通して、線形代数を学べるようにまとめました。 1)2次元平面や3次元空間のベクトルを視覚的に表現する 2)関数をグラフ化することで、ベクトル計算の意味を理解しやすくする 3)面倒なベクトルや行列の計算をプログラミングで表現する 4)手計算では不可能な高次の線形計算を、具体的なデータ(音や画像)を用いて表現する 5)通常の教科書の演習問題レベルの計算問題をプログラミングによる数式処理で求める 改訂にあたり、全体を見直すとともに、この4年間で変化したPython環境の見直し、カラー画像・3D・動画およびサウンドを閲覧できるQRコードの配置、第9章・第10章の練習問題の追加などを行いました。 本書が、読者の線形代数学のより一層の理解の一助となれば幸いです。 第1章 数学の基礎とPythonによる表現 第2章 線形空間と線形写像 第3章 基底と次元 第4章 行列 第5章 行列の基本変形と不変量 第6章 内積とフーリエ展開 第7章 固有値と対角化 第8章 ジョルダン標準形とスペクトル 第9章 力学系 第10章 線形代数の応用と発展
  • Pythonで学ぶ テキストマイニング入門
    4.0
    本書はPythonによる自然言語処理、あるいはテキストマイニングの初歩について解説したものです。 テキストマイニングとは、テキストをコンピュータで探索(マイニング)する技術の総称です。ここで「テキスト」とは、小説や論文、あるいは新聞や雑誌の記事にとどまらず、インターネット上のブログ、あるいはSNSに投稿された文章など、およそ人間の言葉で書かれたものを指します。 Pythonの基本からテキスト分析の手順、形態素解析器の導入、さまざまな分析手法についてわかりやすく解説しています。また、本書の最後に、ディープラーニングを使ったテキストマイニング事例についても紹介します。 なお、本書の一部については解説動画が用意されています。

    試し読み

    フォロー
  • Pythonで学ぶ データ構造とアルゴリズム入門
    -
    本書はプログラマーにとって必要不可欠な「データ構造とアルゴリズム」を学ぶための入門書です。データ構造とアルゴリズムに関する知識は、ソフトウェア開発の基盤であるとともに、問題解決能力を高める重要な要素でもあります。その知識をPythonという親しみやすいプログラミング言語を使って丁寧に解説します。  プログラミングやコンピュータサイエンスの世界で広く学ばれる定番のアルゴリズムを中心に取り上げました。それに加え、知識を広げていただけるように、本書独自のアルゴリズムも複数、掲載しています。  Pythonの基本を学んだ後に、データ構造とアルゴリズムを学習するように構成していますので、初心者の方も安心して学習を始められます。すでにプログラミングの経験がある方は、興味のある項目を選んで学ぶことができます。

    試し読み

    フォロー
  • Pythonで学ぶ統計的機械学習
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで機械学習に必要な統計解析を学べる!! 機械学習を使いこなすには、確率・統計に根ざしたデータ解析の基礎理論の理解が不可欠です。そこで本書は、Pythonの簡単な使い方から確率・統計の基礎、統計モデルによる機械学習を解説します。 第I部 Pythonによる計算  第1章 Pythonの初歩  第2章 確率の計算 第II部 統計解析の基礎  第3章 機械学習の問題設定  第4章 統計的精度の評価  第5章 データの整理と特徴抽出  第6章 統計モデルによる学習  第7章 仮説検定 第III部 機械学習の方法  第8章 回帰分析の基礎  第9章 クラスタリング  第10章 サポートベクトルマシン  第11章 スパース学習  第12章 決定木とアンサンブル学習  第13章 ガウス過程モデル  第14章 密度比推定 付録A ベンチマークデータ  A.1 UCI Machine Learning Repository  A.2 mlbench  A.3 datasets 参考文献 Python索引 用語索引
  • Pythonで学ぶネットワーク分析 ColaboratoryとNetworkXを使った実践入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 さまざまな関係性の構造をPythonで分析する! ネットワーク分析は、さまざまな「関係性」を分析する学問です。 構造をモデル化することで、ネットワークという言葉から想像しやすいWebやSNSの分析だけでなく、たとえば感染症の伝搬経路を見つけたり、未来の人間関係を予測したりすることが可能です。マーケティングなどの現場でも使用されています。  本書では、ネットワーク構造をもつデータをPythonで分析するための基礎知識を習得できます。  分析には、Google Colaboratory(クラウド上で使用できるJupyter Notebook環境。Colabとも呼ばれる)を用います。ブラウザ上で動くColabは環境構築が不要なため、すぐに実際にコードを試すことができます。また、可視化ツールとしてNetworkXを使用し、さまざまなネットワークをグラフとして視覚的に把握できます。 実際にColabで動かせるプログラムと、そのプログラムによって出力されたグラフを数多く例示しているため、実際にColabでコードを実行しながら理解を深めることができます。 データサイエンスを学ぶ学生はもちろん、企業の広報・企画・マーケティング担当者など、顧客の購買行動やソーシャルネットワークの分析などが必要になった社会人にも役立つ一冊です。 第1章 分析できる環境を用意する-ツールや言語の把握 第2章 ネットワーク分析の流れを知る-小説の人間関係を紐解く 第3章 必要な用語を学ぶ-ネットワークの基礎知識 第4章 中心を見つける-さまざまな中心性 第5章 経路を見つける-ネットワークの探索 第6章 グループを見つける-分割と抽出 第7章 似たネットワークを作る-モデル化 第8章 似た頂点を見つける-将来の構造予測 第9章 病気や口コミの広がりをモデル化する-感染、情報伝搬 第10章 ネットワークを俯瞰する-可視化による分析 第11章 リファレンス
  • Pythonで学ぶ はじめてのAIプログラミング ―自然言語処理と音声処理―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 AIの基本を、Pythonでやさしく学んで楽しもう! 本書は、AI(人工知能)技術の基本を、自然言語処理と音声処理をとおしてわかりやすく解説した入門書です。アルゴリズムを平易に解説し、Pythonによるプログラミング例を紹介。さらに、自然言語処理や音声処理への応用例を取り上げ、実践しながらAI技術の基本が理解できるようになります。 第1章 人工無脳から人工知能へ 第2章 文字を処理する テキスト処理の技術 第3章 自然言語処理の技術 第4章 音声処理の技術 第5章 知識表現 第6章 学習 第7章 深層学習 第8章 対話エージェントの構成 第9章 人工無脳から人工人格へ 付録
  • Pythonで学ぶはじめてのデータサイエンス
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 文理を問わないすべての大学生が身に着けるべきデータサイエンスの基礎を,Pythonを使った演習を行いながら実践的に学べる教科書です。数学的なバックグラウンドが無くても,概要を理解しながら飽きずに進めることができる内容です。数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル)に準拠。大学,大学院の講義で教科書として使用しやすいよう,全14章で構成しています。
  • Pythonで学ぶ はじめてのプログラミング入門教室
    3.5
    1巻2,420円 (税込)
    ※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 プログラミング言語のPythonを学びながら、プログラムでコンピューターがどうやって動いているかの基本から理解できるプログラミング入門書籍です。 プログラミング言語も、私たちが読み書きする日本語や英語と同じ言語です。言語の習得と同じように、まずはPythonのプログラムを読むところからはじめ、動かして動作を確認し、少し書き換えてコンピューターの動作がどう変わるかを体験しながら学んでいきます。 そして、コンピューターの動作の基本は、数と計算の考え方です。世の中の「ものごと」を数に置き換える考え方が身につけば、プログラミングがみるみる上達していきます。 サンプルのプログラムは、GoogleのColaboratoryを使って、パソコンだけでなくタブレットやスマートフォンでも動かして体験できます。 本書で、コンピューターが動く基本がしっかり理解できれば、プログラミングが楽しくなり、みるみる上達していけます。 ※カバー画像が異なる場合があります。
  • Pythonで学ぶプログラミングとアルゴリズムの基本
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、Pythonを使ったプログラミングの基礎を初心者向けにわかりやすく解説した入門書です。プログラミングに必要な知識を体系的に習得しながら、基本的なアルゴリズムの理解やその実装方法を学べます。Google Colaboratory(Colab)の環境を活用することで、すぐに学習を始められます。また、「情報」の教科書以上に詳しくPythonプログラミングやアルゴリズムについて説明しており、「情報」の次のステップにもぴったりな内容です。 本書の目的は、初心者が将来の学びや応用につながるPythonの基礎的な知識とスキルを固めること、そしてアルゴリズムやプログラムのデザインを学び、自分でプログラムを作成する力を養うことです。プログラム作成では、複雑な問題を小分けに整理して進める構成を採用し、初学者でも無理なく実践できるよう配慮しています。重要なポイントで設計やアルゴリズムの意味を考える場面を設けることで、理解を深めながら、自力で設計・作成する能力を確実に身につけられる構成となっています。 対象読者はプログラミング初心者で、特に次の層に焦点を当てています。高校生にとっては学校の教科「情報」の内容をさらに深く学び、実践的なプログラミングスキルを習得できる内容です。大学生や社会人には、研究や業務で活用できるプログラミングの基本を学び、「データサイエンス」「AI(人工知能)」「業務自動化」といった分野へ進む足掛かりになる内容です。1人で学べる丁寧な解説が魅力となっており、幅広い層の初学者に自信を持ってプログラミングを始めるきっかけを提供する1冊です。
  • Pythonで学ぶ 流体力学の数値計算法
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 流体力学の数値計算法とPythonによるシミュレーションの考え方が正しく理解できる。 本書は、学生、企業の若手技術者の皆様が、自ら流体力学の数値計算法とPythonによるシミュレーションの考え方を一から学べる書籍です。 流体現象の基礎を学びながら、Pythonによるそのコーディングを紹介する構成としています。Pythonとコンピュータの技術革新は急激に進んでおり、現在ではストレスを感じることなく、Pythonで各種シミュレーションが容易に実施できる環境が生まれています。 これからの研究者、技術者にとって必読の1冊です。 序章 Pythonによるプログラミングの準備 第1章 離散化の考え方 第2章 1次元スカラー移流方程式 第3章 スカラー方程式における時間積分法 第4章 拡散方程式 第5章 システム方程式の解法 その1(方程式の理解) 第6章 システム方程式の解法 その2(実践的な計算法) 第7章 システム方程式における時間積分法 第8章 複雑形状への対応 第9章 実際の課題への対応
  • Pythonで儲かるAIをつくる
    4.8
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 見込み客、土日の需要、商品リコメンド… 営業、マーケティングが劇的に変わる 業務に本当に役立つ“儲かるAI”を自分で作る! 業務に本当に役立つ“儲かるAI”を作るには、「業務目線」と「技術目線」の両方が必要です。業務の課題を認識し、どう改善するかという「業務目線」が必要なのは従来システムと同じですが、AIの構築ではさらに業務の課題が本当に AIで解決できるのか、AIのどの処理方式なら適用できそうかという「技術目線」が不可欠なのです。 本書のPython実習で学ぶことで、「AIの目利きができる技術目線」を獲得し、自分でもAIを作れるようになります。 ◆数学なしでアルゴリズム選びもチューニングもわかる ◆現場目線でAIの最適化までできる ◆ブラウザだけで試せるPython実習(Google Colab) ◆XGBoost、Prophetなど話題のAI技術を活用 ◆全PythonコードをGoogle Colab用のNotebook形式で用意 <機械学習のための Python入門講座>つき! 1章 業務と機械学習プロジェクト 2章 機械学習モデルの処理パターン 3章 機械学習モデルの開発手順 4章 機械学習モデル開発の重要ポイント 5章 業務要件と処理パターン 6章 AIプロジェクトを成功させる上流工程のツボ
  • Pythonで理解する統計解析の基礎
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 膨大なデータを扱うときに基本となる知識が統計解析です。本書はこれから統計解析を学びたいと考える方に向けて,プログラミングの力を借りて実際にデータを確認することで,直感的な理解を促します。プログラミング言語にはPythonを利用します。Pythonで統計解析を解説するメリットはいくつかあります。Python自体がシンプルで可読性が高い上に逐次実行できるため初心者でも理解しやすいと言えます。これ以外にも,Pythonは統計解析に関するライブラリが充実しており,複雑な計算やグラフの描画がかんたんにできます。また,Pythonは汎用的な言語ですので,システムの中にシームレスに組み込むことができます。本書によって統計解析を学習することで,Pythonのデータ解析スキルもあわせて習得できるでしょう。
  • Pythonで理解する微分積分の基礎
    -
    ※PDF版をご希望の方は Gihyo Digital Publishing (https://gihyo.jp/dp/ebook/2022/978-4-297-12780-0)も合わせてご覧ください。 近年注目を浴びる人工知能は微分をはじめとした数学の計算に基づいています。また,新型コロナウィルス感染の予測では微分方程式が利用されています。微分積分は,多くの方が学ぶ意義がある学問なのですが,複雑な計算や数式が原因で学習に挫折した方も少なくありません。そこでPythonの出番です。 本書はこれから微分積分を学びたいと考える方や学び直したい方に向けて,Pythonの力を借りて視覚的にデータを確認することで,直感的な理解を促します。複雑な計算とグラフの描画はPythonにまかせ,Pythonが出力する結果とグラフを読み解くことに注力します。数学のエッセンスを理解して活用するために,コンピューターを使用した数学の学習は効率的な学習方法とも言えます。 「とりあえずPythonに計算させてみよう」と,軽い気持ちで数学の学習を開始してみましょう。
  • Pythonデータエンジニアリング入門 高速化とデバイスデータアクセスの基本と応用
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データサイエンスを実応用するための基本を押さえる  データエンジニアリングは、データサイエンスを現実に意味のある形に使えるようにし、実装・運用できるようにすることを指します。  データサイエンスを機器や分析に実応用するためには、Pythonスクリプトの高速化の知識や、センサ信号の取得、アクチュエータ制御に必須となる通信、インタフェース駆動といった外部デバイスとのデータアクセスの基本と応用についてのスキルの修得が必要となります。本書は、これらのデータをエンジニアリングするための入門的な知識を解説するものです。 1編 基礎編 1.データエンジニアリングとは 2.コンピュータ工学の基礎 3.Intel CPUの工夫 4.デバイスデータアクセスの基礎 2編 高速化 1.少しの工夫で速くなる 2.NumPyの使用 3.C/C++モジュールを呼ぶ 4.マルチプロセス 5.Pythonのコンパイル 6.GPUの使用 3編 デバイスデータアクセス 1.IoT実現化に必要な機能 2.USBを用いたデータ転送 3.Bluetoothを用いたデータ転送 4.有線LANとWi-Fiを用いたデータ転送 5.センサ信号処理と制御の例
  • Pythonデータサイエンス 可視化、集計、統計分析、機械学習
    4.0
    1巻1,760円 (税込)
    「データサイエンス」という言葉だけ聞くと、複雑な数式や高度で高価なソフトウェアパッケージが必要と考えるかもしれません。ところが近年では、「R」や本書で紹介する「Python」など、データ分析に適した様々なオープンソースのソフトウェアやプログラミング言語が公開されており、必要な知識さえあれば誰でも簡単に高度な分析を行う環境が整ってきています。 本書はIT エンジニアの読者を対象とし、データサイエンスの入門としてPython を使用してデータ集計や機械学習などのデータ分析手法を習得することを目的としています。 効率的なデータ分析を実践し、自らのサービスにフィードハックを加えたいエンジニアにとって、必読の一冊になっています。 Numpy(ナムパイ)、Pandas(パンダス)といったPython独自の便利なライブラリを短時間で習得できます。 ・著者プロフィール 東京工業大学 大学院 生命理工学研究科を卒業し、バイオ・インフォマティクスを学ぶ。現在は機械学習を用いたサービスのシステム設計や様々なサービスのデータ分析に従事している。趣味は家庭菜園であり、自宅のベランダは様々な植物で占拠されている(別な意味でもサイエンティスト)。

    試し読み

    フォロー
  • Pythonデータ分析 実践ハンドブック 実務で使えるデータ加工のテクニック
    -
    ●データの加工や分析の実践スキルを身につけよう 本書は、Pythonやpandasの基礎を身につけた方が、データ分析を行ううえで知っておきたい「データ分析の実務で使うノウハウ」をまとめた書籍です。 さまざまな種類のデータの読み込みから加工、可視化、データの評価、pandasやNumPyの活用方法など、Pythonを使ってデータを加工し分析する方法を詳しく学べます。データ加工のレシピやデータ分析に必要な数学の知識についても学べます。 【本書で学べること】 ・データ加工の基礎知識 ・データの種類と読み込み ・表形式データの加工 ・NumPyと数値データ ・データの評価 ・時系列データの処理 ・テキスト情報の処理 ・画像データの処理 ・グラフデータの処理 ・地理空間データの処理 ・データ分析に必要な線形代数 【本書で学べること】 「Pythonのデータ活用や加工をより詳しく理解したい」「実務でデータ分析をしたい」「幅広いデータ形式の知識を持ちたい」「普段からPythonでデータ分析をしているが、データハンドリングの知識を学びたい/ツールの使い方を調べたい」といった方におすすめの一冊です。
  • Pythonデータ分析ハンズオンセミナー
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ■ 膨大なデータを実際に分析する紙上ハンズオンセミナー □ データ分析の全プロセスを始めから終わりまで実体験できる! データ分析やデータサイエンスに興味がある、あるいは業務でデータ分析を実際にやらなければならない――。きっと、そういう人なら基礎的な統計や分析、データサイエンスはの入門書はひと通り目を通したことと思います。おそらくは並行してプログラミングも勉強しているという人も多いでしょう。そうした基礎を学んだところで、こう思ってはいませんか? 「さて、データ分析ってどうやるの?」 本書は実務としてのデータ分析について、データの取得から段階を踏みながら、どのようにデータの特徴や傾向を読み取るのか、具体的なやり方をハンズオン形式で解説します。取り上げるデータ、分析のためのプログラミング環境は、誰でも利用できるものばかり。本書に従ってデータ分析を進めていけば、分析プロセスはこう進めていけばいいのかというリアルな手順が身につきます。 本書が対象にするのは、ビジネスパーソンです。自社の次の戦略をベテラン社員のカンに頼って立案するのではなく、科学的な手法でデータを分析し、根拠のある戦略立案に役立てたいと考えている、現場のビジネスパーソンが対象です。そのためにデータ分析の目的、分析結果の活用まで考慮し、ビジネスの中でデータ分析をどのように生かせばいいのかについても解説しています。
  • Python統計分析&機械学習マスタリングハンドブック
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonでデータ分析と機械学習を実践します。豊富なライブラリを使って統計学に基づいた統計分析ができるので、Pythonに慣れ親しんだ人は、データ分析も機械学習もまとめて効率的に学ぶことができます。
  • PythonとCasADiで学ぶモデル予測制御
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 制御技術の未来を拓く、モデル予測制御(MPC)マスターへの第一歩! MPCの理論的な背景と数理的なアプローチをわかりやすく解説し、実際のプログラミング例を多数掲載。 CasADiは最適制御を行うためのオープンソースソフトウェアとして、MPCにおいて大変すぐれたツールです。 CasADiのPython版サンプルコードを提供するので、実践しながら学べます! 【目次】 第1章 制御とは 1.1 制御の具体例 1.2 制御工学の基本概念 1.3 代表的な制御手法 1.4 補足事項 第2章 モデル予測制御(MPC)とは 2.1 MPCの直感的イメージ 2.2 MPCにおける有限ホライズン最適制御問題の定式化 2.3 MPCの特徴 2.4 補足事項 第3章 CasADi入門 3.1 導入 3.2 環境構築 3.3 シンボリックの基本 3.4 数理最適化 3.5 シンボリックの操作 3.6 関数オブジェクト 3.7 常微分方程式ソルバー 第4章 離散時間のモデル予測制御 4.1 生物個体数管理の制御問題 4.2 ロトカ・ヴォルテラのモデルの状態方程式 4.3 ロトカ・ヴォルテラのモデルの評価関数 4.4 MPCにおける最適化問題の定式化 4.5 MPC実装の流れ 4.6 MPC実装の詳細 第5章 連続時間のモデル予測制御 5.1 倒立振子モデル 5.2 倒立振子の評価関数 5.3 有限次元パラメータ近似 5.4 パラメータの設定 5.5 MPC実装の流れ 5.6 MPC実装の詳細 第6章 モデル予測制御の実装に向けて 6.1 時間離散化と最適化の順番 6.2 直接的アプローチによる連続時間最適制御問題の有限次元パラメータ近似 6.3 離散時間最適制御問題の構造と変数消去 6.4 オンライン最適化 第7章 CasADiにおける最適化ソルバーの比較 7.1 さまざまなソルバー 7.2 ソルバーの選定の必要性 7.3 QPソルバーの比較 7.4 NLPソルバーの比較 第8章 状態推定問題と移動ホライズン推定 8.1 導入 8.2 状態推定問題 8.3 移動ホライズン推定(MHE)とは 8.4 MHEによる状態推定の実装例 8.5 MHEを用いたMPC 第9章 より発展的な話題と将来の展望 付録A 最適化・数値計算の補足 付録B CasADi中級 ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
  • Pythonと実データで遊んで学ぶ データ分析講座
    4.0
    本書では理論と実践のどちらにもフォーカスを当てAIや機械学習について「ある程度、中身を知って使える」を目指す入門書です。 Twitter APIや国の統計データなど、生のデータを使い、遊んでいるような感覚で理解が進む1冊です。 ■「はじめに」より抜粋 本書は、AIや機械学習について、「何だかよくわからないけどすごいもの」という理解から、「ある程度、中身を知っていて使える」にアップデートしたい人(もしくは、アップデートしなければいけなくなってしまった人)に向けた、導入となる最初の1冊になることを目指しています。 本書では、理論と実践、両方を抑えています。まず、なるべく数式を使わずに、直感的な理解ができるように機械学習の理論について解説します。「遊んで学ぶ」というタイトルの通り、理論の勉強も楽しめるように、具体例や図を多く使っています。しかし、だからといって不正確にならないように繊細な注意を払いながら、ギリギリまで噛み砕いて説明を行っています。 その後、よく使われるデータセットではなく、「APIで自由に取得できる、さまざまな企業が提供しているデータ」「国が提供している統計データ」などの生のデータを使い、実際に分析を行います。 本書は、実際にデータを取得するところからスタートすることで、「データの量を増やしたら結果はどうなるのだろう?」「このデータを可視化してみたらどうなるのだろう?」「変数を変えてみたらどうなるのだろう?」と、まるでデータを使って遊んでいるような感覚で理解が進むことを狙っています。 なお、データ分析を行うにあたり、多くの人は、RもしくはPythonというプログラミング言語を使います。どちらも、データ分析やデータ整形、そして可視化を行うのに有効なライブラリが多数存在しているため、非常に人気です。本書では、Pythonを用いて実装コードを記述しています。ただし、Rを使いたい人も進められるように、RとPython両方のコードを、Github上にて公開しています。ぜひ、参考にしてください。

    試し読み

    フォロー
  • Pythonと実例で学ぶ機械学習 識別・予測・異常検知
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習による異常検知と系列データ解析を実例をもとに学ぶ  本書は、現在産業界で注目されている、機械学習による ・機器の振動データに対する異常検知 ・系列データ(例として睡眠系列データ)に対する解析 を解説したものです。  業務や研究開発に必要だが機械学習については素人という方でも実践できるように、本書前半では、基本的な識別器・予測器のPythonによる実装例・使い方を解説しています。後半では、実問題への適用例を著者の研究経験をもとに解説しています。 第1章 機械学習とは何か 第2章 基本的な識別器・予測器 第3章 機器の振動データに対する異常検知 第4章 系列データの解析
  • PythonとDjangoではじめる!Webアプリ制作ハンズオン
    -
    本書は著者による前著『Python3で学ぶ!プログラミングはじめの一歩』を理解した読者に最適な続編です。前作の「実践的な学習」のスタイルを継承しながら、今回はWebアプリケーション開発に特化した内容となっています。Pythonやプログラミングの基礎を扱っている前著に続き、本書ではWebアプリケーションの設計原理、関連する技術スタック、そしてその運用メカニズムについて具体的に解説しています。 本書では、Webアプリケーションの基本から高度な概念まで、全体的な理解を得ることができます。一歩一歩確実にスキルを積み上げたい方、次のレベルのWebアプリケーション開発者を目指す方におすすめです。
  • PythonとScrapyを使ったWebスクレイピング
    -
    本書ではWebスクレイピングを、PythonとScrapyフレームワークを利用して行うことをソースコードとともに解説します。Webサイトには多くの情報があり、ブラウザの利用だけでも取得できます。しかし、Webサイトを閲覧するという行為が能動的であり手間と時間を使うことになります。本書はPythonを使って普通のサイトからWebスクレイピングをはじめ、少しづつ難易度を高めていく実践的な内容です。
  • Pythonトリック
    -
    Pythonプログラマなら身につけたい玄人技 本書は、Dan Bader, "Python Tricks The Book: A Buffet of Awesome Python Features"dbader.org,の翻訳書です。 【本書の内容】あらゆる場面で活躍するプログラミング言語、Python。本書はそんなPythonをマスターし、日々のプログラミングに活用したい熱心な方々のための1冊です。 入門書を一通り終えた駆け出しプログラマには、Pythonの機能や特徴をより深く、また他言語から新たにPython習得を目論むベテランには、コードの書き方の差異を、リスト内包や文字列フォーマットなど、さまざまなサンプルを元に教授してくれます。 著者のDan Baderは、Twitterでのアウトプットに端を発する、いわゆるTips紹介の延長線上で、この本を執筆しました。そのため、各種Tipsに対するさまざまなフィードバックと、よりよく伝えるためのアイデアが盛り込まれ、結果、Pythonをより深く知り、より良いコードを書くための知識が集積された書籍となりました。 つまり本書は、もっとすごいPython開発者になりたいあなたを、強力にサポートする1冊です。 【本書のポイント】・短いサンプルでPythonの一番すばらしい点を学べる・Pythonならではの、すばらしい機能をビュッフェ形式で学べる・Pythonプログラミングへの理解促進 【読者が得られること】・よりよいPythonプログラマとしての知見・効率的で実践的なPythonプログラミング・コードをよりパイソニックなものにするためのノウハウ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Python2年生 スクレイピングのしくみ 体験してわかる!会話でまなべる!
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonでスクレイピングを体験してみよう! 【スクレイピングとは】 機械学習やデータ分析になくてはならない「データ」。 このようなデータは、インターネット上に膨大にありますが、Pythonを使えば効率よくデータ収集できます。 こうした手法を「スクレイピング」といいます。 サイト自体もオープンデータ化が進んでおり、データを集めやすい環境が整ってきています。 【Python2年生について】 「Python2年生」シリーズは、「Python1年生」を読み終えた方を対象とした入門書です。 ある程度、技術的なことを盛り込み、本書で扱う技術について身に着けてもらいます。 【ターゲット】 ・ネット上からデータ収集を行う初心者 ・データ分析の手前の初心者 【本書の売り】 ヤギ博士&フタバちゃんと一緒に、インターネットからのファイルのダウンロード方法、 HTML解析の方法、いろいろなデータの読み書き、 APIの使い方といったデータ収集と便利なライブラリを利用した簡単な可視化手法を解説する書籍です。 また最終的にデータ収集を自動化する方法も簡単に解説します。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Python2年生 スクレイピングのしくみ 第2版 体験してわかる!会話でまなべる!
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 待望の第2版 登場 スクレイピングの世界に飛び込もう! 【本書の背景】 機械学習やデータ分析になくてはならない「データ」。このようなデータはインターネット上に膨大にありますが、Pythonを使えば効率よくデータ収集できます。こうした手法を「スクレイピング」といいます。サイト自体もオープンデータ化が進んでおり、データを集めやすい環境が整ってきています。 【本書の概要】 ヤギ博士&フタバちゃんと一緒に、インターネットからのファイルのダウンロード方法やHTMLの解析方法、いろいろなデータの読み書きの方法、APIを使ったデータ収集方法を解説します。さらにライブラリを利用したデータの見える化の方法も解説します。 【第2版のポイント】 ・Python 3.12対応 ・各種ライブラリのアップデート ・利用オープンデータなどのアップデート 【Python2年生について】 「Python2年生」シリーズは「Python1年生」を読み終えた方を対象とした入門書です。ある程度、技術的なことを盛り込んでいますので、スキルアップにつながります。 【対象読者】 ・ネット上からデータ収集を行う初心者 ・データ分析の手前の初心者 【本書のポイント】 ・対話形式で解説し、イラストを交えながら基礎知識を解説します。 ・平易なサンプルを用意していますので、安心してプログラムを体験できます。 【目次】 第1章 Pythonでデータをダウンロード 第2章 HTMLを解析しよう 第3章 表データを読み書きしよう 第4章 オープンデータを分析してみよう 第5章 Web APIでデータを収集しよう 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコンBASICマガジン』(電波新聞社)の時代からゲームを作り続けて、現在はコンテンツ制作や執筆活動を行い、関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。近著に『ChatGPTプログラミング1年生』、『Python3年生 ディープラーニングのしくみ』、『Python2年生 デスクトップアプリ開発のしくみ』、『Python1年生 第2版』、『Python3年生 機械学習のしくみ』、『Python2年生 データ分析のしくみ』、『Java1年生』(いずれも翔泳社)、『ゲーム作りで楽しく学ぶ オブジェクト指向のきほん』(マイナビ出版)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Python2年生 デスクトップアプリ開発のしくみ 体験してわかる!会話でまなべる!
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 Pythonで デスクトップアプリ開発を 体験してみよう! 【初心者でもできる!デスクトップアプリ開発を一緒に体験しよう】 Pythonの基礎知識はあるけど、 「アプリ開発って初心者には難しそう」 「プログラムで何か残るものを作ってみたい」 と思っていませんか? 本書はそうした方に向けて、初心者にも簡単に作れる方法を使ってデスクトップアプリ開発の基本をやさしく解説します。スマホアプリ、Webアプリに比べて、手軽に取り組めますので挫折することなく学習できます。本書を読んだあとは、スマホアプリやWebアプリ開発に挑戦してみてください。 【Python2年生について】 「Python2年生」は、「Python1年生」を読み終えた方を対象とした入門書です。ある程度、技術的なことを盛り込み、本書で扱う技術について身につけてもらいます。 『Python2年生 スクレイピングのしくみ』(ISBN:9784798161914) 『Python2年生 データ分析のしくみ』(ISBN:9784798164960) も刊行されています。 【対象読者】 デスクトップアプリの作り方を知りたい初心者 【本書のポイント】 ヤギ博士&フタバちゃんと一緒に、デスクトップアプリ開発の考え方から丁寧に解説。デスクトップアプリ開発をする時に必要な前提知識からはじまり、デスクトップアプリ作りの基本、応用的なデスクトップアプリ、そしてゲームアプリ開発まで解説します。 【著者プロフィール】 森 巧尚(もり・よしなお) アプリの開発や、技術書や電子工作マガジンなどでの執筆活動。関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、プログラミングスクールコプリ講師など、プログラミングに関する幅広い活動を行っている。近著に、『Python1年生 第2版』、『Python3年生機械学習のしくみ』、『Python2年生 スクレイピングのしくみ』、『Python2年生 データ分析のしくみ』、『Java1年生』、『動かして学ぶ!Vue.js開発入門』(いずれも翔泳社)、『楽しく学ぶ アルゴリズムとプログラミングの図鑑』(マイナビ出版)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Python2年生 データ分析のしくみ 体験してわかる!会話でまなべる!
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonでデータ分析を体験してみよう! 【データ分析を一緒に体験しよう】 スクレイピングなどで集めた大量のデータ。 どうやって分析してたらよいか、困っていませんか? 「数式があって難しそう」 「プログラムも大変そう」 と思っている方も多いはず。 本書は、そうした方に向けて、サンプルを元にやさしく データ分析の方法を解説しています。 【Python2年生について】 「Python2年生」は、「Python1年生」を読み終えた方を対象とした入門書です。 ある程度、技術的なことを盛り込み、本書で扱う技術について身に着けてもらいます。 『Python2年生 スクレイピングのしくみ』(ISBN:9784798161914)も刊行されています。 【対象読者】 ・データの分析方法を知りたい初心者 【本書のポイント】 ヤギ博士&フタバちゃんと一緒に、データ分析の考え方から丁寧に解説。 データを分析する時に必要な前処理の方法や、データの集まりの見方、 データを見やすいグラフにする方法、データの分布の見方、予測の立て方を 解説する書籍です。 【著者プロフィール】 森 巧尚(もり・よしなお) アプリの開発や、技術書や電子工作マガジンなどでの執筆活動。関西学院大学非常勤講師、 関西学院高等部非常勤講師、成安造形大学非常勤講師、プログラミングスクールコプリ講師など、 プログラミングに関する幅広い活動を行っている。 近著に『Python1年生』、『Python2年生 スクレイピングのしくみ』、 『Java1年生』(いずれも翔泳社)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Python2年生 データ分析のしくみ 第2版 体験してわかる!会話でまなべる!
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 待望の第2版 登場! Pythonでデータ分析を体験してみよう! 【本書の背景】 Pythonにはデータ分析に便利なライブラリがたくさん用意されています。そのため、スクレイピングなどで集めた大量のデータ分析する際に、Pythonを利用する方が増えてきています。 【本書の概要】 ヤギ博士&フタバちゃんと一緒に、データ分析の考え方から丁寧に解説。データを分析する時に必要な前処理の方法や、データの集まりの見方、データを見やすいグラフにする方法、データの分布の見方、予測の立て方を解説します。 【第2版のポイント】 ・Anaconda、Google Colab Notebookのアップデート ・各種ライブラリのアップデート 【Python2年生について】 「Python2年生」シリーズは『Python1年生』を読み終えた方を対象とした入門書です。ある程度、技術的なことを盛り込んでいますので、スキルアップにつながります。 【対象読者】 ・データ分析の手法を知りたい初心者 ・データの可視化や予測方法を知りたい初心者 【本書のポイント】 ・対話形式で解説し、イラストを交えながら基礎知識を解説します。 ・平易なサンプルを用意していますので、安心してプログラムを体験できます。 【目次】 第1章 データ分析って何? 第2章 集めたデータは前処理が必要 第3章 データの集まりをひとことでいうと?:代表値 第4章 図で特徴をイメージしよう:グラフ 第5章 これって普通なこと? 珍しいこと?:正規分布 第6章 関係から予測しよう:回帰分析 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコン BASICマガジン』(電波新聞社)の時代からゲームを作り続けて、現在はコンテンツ制作や執筆活動を行い、関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。近著に、『Python2年生 スクレイピングのしくみ 第2版』『ChatGPTプログラミング1年生』、『Python3年生 ディープラーニングのしくみ』、『Python2年生 デスクトップアプリ開発のしくみ』、『Python1年生 第2版』、『Python3年生 機械学習のしくみ』、『Java1年生』、『動かして学ぶ!Vue.js開発入門』(いずれも翔泳社)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonによるあたらしいデータ分析の教科書
    3.2
    データ分析エンジニアに求められる技術の基礎が最短で身に付く ビッグデータの時代といわれ始めて数年が経過しました。 デバイスの進化により多くの情報がデジタル化され、 それらのデータを活用しようとデータ分析エンジニアに注目が集まっています。 この書籍では、データ分析において、 デファクトスタンダードになりつつあるプログラミング言語Pythonを活用し、 データ分析エンジニアになるための基礎を身に付けることができます。 書籍ではデータ分析エンジニアになるために必須となる技術を身につけていきます。 ・データの入手や加工などのハンドリング ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 本書で学べること ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装 対象読者 データ分析エンジニアを目指す方 目次(抜粋) 第1章 データ分析とは 第2章 Pythonと環境 第3章 数学の基礎 第4章 ツールの基礎 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonによるあたらしいデータ分析の教科書 第3版
    -
    最新環境に対応した第3版の登場! データ分析エンジニア必携の 基本技術を習得できる 【本書の概要】 本書はデータ分析エンジニアに必要な 以下の基礎技術について サンプルを交えながら丁寧に解説します。 ・データの取得・加工 ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 【第3版のポイント】 ・Pythonデータ分析試験の主教材に指定 ・Python 3.13に対応 ・各種ライブラリの最新版への対応 【本書で学べること】 ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装方法 【対象読者】 データ分析エンジニアを目指す方 【目次】 第1章 データ分析エンジニアの役割 第2章 Pythonと環境 第3章 数学の基礎 第4章 ライブラリによる分析の実践 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonによるあたらしいデータ分析の教科書 第2版
    -
    読者の声に応えて第2版の登場! データ分析エンジニアに必要な 基本技術をしっかり習得できる 【本書の概要】 本書はデータ分析エンジニアに必要な 以下の基礎技術を丁寧に解説しています。 ・データの取得・加工 ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 【第2版のポイント】 ・Python 3.10対応 ・よりわかりやすい解説 ・Pythonデータ分析試験の主教材に指定 【本書で学べること】 ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装方法 【対象読者】 データ分析エンジニアを目指す方 【目次】 第1章 データ分析エンジニアの役割 第2章 Pythonと環境 第3章 数学の基礎 第4章 ライブラリによる分析の実践 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonによるアルゴリズム入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 どう考えれば、よいプログラムを作れるのかの解  データサイエンス時代の今、データ構造とアルゴリズムのセオリーを身に付けるのはデータ処理を行う多数のエンジニアにとって大切なことです。本書は、データ構造とアルゴリズムの普遍的な基礎を、Pythonによるプログラミングの実践を通して丁寧に解説するものです。 ※プログラム開発やデータサイエンスを視野に、主要なアルゴリズムをPythonで実装し、データの動きと該当コードを対比させ、しっかりと解説をしています。 ※例題で使用したサンプルプログラムをオーム社ホームページよりダウンロードできます。アルゴリズムの実際をすぐに体感できます。。 第1章 アルゴリズムをはじめる前に 第2章 準備 第3章 データ構造 第4章 ソートアルゴリズム 第5章 探索アルゴリズム 第6章 木構造 第7章 グラフアルゴリズム 第8章 その他の有用なアルゴリズム
  • Pythonによる異常検知
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習による異常検知の基本と応用がわかる! 本書では、機械学習による異常検知のしくみを、誤差関数に着目して解説します。読者が新しい異常検知システムを自ら構築できるようになることを最終目標とし、機械学習アルゴリズムの基本から解説していきます。 機械学習について誤差関数を中心に理解を深めることによって「外れ値とはなにか」「閾値はどのように設定すればよいか」といった異常検知における基本が自然と理解できます。そういった基礎から入りつつ、時系列データを分析する際の手法と注意点(第3章)や、深層学習を用いた応用例(第4章)といった内容まで踏み込み、最終的には自ら異常検知システムを構築できるよう導きます。 機械学習の各アルゴリズムの説明や例題などには、Pythonのコードが付いています。 自分でプログラムを実行しながら学べる入門書です。 <本書の特徴> ・誤差関数を中心に機械学習の原理を理解することで、異常検知の基本が自然と理解できます。 ・基本だけでなく、時系列データに対する異常検知の考えかた(第3章)や、深層学習による応用(第4章)を学ぶことができます。 ・Pythonのコード付きなので、手を動かしながら学習することができます。 第0章 機械学習と異常検知 第1章 機械学習と統計解析の基本モデル 第2章 非時系列データにおける異常検知 第3章 時系列データにおける異常検知 第4章 深層学習による異常検知
  • Pythonによる医用画像処理入門(改訂2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 医用画像診断支援の分野では人工知能が組み込まれたAI-PACS(画像保管管理システム)の普及が期待されています。こうした状況の中でPythonはその学びやすさと、また画像処理や人工知能のためのパッケージが多く提供されていることから、今後ますます、簡単な実験から臨床研究などへ幅広く使用されていくことが予想されます。  本書では、深層学習の基礎的な内容、Pythonの基礎はおさえたうえで、医用画像応用に特化して、最新のデータセットやライブラリを使用して画像解析、診断への適用などの基礎的な内容をわかりやすく解説するものです。改訂にあたって、医用画像の標準規格であるDICOMの最新版の取扱いを解説するとともに、生成AIの適用・応用についてもふれています。 第1章 開発環境を構築する 第2章 Pythonプログラミングの基本を学ぶ 第3章 DICOM画像の表示と基本画像処理 第4章 画像管理とDICOM応用処理 第5章 Pythonを使った人工知能の前処理を学ぶ 第6章 Pythonを使った人工知能の基本を理解する 第7章 人工知能開発の実践 第8章 医用画像処理における生成AI活用
  • Pythonによる医療データ分析入門――pandas+擬似レセプト編
    4.0
    匿名加工医療データの登場により、医療保険開発や健康管理アプリ開発などの自由度が高まりました。それと同時に、開発者はこれまでの分析方法を適用していいのかという戸惑いを持ち、また分析者は時に急遽、分析担当としてアサインされ、期限のある中でデータに慣れて分析手法を学び、結果を出すことが求められます。本書では医療データを手元のPCで擬似生成し、生成した擬似データを分析しながらPythonに慣れ、分析手法を身に着けていただくことを目的にしています。 医療データを分析する上で、統計学以外に「疫学」「医療統計学」「線形代数学」の知識が必要となります。しかしこれらの専門書は医療データ分析の範囲を大きく超えます。企画している書籍は、1つの学問体系を説明する学術書ではなく、分析手法を網羅するような一般的な内容でもありません。この書籍は「いかにして医療データ(生物データ)からイベント(死亡・疾病等)の起こりやすさを推定するか」をテーマとして、様々な知識体系からアプローチし、得られた分析結果の妥当性を検証していく実用書です。
  • PythonによるWebスクレイピング / ビジュアライゼーション入門
    -
    本書は、スクレイピングによるデータ収集、データを表示するダッシュボードの作成、PythonによるExcelの操作などについて、入門者向けに解説しています。  スクレイピングとは、Webサイトから情報を自動的に取得する技術のことを指します。通常、人がWebブラウザを使って手動で行う情報収集をプログラムによって自動化するものです。これにより、大量のデータを効率的に集めることができます。  なお、Python自体については、ある程度の知識があることを前提としています。もし、Pythonをまったく学習していない場合は、Webサイトや書籍などを用いて、先にPythonを簡単に学習することをお勧めします。  本書は、Python環境の構築方法、コードエディタとして用いるVisual Studio Codeのインストール方法、Python in Excelの利用方法などの解説を掲載しているため、環境の導入を問題なく行えます。  また、各ライブラリの基本的な使い方から始め、スクレイピングによるWebサイトのデータ収集、データを用いたダッシュボードの作成、データを用いたExcelファイルの作成などの具体例も解説しています。
  • Pythonによる機械学習入門
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。検索やハイライト等の機能が使用できません。 初心者でもPythonを用いて機械学習が実装できる!   本書は、今後ますますの発展が予想される人工知能の技術のうち機械学習について、入門的知識から実践まで、できるだけ平易に解説する書籍です。「解説だけ読んでもいまひとつピンとこない」人に向け、プログラミングが容易なPythonにより実際に自分でシステムを作成することで、そのエッセンスを実践的に身につけていきます。 また、読者が段階的に理解できるよう、「導入編」「基礎編」「実践編」の三部構成となっており、特に「実践編」ではシステム計画研究所が展示会「Deep Learning実践」で実際に展示した「手形状判別」を実装します。 詳細目次 第1部 導入編  第1章 はじめに  1.1 機械学習とは  1.2 Python と機械学習  1.3 インストール&セットアップ  1.4 Python 早分かり ― NumPy とmatplotlib  1.5 クイックツアー   小話 深層学習って何だ?  第2 章 機械学習の様々な側面 33  2.1 機械学習をとりまく環境.. 33  2.2 関連分野. 34  2.3 学習法による分類. 35  2.4 手法や課題設定による分類. 36  2.5 応用例. 37 第2部 基礎編  第3章 分類問題  3.1 分類問題とは  3.2 最初の分類器  3.3 学習データとテストデータ   ミニ知識 色々な用語 ―学習・訓練・教師 vs テスト・評価・バリデート・検証   ミニ知識 k- 分割交差検証  3.4 分類器の性能を評価しよう   ミニ知識 正答率(Accuracy)と適合率(Precision)   ミニ知識 色々な平均.調和平均・算術平均・幾何平均  3.5 色々な分類器  3.6 まとめ  第4章 回帰問題  4.1 回帰問題とその分類  4.2 最初の回帰 ― 最小二乗法と評価方法  4.3 機械学習における鬼門 ― 過学習  4.4 過学習への対応 ― 罰則付き回帰  4.5 様々な回帰モデル  4.6 まとめ  第5章 クラスタリング  5.1 iris データセット   ミニ知識 フィッシャーのあやめ  5.2 代表的なクラスタリング手法 ― k-means  5.3 その他のクラスタリング手法  5.4 まとめ 第3部 実戦編  第6章 画像による手形状分類  6.1 課題の設定  6.2 最初の学習  6.3 汎化性能を求めて ― 人を増やしてみる  6.4 さらに人数を増やしてみる   ミニ知識 学習データに含める人数について  6.5 データの精査と洗浄 ― データクレンジング  6.6 特徴量の導入  6.7 パラメータチューニング  6.8 まとめ  第7章 センサデータによる回帰問題  7.1 はじめに  7.2 準備  7.3 センサデータの概要  7.4 データの読み込み  7.5 高松の気温データと四国電力の消費量  7.6 もっと色々、そしてまとめ  7.7 終わりに 第4部 付録  付録A Python で作る機械学習  A.1 この付録の目的  A.2 最小二乗法  A.3 行列計算による解析解の導出  A.4 反復法  A.5 コードを書く前に  A.6 実装例  付録B 線形代数のおさらいと代表的な非線形モデル  B.1 この付録の目的  B.2 そもそも「線形」とは  B.3 線形変換とアフィン変換  B.4 ノルムと罰則項  B.5 線形回帰の最小二乗解を考える  B.6 機械学習における「非線形」
  • Pythonによるクローラー&スクレイピング入門 設計・開発から収集データの解析・運用まで
    -
    Webデータの巡回収集と解析を すべて自動で処理しよう 【背景】 企業においてデータ分析の需要が多くなってきているなか、 企業のデータ分析の現場において、 Webから様々なデータを集める「クローラー(クローリング)」と 集めたデータの解析を行う「スクレイピング」のニーズが 非常に高まってきています。 【対象読者】 ・データの収集、解析などの仕事を請け負うプログラマー ・クローラー開発を請け負うエンジニア 【本書の特徴】 本書は、データ収集・解析などの仕事を請け負うプログラマーや、 クローラー開発を請け負う分析会社のエンジニアに向けて、 クローラーの開発手法から実際のクローリングおよび スクレイピング手法ついて解説した入門書です。 本書ではデータ分析の現場でニーズの高まってきているPythonを利用して、 クローラー開発から始まり、クローリング、スクレイピングの基本から応用手法、 そして運用までそれぞれの開発が直面する場面に沿って丁寧に解説します。 最終章では目的別のクローラー開発手法を解説しています。 【対象OSとPythonのバージョンについて】 ・OS:macOS Sierra(10.2.x) ・Python:3.6.2 【目次】 Part1 基本編 Chapter 1 クローラーとスクレイピングを体験する Chapter 2 クローラーを設計する Chapter 3 クローラーおよびスクレイピングの開発環境の準備とPythonの基本  Chapter 4 スクレイピングの基本 Part2 応用編 Chapter 5 クローラーの設計・開発(応用編) Chapter 6 スクレイピングの開発(応用編) Chapter 7 クローラーで集めたデータを利用する Chapter 8 クローラーの保守・運用 Chapter 9 目的別クローラー&スクレイピング開発手法 Appendix クローラー&スクレイピングに役立つライブラリ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonによる深層強化学習入門 ChainerとOpenAI Gymではじめる強化学習
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層強化学習の入門から実装まで、この一冊でわかる! アルファ碁などのゲームAIやロボットアームの制御、自動運転などで注目されている深層強化学習の基礎と、Pythonによる実装について解説した入門書です。 強化学習に適したライブラリであるChainer(ChainerRL)と、AIシミュレーション環境であるOpenAI gymを用いて解説しています。 ソフトウェアシミュレーションだけでなくRaspberryPiとArduinoを用いた実環境への応用も解説しているので、ソフト・ハード問わず自身の課題に深層強化学習を応用することができるようになっています。 1章 はじめに 2章 深層学習 3章 強化学習 4章 深層強化学習 5章 実環境への応用 付録 付録1 VirtualBoxのインストール 付録2 RaspberryPiの設定 付録3 Arduinoのインストール 付録4 Graphical Processing Unit(GPU)の利用 付録5 Intel Math Kernel Libraryを用いたNumPyのインストール
  • Pythonによる時系列分析 ―予測モデル構築と企業事例―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 時系列データを上手く活用し、ビジネス成果を生み出す!!  時系列データを上手く調理することは、これらの問に何かしら解を与えることができます。特に予測モデルを上手く活用すると、過去を振り返り、未来を予測し、現在すべきことを導きだし、成果へと繋げることができます。いくら高精度な予測モデルを手にしても、どう活用すべきかわからないと成果は生まれません。そこで本書ではどのように扱うかを、実際のデータを用いて、使い方を重点的に解説していきます。時系列分析の多くの書籍は数式等を用いて解説していますが、実務的な運用には理論よりもPython等コードで実践していくことが重要です。 なお、事例として以下を取り上げます。 ・モニタリング指標の異常検知によるキャンペーン評価(自動車ディーラー) ・モニタリング指標の異常検知と要因探索(小売りチェーン) ・売上予測モデルを活用したデータドリブン販促(小売りチェーン) ・離反予測モデルによる離反対策ルールの策定(食品・法人向けビジネス) ・チャーンマネジメントのための離反時期予測(携帯電話サービス) ・LTVマネジメントのためのLTV予測(ECサイト) ・広告・販促効果を見える化し最適化するマーケティング・ミックス・モデリング(スポーツジム) 第1章 ビジネスにおける時系列データ活用 1.1 ビジネス現場は時系列データで溢れている 1.2 ビジネス時系列データでよくある7つの活用事例 1.3 2種類の時系列データ 1 1.4 よく目にする7つの時系列特徴量 1.5 時系列特徴量付きテーブルデータ 第2章 Pythonのデータ分析環境の設定(JupyterLab) 2.1 Pythonのインストール 2.2 Python以外のインストール 2.3 利用するライブラリー(パッケージ)のインストール 第3章 時系列予測モデル構築・超入門 3.1 時系列データを使った予測モデル構築の流れ 3.2 時系列データの特徴把握と前処理 3.3 時系列の予測モデルを構築してみよう 3.4 季節成分が複数ある場合の予測モデル 3.5 多変量時系列データの特徴把握と因果探索 第4章 時系列データを使ったビジネス成果の上げ方 4.1 データでビジネス成果を上げる「データ活用ストーリー」 4.2 時系列データの異常検知 4.3 時系列データの要因探索 4.4 時系列データの将来予測 第5章 時系列データを活用したビジネス事例 5.1 モニタリング指標の異常検知によるキャンペーン評価(自動車ディーラー) 5.2 モニタリング指標の異常検知と要因探索(小売りチェーン) 5.3 売上予測モデルを活用したデータドリブン販促(小売りチェーン) 5.4 離反予測モデルによる離反対策ルールの策定(食品・法人向けビジネス) 5.5 チャーンマネジメントのための離反時期予測(携帯電話サービス) 5.6 LTVマネジメントのためのLTV予測(ECサイト) 5.7 広告と販促効果を見える化し最適化するマーケティングミックスモデリング(スポーツジム)
  • Pythonによる時系列予測
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 時系列予測の基礎からディープラーニングによる大規模な予測まで 本書は、データサイエンティストがPythonによる時系列予測をマスターすることを目的として書かれています。数式は必要最小限に抑え、ステップバイステップで丁寧に説明していきます。統計学的モデルや機械学習モデル・ディープラーニングを使った予測、自動予測ライブラリProphetを紹介します。 Manning「Time Series Forecasting in Python」の翻訳企画 第1部 歳月人を待たず 第1章 時系列予測 第2章 単純な未来予測 第3章 ランダムウォーク 第2部 統計学的モデルによる予測 第4章 移動平均プロセスのモデル化 第5章 自己回帰プロセスのモデル化 第6章 複雑な時系列のモデル化 第7章 非定常時系列の予測 第8章 季節性の考慮 第9章 モデルへの外部変数の追加 第10章 複数の時系列の予測 第11章 キャップストーン:オーストラリアの抗糖尿病薬処方数の予測 第3部 ディープラーニングによる大規模な予測 第12章 時系列予測のためのディープラーニング 第13章 ディープラーニングのためのデータウィンドウとベースラインの作成 第14章 ディープラーニングの手ほどき 第15章 LSTMで過去を記憶する 第16章 CNNを使った時系列のフィルタリング 第17章 予測を使ってさらに予測を行う 第18章 キャップストーン:家庭の電力消費量の予測 第4部 大規模な予測の自動化 第19章 Prophetを使った時系列予測の自動化 第20章 キャップストーン:カナダでのステーキ肉の月間平均小売価格の予測 第21章 さらなる高みを目指して 付録 インストール手順 Marco Peixeiro (マルコ・ ペイシェイロ) :カナダ マギル大学(McGill University)卒。 カナダ最大手の銀行の1つNational Bank of Canadaでシニアデータサイエンティストを務めている。独学のサイエンティストであるMarco は、この業界で仕事を見つけて働くために必要な知識が何かをよく理解している。実践から学ぶことを信条とし、Medium のブログ、freeCodeCamp でのデータサイエンスの短期集中講座、Udemy の講座でも同じアプローチを取っている。本書のテーマを扱ったUdemyのオンライン講座 https://www.udemy.com/course/applied-time-series-analysis-in-python/ が好評で、その内容が書籍化された。Marco のデータサイエンスに関する記事はMedium でさらにチェックできる(https://medium.com/@marcopeixeiro)。ブログでも、最初に理論を提示し、次に実践的なプロジェクトに取り組むという同じアプローチを取っている。 株式会社クイープ :1995 年、米国サンフランシスコに設立。コンピュータシステムの開発、ローカライズ、コンサルティングを手がけている。2001年に日本法人を設立。主な訳書に『The Kaggle Workbook』『The Kaggle Book』『実践XAI』(インプレス)、『なっとく!機械学習』『なっとく!関数型プログラミング』『実践マイクロサービスAPI』(翔泳社)、『Python によるディープラーニング』(マイナビ出版)などがある。 http://www.quipu.co.jp ※この商品は固定レイアウト型の電子書籍です。 ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 ※お使いの端末で無料サンプルをお試しいただいた上でのご購入をお願いいたします。
  • Pythonによる数値計算とシミュレーション
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『C による数値計算とシミュレーション』のPython版登場!!  本書は、シミュレーションプログラミングの基礎と、それを支える数値計算の技術について解説します。数値計算の技術から、先端的なマルチエージェントシミュレーションの基礎までをPythonのプログラムを示しながら具体的に解説します。  アルゴリズムの原理を丁寧に説明するとともに、Pythonの便利な機能を応用する方法も随所で示すものです。 まえがき 第1章 Pythonにおける数値計算 1.1 Pythonによる数値計算プログラムの構成 1.1.1 Pythonによる数値計算プログラム 1.1.2 Pythonモジュールの活用 1.2 数値計算と誤差 1.2.1 数値計算における誤差 1.2.2 数値計算における誤差の実際 1.2.3 Pythonモジュールの活用 章末問題 第2章 常微分方程式に基づく物理シミュレーション 2.1 質点の1次元運動シミュレーション 2.1.1 自由落下のシミュレーション 2.1.2 着陸船のシミュレーション 2.2  ポテンシャルに基づく2次元運動シミュレーション 2.2.1 ポテンシャルに基づく2次元運動 2.2.2 2次元運動シミュレーション 2.3 Pythonモジュールの活用 章末問題 第3章 偏微分方程式に基づく物理シミュレーション 3.1 偏微分方程式の境界値問題 3.1.1 ラプラスの方程式 3.1.2 ラプラスの方程式の境界値問題 3.1.3 境界値問題の数値解法 3.1.4 ガウスの消去法による境界値問題の計算 3.1.5 逐次近似による境界値問題の計算 3.1.6 その他の二階偏微分方程式 3.2 ラプラスの方程式による場のシミュレーション 3.2.1 ラプラスの方程式の反復解法プログラム 3.2.2 より複雑な形状の領域の場合 3.3 Pythonモジュールの活用 章末問題 第4章 セルオートマトンを使ったシミュレーション 4.1 セルオートマトンの原理 4.1.1 セルオートマトンとは 4.1.2 セルオートマトンの計算プログラム 4.2 ライフゲーム 4.2.1 ライフゲームとは 4.2.2 ライフゲームのプログラム 4.3 交通流シミュレーション 4.3.1 1次元セルオートマトンによる交通流のシミュレーション 4.3.2 交通流シミュレーションのプログラム 章末問題 第5章 乱数を使った確率的シミュレーション 5.1 擬似乱数 5.1.1 乱数と擬似乱数 5.1.2 乱数生成アルゴリズム 5.1.3 Pythonの乱数生成モジュール 5.2 乱数と数値計算 5.2.1 数値積分と乱数 5.2.2 乱数と最適化 5.3 乱数を使ったシミュレーション 5.3.1 ランダムウォーク 5.3.2 ランダムウォークシミュレーション 5.4 Pythonモジュールの活用 章末問題 第6章 エージェントベースのシミュレーション 6.1 エージェントとは 6.1.1 エージェントの考え方 6.1.2 Pythonによるエージェントシミュレーションの実現 6.1.3 マルチエージェントへの拡張 6.1.4 相互作用するマルチエージェント 6.2 マルチエージェントによる相互作用のシミュレーション 6.2.1 マルチエージェントによるシミュレーション 6.2.2 マルチエージェントシミュレーションプログラム 章末問題 付録 A.1 4次のルンゲ=クッタ法の公式 A.2 ラプラスの方程式が周囲4点の差分で近似できることの説明 A.3 ナップサック問題の解法プログラムrkp30.py A.4 シンプソンの公式 章末問題略解 参考文献 索  引
  • Pythonによる制御工学入門 (改訂2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonを使って制御工学を学ぶための入門書 本書は,各所でわかりやすく,かつ,実用的と好評をいただいているPythonを使って制御工学を学ぶための入門書の改訂版です. 「使ってみる,やってみる」を通して,制御工学を体感することができます. よりわかりやすさを追求して構成を見直し・追記したほか,ライブラリの最新版に合わせてPythonコードを修正しています. これから制御工学に携わる方々にとって必読の書です. 第1章 制御とは 第2章 Pythonの基礎 第3章 制御のためのモデル 第4章 制御対象の振る舞い 第5章 閉ループ系に注目した制御系設計 第6章 開ループ系に注目した制御系設計 第7章 アドバンストな制御系設計 付録 数学とプログラムの補足
  • PythonによるTCP/IPソケットプログラミング
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonによるネットワークプログラミング入門書! 本書は、Pythonによる実装を前提として、ソケットプログラミングに必要な知識をわかりやすく解説する入門書です。TCP/IPやソケットの原理を説明したのち、Pythonでソケットを実装する基礎的方法を示していきます。さらに、Python固有の機能を用いたプログラミング例(モジュールを利用したサーバ実装など)を紹介します。 ダウンロードできるサンプルプログラムが多数掲載されているので、実際に試しながら読み進めて、知識と技術を身につけてください。 Chapter 1 TCP/IPとソケットの基礎 Chapter 2 Pythonソケットプログラミング Chapter 3 Pythonソケットによるネットワークシステムの構築 Chapter 4 Webシステムに関連するPythonモジュールの活用 Appendix
  • Pythonによるテキストマイニング入門
    3.5
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Python 3を使ったテキストマイニングの入門書! 本書は、Pythonを使ったテキストマイニングの入門書です。Pythonのインストールから基本文法、ライブラリパッケージの使用方法などについてもていねいに解説していますので、Pythonに触れたことがない方でも問題なく使用できます。また、テキストマイニングも、概要から実例に至るまで一から解説していますので、Python・テキストマイニング両方の知識が全くない方にとって最適な入門書となっています。 目次 第1章 テキストマイニングの概要 1.1 テキストマイニングとは 1.2 応用の例 第2章 テキストデータの構造 2.1 テキストの構成要素 2.2 統計分析・データマイニングの基本的な手法 2.3 テキストマイニング固有の考え方 第3章 Pythonの概要と実験の準備 3.1 Pythonとは 3.2 プログラムを作って動かす環境 3.3 Pyrhonの書き方ルール 3.4 テキストマイニングに役立つライブラリパッケージ 3.5 データの準備 第4章 出現頻度の統計の実際 4.1 文字単位の出現頻度の分析 4.2 単語の出現頻度の分析 第5章 テキストマイニングの様々な処理例 5.1 連なり・N-gramの分析と利用 5.2 共起(コロケーション)の分析と利用 5.3 語の重要性とTF-IDF分析 5.4 KWICによる検索 5.5 単語のプロパティを使ったネガポジ分析 5.6 WordNetによる類語検索 5.7 構文解析と係り受け解析の実際 5.8 潜在的意味論に基づく意味の分析とword2vec 付録 Python, Jupyter notebook のインストール
  • Pythonによるディープラーニング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 現代エンジニアの必須知識:ディープラーニング技術を身に付けよう! PythonのディープラーニングフレームワークKerasの開発者である筆者が、多くの人々がディープラーニングを活用できるようPythonコーディングを交えながら分かりやすく説明していきます。「ディープラーニングを適用できる課題とはなにか」「限界はどこにあるのか」を実践解説。Keras/TensorFlow 2対応。第1版(2017年)以降の話題やモデル・理論とその実装コードなど、より丁寧に解説し大幅にボリュームアップしています。 ディープラーニングにより自動言語翻訳や画像認識の精度は飛躍的に向上し、現代のソフトウェア開発者にとってその技術の理解と習得は必要不可欠な分野になりつつあります。 機械学習プラットフォームTensorFlowの上で動作するKerasは、Pythonで書かれたディープラーニングのAPIです。数学やデータサイエンスの専門的な知識がなくともディープラーニングを手軽に実装できるようになります。 Keras開発者であるFrançois Cholletは、改訂・増補された本書で、機械学習の初心者と経験者、両者に向けたアドバイスを提供します。直感的な説明とわかりやすいイラスト・例題で理解が深まり、ディープラーニングのアプリケーションを開発するために必要なスキルをすぐに身につけることができます。 ・ディープラーニングの最初の一歩 ・画像分類と画像セグメンテーション ・時系列予測 ・テキスト分類と機械翻訳 ・テキスト生成、画像生成 1章 ディープラーニングとは何か 2章 ニューラルネットワークの数学的要素 3章 KerasとTensorFlow 4章 ニューラルネットワーク入門:分類と回帰 5章 機械学習の基礎 6章 機械学習のユニバーサルワークフロー 7章 Kerasを使いこなす 8章 コンピュータビジョンのためのディープラーニング 9章 コンピュータビジョンのための高度なディープラーニング 10章 時系列のためのディープラーニング 11章 テキストのためのディープラーニング 12章 生成型ディープラーニング 13章 現実世界でのベスト・プラクティス 14章 本書のまとめ
  • Pythonによるデータ解析入門
    4.0
    1巻2,970円 (税込)
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonの基礎を学びながらデータ解析の実践技術が身につく! 本書は『Pythonによる統計分析入門』の多変量解析編に相当するものですが、前著のより発展的な内容として、ネットワーク解析まで扱っています。Pythonの基本を学びながら、より実践で活用できるデータ解析を習得できます。Pythonの解析ライブラリを使った独習書として、多次元データの解析、アソシエーション分析、ネットワーク解析などを丁寧に解説し、実務的な課題にも応用できるようになっています。 第 1 章 データ解析の基礎知識 第 2 章 Pythonとデータ解析ライブラリ 第 3 章 統計的な手法を使った多変量の分析 ~ 相関・回帰分析・主成分分析・因子分析 第 4 章 学習の手法を使った多変量の分析 ~ クラスタ解析・k-近傍・決定木・SVM 第 5 章 アソシエーション分析 第 6 章 時系列データの解析 第 7 章 ネットワークの解析
  • Pythonによるデータマイニングと機械学習
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 本当にPythonでデータマイニングと機械学習を行いたい人のための入門書 本書は,本当にPythonでデータマイニングと機械学習を行いたい人のための入門書です. 初歩からていねいに解説してあります. 本書を読み切れば,誰でもPythonによるデータマイニングと機械学習の主な手法の実装方法が身に付きます。 準備編 第1章 データマイニングと機械学習 第2章 Python速習(基本編) 第3章 Python 速習(応用編) 基礎編 第4章 回帰分析 第5章 階層型クラスタリング 第6章 非階層型クラスタリング 第7章 単純ベイズ法による分類 第8章 サポートベクトルマシン法による分類 実践編 第9章 時系列数値データの予測 第10章 日経平均株価の予測 第11章 テキストデータマイニング 第12章 Wikipedia記事の類似度 第13章 画像データの取り扱い手法 第14章 画像の類似判別とクラスタリング
  • Pythonによる動画解析・ヒューマンセンシングAI
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 生成AIを使った動画解析の基礎から実践までを説明 本書は、生成AIを使った動画解析の基礎から実践までを、フルスクラッチで説明した書籍です。読者自ら、Pythonを使って簡単な動画解析プログラムが作成できるよう、生成AIを使った動画解析のしくみから具体的なプログラムのサンプルコードまでを1冊にまとめています。 これまでに収集した未処理の動画データを活用して有用な結果を得たい方、動画解析を使ってこれまでにないサービスを実現したい方におすすめの書籍です。 第1章 生成AIとヒューマンセンシング 第2章 人間を対象とした解析 第3章 実行環境の準備と画像解析モデルの基礎 第4章 コンピュータヴィジョン 第5章 パイプライン導入 第6章 ヒューマンセンシングAI 第7章 LLMチュートリアル 第8章 マルチモーダル技術の基礎 第9章 ヒューマンセンシングと生成AIの融合
  • Pythonによるネットワーク自動化の教科書
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、ネットワークエンジニアやシステム管理者を対象に、Pythonを用いたネットワークの自動化について解説した実践的な教科書です。 急速なビジネス要件の変化に適応し、企業の迅速な成長と競争力を維持するためには、ネットワーク自動化が不可欠です。現代のネットワークエンジニアやシステム管理者にとって、ネットワーク自動化のスキルは必須となりました。 しかし、Pythonを使用したネットワーク自動化は、プログラミング初心者にとっては理解が難しい場合もあります。そのため、本書では、Pythonの基礎から分かりやすく解説しています。さらに、ネットワーク自動化に役立つライブラリの使い方や、実際のネットワーク機器での応用方法についても詳しく説明しています。 この書籍を通じて、Pythonを用いたネットワーク自動化の基本的なスキルを身につけ、日常的なネットワーク運用の効率化や故障時の対応力向上、セキュリティの精度向上などに役立ててください。 (本書「はじめに」より抜粋・編集) Chapter.1 Python 基礎 1.1 Python の入門知識 1.2 Python のインストール 1.3 Python を使ってみよう 1.4 Python の学習方法 Chapter.2 Python のデータ型とファイル操作 2.1 数値型(int, float) 2.2 文字列型(str) 2.3 バイト型(bytes) 2.4 ファイル操作 Chapter.3 Python のデータ型(コレクション、日時、None、ブール) 3.1 リスト(list)
  • Pythonによるはじめてのアルゴリズム入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【アルゴリズムの事例が盛り沢山!】 本書は、Pythonを使用してアルゴリズムを習得するための入門書です。ソート、サーチ、再帰、リスト、木、グラフといったアルゴリズムの基本から、連立方程式の解法、逆ポーランド記法、最短路問題、タートルグラフィックス、グラフ描画、パズルやゲームといった実用的な応用まで、豊富な例題を通してアルゴリズムを効率的に学ぶことができます。例題や練習問題は「Google Colaboratory」で動作するので、Webブラウザーがあればすぐに動作が確認可能です。 ■目次 ■第1章 ウォーミング・アップ   1-0 アルゴリズムとは   1-1 漸化式   1-2 写像   1-3 順位付け   1-4 ランダムな順列   1-5 モンテカルロ法   1-6 ユークリッドの互除法   1-7 エラトステネスのふるい ■第2章 数値計算   2-0 数値計算とは   2-1 乱数   2-2 数値積分   2-3 テイラー展開   2-4 非線形方程式の解法   2-5 補間   2-6 多桁計算   2-7 長いπ   2-8 連立方程式の解法   2-9 線形計画法   2-10 最小2乗法 ■第3章 ソートとサーチ   3-0 ソートとサーチとは   3-1 基本ソート   3-2 シェル・ソート   3-3 線形検索(リニアサーチ)と番兵   3-4 2分探索(バイナリサーチ)   3-5 マージ(併合)   3-6 文字列の照合(パターンマッチング)   3-7 文字列の置き換え(リプレイス)   3-8 ハッシュ ■第4章 再帰   4-0 再帰とは   4-1 再帰の簡単な例   4-2 再帰解と非再帰解   4-3 順列の生成   4-4 ハノイの塔   4-5 迷路   4-6 クイック・ソート ■第5章 データ構造   5-0 データ構造とは   5-1 スタック   5-2 キュー   5-3 データ構造としてのリスト   5-4 Pythonの言語仕様のリスト   5-5 双方向リスト   5-6 逆ポーランド記法   5-7 パージング   5-8 自己再編成探索   5-9 リストを用いたハッシュ ■第6章 木(tree)   6-0 木とは   6-1 2分探索木のリスト表現   6-2 2分探索木の作成   6-3 2分探索木の再帰的表現   6-4 2分探索木のトラバーサル   6-5 レベルごとのトラバーサル   6-6 ヒープ   6-7 ヒープ・ソート   6-8 式の木   6-9 知的データベース ■第7章 グラフ(graph)   7-0 グラフとは   7-1 グラフの探索(深さ優先探索)   7-2 グラフの探索(幅優先探索)   7-3 トポロジカル・ソート   7-4 Eulerの一筆書き   7-5 最短路問題 ■第8章 グラフィックス   8-0 ColabTurtle(タートルグラフィックス・ライブラリ)   8-1 forwardとleft   8-2 2次元座標変換   8-3 ジオメトリック・グラフィックス   8-4 3次元座標変換   8-5 立体モデル   8-6 3次元関数と隠線処理   8-7 リカーシブ・グラフィックスⅠ   8-8 リカーシブ・グラフィックスⅡ   8-9 いろいろなリカーシブ・グラフィックス   8-10 グラフィックス・ライブラリ(glib.py)   8-11 Matplotlibを使ったグラフの作成   8-12 Matplotlibを使った3D表示 ■第9章 パズル・ゲーム   9-1 魔方陣   9-2 戦略を持つじゃんけん   9-3 バックトラッキング   9-4 ダイナミック・プログラミング   9-5 万年暦で作るカレンダー   9-6 21を言ったら負けゲーム   9-7 迷路の作成と探索 ■著者プロフィール 河西朝雄:山梨大学工学部電子工学科卒(1974年)。長野県岡谷工業高等学校情報技術科教諭、長野県松本工業高等学校電子工業科教諭を経て、現在は「カサイ.ソフトウエアラボ」代表。
  • Pythonによるはじめての機械学習プログラミング [現場で必要な基礎知識がわかる]
    -
    人工知能(AI)・機械学習と言ったバズワードを見ることは多くなりましたが、まだまだデータ解析のハードルは高いと考えられています。特に機械学習の入門書には高度な理論や前提知識を必要とされることも多く、学習する過程で挫折しまうことが多いようです。 エンジニアのみなさんにとっては、Pythonの便利なツールを用いてデータに実際にふれて、機械学習の面白さや便利さを体験することも良い学習方法の1つです。誤解をおそれずに言えば、目の前のデータをどう扱えば役に立つのか?を理解してからでも理論を学ぶのは遅くはありません。本書では「勉強になった」で終わることなく現場のアプリーケーションを使うための機械学習の基礎を解説します。
  • Pythonによるバイオデータ解析入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 バイオのデータもPythonで! 生物学に関わる理解・研究では、コンピュータによるデータ処理が欠かせないものとなってきています。生物学の扱う系はもともと非常に複雑で雑音が多く、統計的な解析が広く使われてきましたが、特に最近のDNA/RNA解析ではいわゆる次世代シーケンサ(NGS)が大量のDNA配列データを生み出してそれを整理しなければならないなど、コンピュータによるデータ処理が必須になっています。  本書は、生物学分野において行われる、さまざまなデータ解析処理について、Pythonを用いて行う方法を解説し、理解することを目的としています。従来、簡単な処理はExcelを使ったり、RやSPSSなどの統計処理を主目的とする言語・ソフトウェアパッケージが用いられてきました。そのなかで本書は、比較的新しく、機械学習やデータ分析に優れたプログラミング言語であるPython を使って、初歩的なデータ処理をどのように行えばよいのかを紹介しています。 第 1 章 バイオデータ処理 第 2 章 プログラムを動作させるための知識 第 3 章 Pythonによる入力・出力データ加工のためのプログラミング 第 4 章 Pythonからバイオデータを扱うライブラリ 第 5 章 可視化のためのライブラリ 第 6 章 統計処理に便利な汎用の統計パッケージ 第 7 章 変異解析・発言解析の流れの例
  • Pythonによるプログラミング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonプログラミングの基礎が学べる!!  Pythonの基礎、オブジェクト指向の考え方を学びながら、簡単なゲームプログラミングの作成まで行います。全15章でPythonプログラミングを一通り学ぶことができ、章ごとに段階を踏んで学んでいけるものです。まずはPythonの独習書として、プログラミングを学びたい方むけにおすすめです。 はじめに 第0章 プログラミングとは 第1部 アクションゲームの作成演習 第1章 Python の実行環境 第2章 アニメーションの導入 第3章 イベントによる対話的処理 第4章 プログラムの拡張 第2部 オブジェクト指向プログラミング演習 第5章 クラスとモデリング 第6章 集約とポリモーフィズム 第7章 継承、オーバーライド 第8章 リファクタリング 第3部 パズルゲームの作成演習 第9章 MVC による機能の分離 第10章 モジュール化 第11章 探索アルゴリズム 第4部 ライブラリを利用したゲーム作成演習 第12章 ライブラリの利用 第13章 スコープ、実体と参照 第14章 Sprite とGroup 第15章 風船割りゲーム 付録A エラー図鑑 関連資料
  • Pythonによる「プログラミング的思考」入門
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【プログラミングの概念に基づいた「問題解決力」を身につける!】 本書は、Pythonを使用して「プログラミング的思考」を習得するための入門書です。「プログラミング的思考」とは、ある問題を解決するための方法や手順をプログラミングの概念に基づいて考えることで、文部科学省の掲げるプログラミング教育でも重要視されています。本書は、前半でPythonの解説、技法・書法、後半で実際のプログラムを使ったプログラミング的思考の解説という構成で、初心者でもモチベーションを持ちながら学習できるよう、興味が持てる例題を多数用意しています。また、練習問題もあるので、より理解が定着できます。付録で文法解説を載せており、この1冊で、Pythonとプログラミングの考え方の両方をまとめて学ぶことが可能です。 ■目次 ●序章 プログラミング的思考とは   0-1 プログラミング的思考とは   0-2 プログラミング的思考を支える考え方   0-3 プログラミング的思考を身に付けるには   0-4 プログラミング的思考の応用   0-5 データサイエンスとアルゴリズム   0-6 プログラミングとPython ●第1章 Python文法の基本   1-1 Pythonとは   1-2 Pythonの実行環境   1-3 Pythonの基本文法   1-4 print関数とf文字列   1-5 演算子   1-6 変数と代入   1-7 変数の値の更新   1-8 input関数   1-9 for in文   1-10 二重ループ   …ほか ●第2章 Pythonの書法・技法   2-1 プログラミング書法(プログラミング・スタイル)   2-2 プログラミング技法   2-3 言語仕様上の注意点   2-4 ちょっとしたテクニック   2-5 ビット演算子   2-6 文字列処理   2-7 リスト操作   2-8 クラスの活用   2-9 辞書の活用   2-10 ファイル処理   2-11 ライブラリの活用 ●第3章 Pythonでのグラフィックス   3-1 ColabTurtle(タートルグラフィックス・ライブラリ)   3-2 ポリゴン(多角形)の描画   3-3 渦巻き模様の描画   3-4 文字の描画 ●第4章 Pythonで学ぶプログラミング的思考   4-1 流れ制御構造(組み合わせ)   4-2 データ化   4-3 抽象化と一般化   4-4 分解とモジュール化   4-5 データ構造とアルゴリズム ●第5章 プログラミング的思考の実践①~かんたんなプログラム   5-1 最大値と最小値   5-2 ピタゴラスの定理   5-3 シーザー暗号   5-4 相性占い   5-5 10進数→2進数への変換   5-6 フィボナッチ数列   5-7 干支の算出   5-8 サイコロゲーム   5-9 カレンダー   5-10 幾何学模様 ●第6章 プログラミング的思考の実践②~再帰的思考   6-1 漸化式と再帰的表現   6-2 再帰の罠   6-3 ハノイの塔   6-4 リカーシブ・グラフィックスI   6-5 リカーシブ・グラフィックスII   6-6 リカーシブ・グラフィックスIII ●第7章 プログラミング的思考の実践③~アルゴリズム   7-1 ユークリッドの互除法   7-2 モンテカルロ法   7-3 素数を探す   7-4 テイラー展開   7-5 ソート(並べ換え)   7-6 線形探索(リニアサーチ)   7-7 二分探索(バイナリサーチ)   7-8 自己再編成探索   7-9 ハッシュ   7-10 決定木   7-11 ハノイの塔のシミュレーション   7-12 迷路   …ほか ●第8章 プログラミング的思考の実践④~データサイエンス   8-1 Matplotlib を使ったグラフの作成   8-2 数値計算を効率的に行うNumPy   8-3 Matplotlib を使った3D表示   8-4 3D棒グラフの表示   8-5 3次元座標を元にした立体の表示   8-6 3次元関数の表示   8-7 回転体モデルの表示   8-8 ワイヤーフレームの表示 ●付録 Python文法 ■著者プロフィール 河西朝雄:山梨大学工学部電子工学科卒。長野県岡谷工業高等学校情報技術科教諭、長野県松本工業高等学校電子工業科教諭を経て、現在は「カサイ.ソフトウエアラボ」代表。主な著書:「改定第5版C言語によるはじめてのアルゴリズム入門」「Pythonによるはじめてのアルゴリズム入門」(以上技術評論社)など多数。
  • Pythonによる問題解決のためのアルゴリズム設計技法
    -
    本書(原題:Python Algorithms: Mastering Basic Algorithms in the Python Language)はアルゴリズムの分析と設計方法について、Pythonを使って説明します。古典的なアルゴリズムに焦点を絞って解説していますが、基本的なアルゴリズムによる問題解決の方法もしっかり理解できます。 本書はプログラミングとコンピュータサイエンスの最も重要で難しい分野を非常に読みやすい形で解説しています。アルゴリズムの理論とプログラミングの実践の両方をカバーし、理論が実際のPythonプログラムにどのように反映されているかを説明します。また、Pythonに組み込まれている有名なアルゴリズムとデータ構造について説明し、実装と評価について学ぶことができます。 本書で学べること 新しい問題を効率的なアルゴリズムで解ける問題に変換する方法。もしくは、効率的に解けない問題であると示す方法 数学と基本的な実験やベンチマークを使ってアルゴリズムとPythonのプログラムを分析する方法 古典的なアルゴリズムとデータ構造を深く理解し、Pythonでこれらを効率的に実装する方法 新しい問題を解くために新しいアルゴリズムを設計し、実績のある設計原理・設計技法を使って実装する方法 Pythonのハイパフォーマンスコンピューティングを実現する豊富なツールを使って実装を高速化する方法

    試し読み

    フォロー
  • Pythonによる有限要素法 実装ノート
    -
    本書は数値解析手法のひとつである有限要素法をPythonによって実装するための方法の解説書です。 具体的にはPythonを使って、有限要素法のメッシュ作成やソルバ実行や結果の可視化が、ライブラリを使ってできることを目指します。ただし、Pythonの基礎知識や有限要素法の理論の基礎は本書では扱いません。 本書では次のような人を対象としています。 ・Pythonでデータ分析をしていて、Pythonによる有限要素法の実装について興味がある人 ・上記についてフルスクラッチではなく、あくまでライブラリを使いこなしたい人 ・有限要素法の入門書を読んだ人(まったくの初心者は対象外です) ・NumpyやMatplotlibのように、Pythonicに有限要素法解析と可視化をしたい人
  • Pythonの絵本 Pythonを楽しく学ぶ9つの扉
    3.7
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 手軽に学びたい人の味方!人気の絵本シリーズにPython登場! Pythonはコンパイラを使わずに実行できるインタープリタ型の言語でありながら、データ分析など最新のコンピューティングの現場でひろく活用されています。 本書では「プログラミングについて何も知らないこと」を前提に、基本からPythonを解説し、さらにリストや関数といった特徴ある機能を紹介していきます。また、章末でプログラミングサンプルを紹介するなど、実戦的な内容も含まれています。 本書には次のような特長があります。 ・絵を多用し、短い解説で絵本のようにビジュアルに理解することができます ・2ページを単位とした説明、基礎に絞り込んだ内容でスピーディに学習できます ・予備知識は不要。「プログラミングとはなにか」から入門できます ・Pythonの特徴などや実行の仕組みなど、知識として知っておきたい事柄もフォロー ・クラス/オブジェクトの基本も解説。オブジェクト指向の基礎にも入門できます 【翔泳社の「絵本」シリーズのラインナップをアップデート】 翔泳社の「絵本シリーズ」は、豊富なイラストと簡潔な解説でコンピュータ技術に入門できる初心者向けのシリーズです。言語/技術の超初心者や手軽に習得したい方に最適な入門書です。 新しい「絵本シリーズ」では、旧来の分かりやすさ、親しみやすさ、基礎に徹した内容というコンセプトはそのままに、Web/ネットが全盛となった現在のコンピュータ技術の潮流に合わせた解説を心掛けます。『Cの絵本』『Javaの絵本』を皮切りにラインナップを順次刷新、さらに新しい仲間を増やしてラインナップを充実させていきます。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonのキホンがわかる本
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本ムック「Pythonのキホンがわかる本」は、文法からちょっとしたアプリの開発まで、様々な視点でプログラミング言語「Python」の使い方を解説する一冊です。話題の「Python in Excel」についても取り上げています。  また、昨今、Pythonと言えば何と言ってもAIです。第4章ではAIやデータサイエンスでよく使われるライブラリを9個取り上げ、わかりやすく説明しています。  本ムックを通して、ぜひ、Pythonのキホンのマスターを目指しましょう。 ≪目次≫ 第1章 自動化アプリ開発で学ぶPythonの初歩 第2章 ここがスゴイ!! Pythonの機能 徹底解説 第3章 Pythonの“マル”と“バツ” 第4章 Pythonライブラリ図鑑 データサイエンス/機械学習編 第5章 「Python in Excel」使い方指南!! 第6章 Pythonで「3D分子ビューアー」を作る 第7章 Python/Tkinterで実用ソフトを作る
  • Python版 コンピュータ科学とプログラミング入門 コンピュータとアルゴリズムの基礎
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、工学系基礎教育としてのコンピュータ教育およびプログラミング教育を実現するための教科書です。工学的問題の解決に対するコンピュータやプログラムの利用に抵抗感をなくし、スムーズにコンピュータを使う素養を養うことを目的としています。 プログラミングの基礎は扱いますが、特定のプログラム言語全般を深く学ぶことは目標としません。そのかわり、後で必要となった時に、どのような言語でも容易に学ぶことのできる下地を作ります。 コンピュータは、単純な手続きの積み重ねで処理を実現します。この事実、つまり手続き的処理の理解が本書の第一の目標です。これによりコンピュータとは何なのかが理解でき、コンピュータを道具として利用するための能力が身につきます。 続いて、手続き的記述能力の獲得を目指します。これは平たく言えば、プログラムを書いて利用するための初歩的な能力です。具体的には、プログラム言語の基礎を学ぶと共に、シミュレーションや解析、統計処理等のためのソフトウェアツールを使いこなすための素養を養います。 各章末には演習問題を掲載し、略解を示すことで理解の助けとなるよう配慮しました。 ※本書は、近代科学社より2015年に刊行された『コンピュータ科学とプログラミング入門 ―コンピュータとアルゴリズムの基礎―』のPython版です。
  • Python FastAPI本格入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆APIドキュメントを自動生成して、コード品質を高めよう◆ 昨今、多くの企業が自社のWebサービスにGoogleやFacebookなどのソーシャルログインを採用するなど、他社のサービスを取り込むことの需要が増えています。しかし、他社のサービスを取り込む課題として、異なるサービス間でのデータの整合性を保ちつつ、柔軟かつ迅速に機能を提供することが必要となり、この課題解決の観点でFastAPIが注目されています。FastAPIはスキーマ駆動開発を通じてAPIの作成と管理が容易に行えるPythonのフレームワークです。本書は、FastAPIではじめてAPI開発を行う方を対象とした入門書です。1章~9章までで「API開発に必要な知識」「スキーマの定義方法」などFastAPIの基本的な内容を学べます。また、10章~11章、Appendixで実際にスキーマ駆動開発によりAPIを利用したサービスを作成するため、API開発の一連の流れを学べます。 ■こんな方におすすめ ・FastAPIを用いて開発を行ってみたい人 ・API開発に興味がある人 ■目次 ●第1章 FastAPIの概要 ・1-1 FastAPIとは? ・1-2 開発環境の構築(Miniconda) ・1-3 開発環境の構築(仮想環境) ・1-4 開発環境の構築(VSCode) ●第2章 FastAPIの基礎 ・2-1 WebAPIの基礎知識 ・2-2 FastAPIで「ハローワールド」の作成 ・2-3 Swagger UIによるドキュメント生成 ●第3章 型ヒント(タイプヒント) ・3-1 型ヒントとは? ・3-2 型ヒントの使用方法(Optional型) ・3-3 型ヒントの使用方法(Annotated) ・3-4 「|(パイプ)演算子」とは? ●第4章 パラメータとレスポンスデータ ・4-1 リクエスト処理(パスパラメータ) ・4-2 リクエスト処理(クエリパラメータ) ・4-3 レスポンス処理(レスポンスデータ) ●第5章 FastAPIでCRUD処理 ・5-1 RESTful APIとは? ・5-2 HTTPメソッドの特性 ・5-3 CRUDアプリケーションの作成 ●第6章 同期処理と非同期処理 ・6-1 同期処理と非同期処理とは? ・6-2 FastAPIでの非同期処理 ●第7章 ルーティングの分割 ・7-1 APIRouterとは? ・7-2 リファクタリング ●第8章 ORMの利用 ・8-1 ORMとは? ・8-2 SQLAlchemyを使用したアプリケーションの作成 ●第9章 DIの利用 ・9-1 DIとは? ・9-2 DIを使用したアプリケーションの作成 ・9-3 DI(依存性の注入)の深堀 ●第10章 スキーマ駆動開発(フロントエンド) ・10-1 スキーマ駆動開発 ・10-2 作成アプリケーションの概要 ・10-3 フロントエンドの作成 ●第11章 スキーマ駆動開発(バックエンド) ・11-1 モデルとDBアクセスの作成 ・11-2 CRUD処理の作成 ・11-3 リファクタリング ・11-4 動作確認 ●Appendix 今後の発展のために ・A-1 複雑なスキーマの検討 ・A-2 動作確認の実地 ・A-3 メモアプリのカスタマイズ ・A-4 サンプルファイルの使用方法 ■著者プロフィール 樹下雅章(きのしたまさあき):大学卒業後、ITベンチャー企業に入社し、様々な現場にて要件定義、設計、実装、テスト、納品、保守、全ての工程を経験。SES、自社パッケージソフトの開発経験。その後大手食品会社の通販事業部にてシステム担当者としてベンダーコントロールを担当。事業部撤退を機会に株式会社フルネスに入社し現在はIT教育に従事。
  • Python for MBA Pythonとデータ分析を実践的に身につける
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 プログラミングをしたことがない人、技術的バックグラウンドをもたない人が、Pythonを使ったデータ分析を身につけて、モノゴトを良くしていく――。米名門ビジネススクールの実践的な授業内容に基づいた、リアルなビジネス現場でデータ分析を役立てる方法をお伝えします。 とにかく手をつけて、 実用的なことをできるだけ早く、 習得しよう! エクセルでは不可能な「膨大なデータ」を用いて 効果的なビジネス戦略を立案するために、 実用に即したサンプルデータを使います (本誌サイトからダウンロードできます)。 MBA、つまり実社会での実務経験があり大学院の修士課程でビジネスを学ぶ人向けの教科書ということで、どれほど高度な内容かと思いきや、プログラミングに興味のある人なら、おそらく高校生だろうが中学生だろうが理解できる、見事な構成と進行で成り立つ本でした。こんなにやさしくて、丁寧で、話に無駄のない先生に出会えた学生は幸せだと思います。読者のみなさんは、まさに本書の幸せな学生というわけです。 「訳者あとがき」より
  • Python FlaskによるWebアプリ開発入門 物体検知アプリ&機械学習APIの作り方
    -
    Webアプリの作り方からAPI化、デプロイメントまで エンジニアとデータサイエンティストのためのFlask入門 Pythonのフレームワーク「Flask」によるWebアプリ開発の入門書です。 まずは、最小のアプリの作成から始め、問い合わせフォーム、データベースを使ったアプリ、 認証機能と段階的に作成しながら、Flaskによるアプリ開発の基礎を習得します。 その後、画像データ(写真)から物体を判別する物体検知アプリを作成しながら 実践的なアプリの作り方、その機能をWeb API化する方法について解説します。 また、物体検知機能(手書き文字認識をする分析コード)を題材に、 どのように機械学習をアプリに組み込んでいくかについても詳しく解説します。 【本書の主な内容】 ●Flaskと開発の基礎  ◯問い合わせフォーム/DBアプリの作成  ◯認証機能の作成  ◯物体検知アプリの作成 ●API化/デプロイメント  ◯物体検知アプリのWeb API化  ◯Web APIとして外部公開 ●機械学習APIの開発  ◯分析コードから機械学習APIを開発する工程と方法 【主な対象読者】 ●Pythonで簡単にWebアプリ開発を始めたいエンジニア ●機械学習に興味のあるWebエンジニア ●自分でもアプリやWeb APIを作りたいデータサイエンティスト 【構成】 ●第0部 イントロダクション ●第1部 Flask入門 ●第2部[Flask実践1]物体検知アプリの開発 ●第3部[Flask実践2]物体検知機能のAPI化/デプロイメント ●第4部機械学習APIの開発 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • PythonフレームワークFlask アプリケーションをデプロイしよう
    -
    本書ではGCP(Google Cloud Platform)にFlaskアプリをデプロイする方法を詳しく解説します。仮想マシンの立ち上げから始まり、ステップバイステップでデプロイのプロセスを丁寧に説明しています。本書は、PythonでWebアプリケーションを作成したもののデプロイ方法が分からない方、レンタルサーバーにWebサイトを公開する方法は分かるが、アプリケーションのデプロイには不安がある方、そもそもデプロイの概念がよく分からない方にとって理想的なガイドブックです。実際の操作手順に加え、GCPの基本的な使い方から応用まで幅広くカバーしていますので、初心者から中級者まで満足いただける内容となっています。これ一冊でデプロイに対する理解が深まり、実践的なスキルを身につけることができます。
  • PythonフレームワークFlaskで請求書発行アプリを作ろう
    -
    この技術書籍は、Pythonのフレームワーク「Flask」を用いて、Webデザイナーやエンジニアがブラウザ上で請求書を発行できるアプリケーションの作成方法を、わかりやすく段階を追って解説します。読者は公開されているサンプルコードをGitHubからダウンロードし、自分の環境でアプリケーションの動作を確認しながら、Flaskを使ったWebアプリケーション開発の技術を実践的に学べます。Pythonの基本を押さえた後の次のステップとして、またはPythonを使ったWebアプリケーション開発の全体的な理解を深めたい方、さらには請求書発行作業の効率化を目指すフリーランスのWebデザイナーやエンジニアに特にお勧めします。
  • Pythonブートキャンプ[データ分析コース] ~コードを書くチカラを鍛える3週間集中プログラム
    -
    ◆Pythonの基礎学習から前進する実践問題集◆ 「コードを書くには基礎学習を完璧にしなきゃ」と思い込んでいませんか?  試験勉強のように、ノートにまとめたり、文法を丸暗記したり……。しかし、本当のプログラミング最短習得の道は「とにかく実践あるのみ」です。そこで、本書はデータ分析の演習問題を105問掲載。自分でコードを書くトレーニングを1日5問ずつこなし、3週間で実務に通用するレベルを目指します。「入門書を1冊読んでも、いざ実践となると手が動かない」「転職のためにどうステップアップしよう……」と悩む方は必読です! ■こんな方におすすめ ・Pythonの基礎学習からステップアップしたい人 ・データサイエンティストを目指す人 ・業務データを分析したい人 ■目次 Chapter1 データ分析でよく使う「基礎文法」15問 Chapter2 基本の流れをおさえる「分析フロー」10問 Chapter3 分析前の下処理をする「データ加工」20問 Chapter4 “見える形”に表現する「データ可視化」10問 Chapter5 データの傾向をくわしく見る「統計学」10問 Chapter6 学習し未来を予測する「機械学習」20問 Chapter7 分類問題のKaggleコンペに挑戦しよう Chapter8 回帰問題のKaggleコンペに挑戦しよう ■著者プロフィール はやたす:データサイエンティスト兼YouTuber。新卒で大手メーカーに機械学習エンジニアとして開発業務に従事し、8ヶ月で独立する。東証33区分で売上No.1企業やスタートアップ企業で分析・開発案件を請け負う。現在はサービス業や情報・通信業など、幅広い業界で分析案件に参画中。Pythonやデータサイエンスの効率的な習得法を伝えるため、Udemy講師、情報系大学の講演、YouTubeチャンネル「はやたす/Pythonチャンネル」の運営をおこなう。
  • Python+Panda3Dによるゲームプログラミング入門 Panda3Dゲームエンジンのテキストブック
    -
    Panda3D は、ゲームエンジンと呼ばれるソフトウェアで、3D 描画およびゲーム開発のためのライブラリーです。これにより簡便に3Dモデルが操作でき、陰影処理、炎・煙・水などの視覚効果、物理シミュレーションなどが利用できます。Panda3Dによるゲーム開発では、そのスクリプトを通常プログラミング言語Pythonで記述します。  本書は、Panda3Dの命令の詳細解説と、Python で記述された機能別サンプルスクリプトからなる解説書で、Pythonの基本的な文法(データ型、ifなどの基本制御構造、クラスの基本的使い方など)を理解している方を対象にしています。  本書の主な特色を次に示します。 (1)自作アプリに活用しやすい機能別構成: 自作アプリに加えたい機能を見つけやすいように、解説内容を機能別に分類し、そのタイトルを原則「○○する」「○○を使う」と表記してあります。 (2)汎用的な書式と使用例の提示: Panda3Dの機能をPythonスクリプトで操作できるように、その命令文に関する汎用的な書式を示し、具体的なスクリプトを例示し解説してあります。 (3)自作アプリに転用しやすいサンプルスクリプト: サンプルスクリプトを一部修正して自作アプリに転用することを想定し、大規模なPanda3D アプリの事例ではなく、機能ごとにサンプルスクリプトを作成する演習を設けています。このスクリプトはしっかり各機能を実現した上で、要点を押さえた短いコードで記述されています。また、実行した際に各機能の挙動を観察しやすいように出力を工夫してあります。 (4)ベクトルの知識とその適用例に関する解説: オブジェクトを自在に操作するスクリプトを記述するには、ベクトルとクォータニオンの理解が不可欠です。本書では、ベクトルの基礎、オイラー角とクォータニオンの基礎、ベクトル演算について、その具体的な適用例と共に解説してあります。 (注)本書で解説するPanda3DのメソッドやPythonで記述されたサンプルスクリプトは、次のソフトウェア環境下で動作確認されています。 ※ただし、ゲームパッドに関する動作確認はWindowsOS のみ。  Windows 10 Home 21H1/macOS Big Sur 11.6 (M1)/Python 3.9.7/Visual Studio Code 1.60.1
  • Pythonプログラミング&データサイエンスライブラリ活用入門
    -
    ◆データの分析・活用に必要な基本の力を身につける!◆  本書は、Pythonによるプログラミングの基本とともに、データサイエンス関連のPythonライブラリの基本的な使い方を1冊で学べる入門書です。書籍の前半では、Pythonの基本文法はもちろん、Pythonならではの表現方法や機能についても解説します。また、さまざまな問題解決に必要となる「プログラミング的思考」「データ構造とアルゴリズム」についても取り上げることで、単に便利なライブラリを使えるようになるだけではなく、問題を解決するための本質的な力を身につけられるようにします。書籍の後半では、ここまで学んできたPythonの知識をもとに、Matplotlib/seaborn/NumPy/NLTK/spaCy/Pandas/scikit-learn/BeautifulSoupの使い方を学んでいきます。 ■こんな方におすすめ ・実戦で使えるPythonの知識を身につけたい人 ・データサイエンス関連ライブラリの基本を身につけたい人 ■目次 序章 本書の3つのテーマと構成 第1章 Python文法の基本 第2章 Python流プログラミング 第3章 Pythonの機能を使った各種処理 第4章 ColabTurtleを使ったプログラミング的思考 第5章 データ構造とアルゴリズム 第6章 Matplotlibによる可視化 第7章 seabornによる統計的グラフの作成 第8章 NumPyによる科学技術計算 第9章 NLTKとspaCyを用いた自然言語処理 第10章 Pandasによるデータフレームとデータ操作 第11章 scikit-learnによる機械学習 第12章 BeautifulSoupを用いたWebスクレイピング ■著者プロフィール 河西朝雄:山梨大学工学部電子工学科卒(1974年)。長野県岡谷工業高等学校情報技術科教諭、長野県松本工業高等学校電子工業科教諭を経て、現在は「カサイ.ソフトウエアラボ」代表。著書多数。
  • PythonプログラミングABC 正確に・美しく・簡潔に!
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【Pythonプログラミングの“入門の入り口”になる教科書!】  本書はプログラミング経験がない方やPC操作に不慣れな方でも無理なく読み進められる、Pythonプログラミングを始めるための“入門の更にその入口”となる教科書。  プログラムを実際に動かしながら学んでいく構成のため、基礎がしっかりと身に付くだけでなく、米国で成功した著者直伝の実践的知識まで習得できる。応用力アップにつながる例題も豊富に掲載。本書掲載のプログラムはすべてウェブから入手できるので、講義や独習にも役立つ。  Python入門者に、最初に手に取ってほしい一冊。
  • Pythonプログラミング完全入門~ノンプログラマーのための実務効率化テキスト
    -
    武器としてのPythonをこの1冊で身につける! これから「Python」を学ぼうとしている皆さんは,おそらく,今後ITに関わっていくなかで必要な「スキル」を身をつけたり,自らの力で業務の自動化や効率化を実現したりといった,何らかの目的をもっていることかと思います。 プログラミングの学習は一朝一夕には効果が出ません。ある程度の時間を要することになるかと思いますが,「時間」とそのコントロールの重要性の認識が甘いまま進みはじめると挫折する可能性がとても高くなります。 本書の1章と2章では,そうしたプログラミング学習を行う上での時間管理なども含め,Pythonを学ぶ前の事前知識の習得と準備を行います。 第1部 準備編 Chapter01 Pythonを学びはじめる心構えを整えよう Chapter02 Pythonを学ぶ環境を作ろう 「Python」は比較的簡単に学べる言語とはいえ,学習は長い道のりになります。心構えや準備は,その長い期間の学習活動を継続し,その効果を高めるという視点で重要です。 続いて,3章から6章までは,プログラミング言語Pythonの最初の一歩の基本から,関数やクラスといった部品化のテクニックまでを解説します。実務でPythonを活用する際の土台をしっかりと身につけるパートです。 第2部 文法編 Chapter03 Pythonプログラムの基本を知ろう Chapter04 フロー制御について学ぼう Chapter 05 データの集合について学ぼう Chapter 06 プログラムを部品化しよう 7章から18章までは,クリップボード,ファイルやフォルダ,インターフェース,Excelファイル,QRコード,画像,PDF,スクレイピング,データ処理,グラフといった対象を操作する,実用的で具体的なツールを作りながら,そのために必要なモジュールとその組み立て方について学びます。 第3部 実践編 Chapter 07 Excelにデータを集めるツールを作ろう Chapter 08 Excelレポートを更新するツールを作ろう Chapter 09 Pythonを動かすインターフェースを作ろう Chapter 10 スクレイピングツールを作ろう Chapter 11 ブラウザを操作してスクレイピングをしよう Chapter 12 画像を加工するツールを作ろう Chapter 13 QRコード生成ツールを作ろう Chapter 14 PDFを操作するツールを作ろう Chapter 15 ZIPファイルを展開・圧縮するツールを作ろう Chapter 16 Jupyter Notebookでノートブックを作ろう 本書を通して学習をすることで,皆さんの仕事のいくつかの面倒な業務をPythonに任せられるようになるはずです。また,別の実現したいことがあれば,ご自身で調べながら実現する地力がついていることでしょう。そして,そこから先,データ分析,AI・機械学習,Web開発,IoTなど,無限といってもよい「Python」の世界が広がっています。そこまでは多くの学習の積み重ねが必要ですが,皆さんご自身の働き方やキャリアにとって,「Python」が強力な武器になっていることでしょう。本書をぜひ,そのための最初の足がかりとしてご活用ください。
  • Pythonプログラミング パーフェクトマスター
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonはシンプルな文法でAI開発ができる優れたプログラミング言語です。いま、機械学習や人工知能ブームを受けて、Python技術者の需要が高まっています。本書は、人工知能を実際に作りながらPythonを基礎から学ぶプログラミングガイドです。基本的なデータ操作から、文字列の処理、プログラムの流れの制御を説明し、かんたんなシミュレーションゲームを作りながらオブジェクト指向を学習し、簡単な人工知能の開発まで解説します!
  • Pythonプログラミングパーフェクトマスター[最新Visual Studio Code対応 第4版]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、Pythonの基礎から、統合型の開発用フレームワーク「Anaconda」などのツールの使い方、今話題のディープラーニングまで、チャットボットの開発を体験しながら楽しく学ぶPython解説書の決定版です。
  • Pythonプログラミングパーフェクトマスター[Python3/Anaconda/PyQt5対応第3版]
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonは、パワフルなオブジェクト指向型の言語ですが、文法がシンプルなため、入門者が最初に学ぶプログラミング言語にうってつけです。本書は、Pythonの基礎から、統合型の開発用フレームワーク「Anaconda」などのツールの使い方、今話題のディープラーニングまで、チャットボットの開発を体験しながら楽しく学ぶPython解説書の決定版です。第3版では、最新のWeb API、ライブラリに対応し、画像認識もより高度な手法を追加しました。
  • Pythonプロフェッショナルプログラミング第3版
    4.3
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 2015年2月発刊の第2版を全面改訂しました。バージョン管理システムはMercurial/Redmine からGit/GitHub に変更、CI(継続的インテグレーション)ツールはJenkins からCircleCI に変更しています。また、Web開発に限らず、機械学習プロジェクトの開発ノウハウの章を新設しました。
  • Pythonプロフェッショナルプログラミング 第2版
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonの実践的ノウハウを知りたいが周囲に聞ける人がいない。チームで開発する方法も知りたい。そんなプログラマーの皆さま、ご安心ください。本書は、Pythonをメインに手がけるビープラウドが社内で蓄積したWeb開発の最新手法を惜しみなく公開します。作業環境の構築から、Webアプリケーションの作り方、課題管理、レビュー、テスト、デプロイの効率化、サーバーのチューニングなどPython開発のプロセスとノウハウが身につきます。
  • Pythonプロフェッショナルプログラミング 第4版
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Python開発サイクルを「個人開発」と「チーム開発」の2つの視点から整理し、プロなら知っておきたい実践的ノウハウを学びます
  • PythonやJupyterでiPhone/iPadプログラミング!
    -
    本書は、iOSデバイスの機能を最大限に活用するためのPythonガイドです。iPhoneやiPad上で実行できるPython/Jupyter Notebook環境である「Carnets for Jupyter」から、「Juno」、「Pyto」、「Pythonista」といった多彩なPython環境を駆使し、iPhone/iPadを自在に活用する方法を探求します。
  • PythonユーザのためのJupyter[実践]入門
    -
    Jupyter NotebookはPythonユーザを中心に人気の高い,オープンソースのデータ分析環境です。インタラクティブにコードを実行でき,その結果を多彩なグラフや表などによって容易に表現できます。本書では,実践的な活用ノウハウを豊富に交えて解説します。また,可視化に際しては,Pythonで人気のライブラリ「pandas」「Matplotlib」「Bokeh」を中心に解説します。
  • Python ライブラリ厳選レシピ
    -
    Pythonには,豊富な標準あるいはサードパーティライブラリ・モジュールがあります。ライブラリに関するドキュメントも充実していますが,初心者にとってはそのボリュームゆえに,まずどんなライブラリを活用できればよいのか,わかりづらい側面があります。ドキュメントは使用頻度の高い・低いに関わらずフラットに記載されており,サードパーティのライブラリについては言及されていません。本書では,「これだけは押さえておきたい」ライブラリとその機能を,標準ライブラリだけでなくサードパーティのものも交え,カテゴリごとに,その活用法を紹介します。バージョンはPython 3.4をメインとします。
  • Pythonライブラリによる因果推論・因果探索[概念と実践] 因果機械学習の鍵を解く
    4.5
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 広大な因果世界を幅広くカバー! 因果推論・因果探索のコード例を多数掲載 原著は米国Amazonでカテゴリーベストセラー(2024/6上旬など) データサイエンティスト、機械学習エンジニアなら知っておきたい 因果的概念、グラフによる理解、因果探索の実践などを解説。 パート1では、関連・介入・反事実、構造的因果モデルなど、 因果推論を構成する基本概念と、グラフ表現を解説。 パート2では、因果推論プロセスの4ステップのほか、 DoWhy/EconMLを使った因果推論の実装などを説明。 パート3では、因果探索の概念、因果分析プロセスでの位置づけ、 gCastle等を使った高度な因果探索の実装を取り上げます。 【章構成】 ■Part1 速習:因果関係 第1章 因果関係に取り組む理由:機械学習があるのに? 第2章 ジューディア・パールと因果のはしご 第3章 回帰、観測、介入 第4章 グラフィカルモデル 第5章 チェーン、フォーク、コライダー ■Part2 因果推論 第6章 ノード、エッジ、統計学的な独立と従属 第7章 4ステップの因果推論プロセス 第8章 因果モデル―仮定と課題 第9章 因果推論と機械学習―マッチングからメタ学習器まで 第10章 因果推論と機械学習―高度な推定器、実験、評価など 第11章 因果推論と機械学習―ディープラーニング、NLPなど ■Part3 因果探索 第12章 因果グラフをいただけますか―因果関係の知識源 第13章 因果探索と機械学習―仮定から応用まで 第14章 因果探索と機械学習―高度なディープラーニングとその先へ 第15章 エピローグ
  • Pythonライブラリの教科書
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonを使ったプログラミングが流行していますが、たんにPythonの文法を知っているだけではPythonプログラミングを理解したことにはなりません。Pythonが重宝されている理由は、「ライブラリ」にあります。ライブラリとは、アプリケーションをプログラミングする際に便利な、「プログラムの部品」です。AIプログラミングのためのライブラリや、データ分析のためのライブラリなど、作成するアプリケーションごとに、さまざまなライブラリがあります。 本書は、そうしたライブラリを活用して、どのようなことができるのかを体験する入門者向けの本です。Pythonを便利に使うために、ライブラリを活用しましょう!
  • Pythonを使った数値計算入門 数論から円周率、分子の拡散まで
    -
    1巻3,080円 (税込)
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンピュータを使って、ユークリッドの互除法やニュートン法など数学の理解を深められる数値計算の入門書。本書では機械学習の分野で広く普及しているフリーソフトPythonを用いて様々な数学の問題を解くことにより、コンピュータが苦手な読者でも計算機に親しみながら簡単なプログラムを独力で作成できるようになります。
  • パイ包み焼きの新機軸
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 老舗のスペシャリテから気鋭シェフの最新作まで、10軒のレストランによるパイ包み焼きの豊富なバリエーションを紹介する。 「冷前菜」「温前菜」「魚料理」「肉料理」「デザート」とジャンル別に分類し、各店舗ならではの独自の工夫を解説する。
  • PyTorch自然言語処理プログラミング word2vec/LSTM/seq2seq/BERTで日本語テキスト解析!
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 日本語テキスト解析処理を快速プログラミング! 単語/文書の分類、機械翻訳などを実装。 自然言語処理は、検索エンジン、自動要約、機械翻訳、音声認識などで利用される技術です。 PyTorchでは、特にTransformersというBERT系モデルを提供することで、 より簡単にBERTを利用できるようになっています。 本書では、自然言語処理で特に重要なディープラーニング技術である word2vec、LSTM、seq2seq、そしてBERTを取り上げます。 まず第1章でPyTorchの基本を説明します。そのあと各技術の考え方を説明し、 PyTorchを使ったそれぞれのプログラミング手法を解説します。 それらのプログラミングでは、以下のことなどを目的にしています。 ・単語や文書の類似度を測る ・文章内の単語の品詞を分類する ・日英の機械翻訳を実行する ・文書を分類する ・質問/回答タスクを実行する 【本書の構成】 第1章 PyTorchの基礎 第2章 word2vecによる分散表現 ~単語をベクトルで表現~ 第3章 LSTMによる時系列データ解析 ~文を単語の系列として解析~ 第4章 seq2seqモデルによる機械翻訳 ~ある系列を別の系列に変換~ 第5章 事前学習済みモデルBERTの活用 ~タスクに応じてモデルを調整~ 付録A プログラミング環境の構築(Windows) 付録B 本書で解説した主要プログラム集 ※本書の内容はPython/PyTorch/機械学習の基本事項を 理解されていることを前提としています。
  • PyTorch実践入門
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ディープラーニングの重要な基礎概念と、PyTorchを用いたディープラーニングの実装方法について、細部まで掘り下げて解説。限られたデータでニューラルネットワークを訓練する方法、訓練済みモデルのデプロイ方法など『ディープラーニング・プロジェクトのベストプラクティス』を提示します。 ・ディープラーニングのメカニズムを解説 ・Jupyter Notebook上でサンプルコードを実行 ・PyTorchを用いたモデル訓練の実施 ・実データを使用するプロジェクトをベースに実践的解説 ・本番環境へのさまざまなモデルデプロイ方法 PyTorchで実際にどのように組み込まれて実現されているのか、細部まで掘り下げた解説をしていますのでディープラーニングの活用を目指している開発者や詳しく知りたい方におすすめです。 Manning Publications『Deep Learning with PyTorch』の翻訳書 第1部 PyTorchの基礎 第1章 ディープラーニングとPyTorchの概要 第2章 訓練済みモデルの利用方法 第3章 PyTorchにおけるテンソルの扱い方 第4章 さまざまなデータをPyTorchテンソルで表現する方法 第5章 ディープラーニングの学習メカニズム 第6章 ニューラルネットワーク入門 第7章 画像分類モデルの構築 第8章 畳み込み(Convolution) 第2部 ディープラーニングの実践プロジェクト:肺がんの早期発見 第9章 肺がん早期発見プロジェクトの解説 第10章 LUNAデータをPyTorchデータセットに変換 第11章 結節候補を画像分類するモデルの構築 第12章 評価指標とデータ拡張を用いたモデルの改善 第13章 セグメンテーションを用いた結節の発見 第14章 結節・腫瘍解析システムの全体を構築 第3部 デプロイメント(Deployment) 第15章 本番環境にモデルをデプロイする方法
  • PyTorchで作る!深層学習モデル・AI アプリ開発入門
    5.0
    大人気の機械学習フレームワーク「PyTorch」で 深層学習モデルとAIアプリを開発しよう! 【PyTorchについて】 PyTorch は、主に深層学習で利用されている機械学習フレームワークです。 世界中で幅広く利用されており、国内でもここ数年で多くの方が利用し始めています。 【本書の概要】 Udemyで公開中の大人気講座『【PyTorch+Colab】PyTorchで実装するディープラーニング -CNN、RNN、人工知能 Web アプリの構築』の書籍化企画です。 PyTorch を使い、CNN による画像認識、RNN による時系列データ処理、深層学習モデルを利用した AI アプリの構築方法を学ぶことができます。 本書で PyTorch を利用した深層学習のモデルの構築からアプリへの実装までできるようになります。 【本書で得られること】 ・機械学習フレームワーク「PyTorch」の基礎が身につきます。 ・PyTorchのコードの読み書きができるようになります。 ・CNN、RNN などを実装できるようになります。 ・自分で調べながら、ディープラーニングのコードを実装する力が身につきます。 ・最終的に人工知能アプリを構築し、公開できるようになります。 【目次】 Chapter0 イントロダクション Chapter1 PyTorchと深層学習 Chapter2 開発環境 Chapter3 PyTorchで実装する簡単な深層学習 Chapter4 自動微分とDataLoader Chapter5 CNN(畳み込みニューラルネットワーク) Chapter6 RNN(再帰型ニューラルネットワーク) CHapter7 AIアプリの構築と公開 APPENDIX さらに学びたい方のために 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab 株式会社を起業。「ヒトと AI の共生」がミッション。人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 理学博士(物理)。解決策のモデル化、数式化が得意で、プログラミング教育も行う。 近著に『Google Colaboratoryで学ぶ!あたらしい人工知能技術の教科書 機械学習・深層学習・強化学習で学ぶAIの基礎技術』、 『Pythonで動かして学ぶ!あたらしい数学の教科書』(いずれも翔泳社)がある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • PyTorchではじめるAI開発
    -
     本書では、PyTorchを使い、実際の製品やサービスの開発時に役に立つ手法を紹介するようにしています。  本書で紹介する「AI開発」では、必ずしもすべての章で、ニューラルネットワークの構造(ニューロン同士の接続の仕方)を一から新しく作成するようなことはしませんが、TorchVisionやTorchHubにある学習済みのモデルやGitHub上で公開されているコードなども、積極的に採用するようにしています。  本書では、章によって、異なるAIを開発しますが、その際には、公開されているモデルをそのまま流用して「広義のAI」のみを作成したり、あるいは公開済みのモデルを転移学習・ファインチューニングしたりと、その都度、もっとも近道であると思われるスキームを利用して、「AI開発」を行います。

    試し読み

    フォロー
  • PyTorchで始める深層学習 ――数式なしで基礎から実装まで
    -
    1巻2,860円 (税込)
    PyTorchは、世界で主流の深層学習ライブラリのひとつ「Torch」(松明の意)のPython対応版です。Facebookが開発を主導したオープンソースとして非常に注目されています。本書はこのライブラリを初めて触るところから手ほどきし、Pythonによる異常検知や画像認識の実装までを体験。機械学習・深層学習を初めて学ぶITエンジニア向けに、数式なしで丁寧に解説します。 ◆本書の特徴 機械学習・深層学習のアルゴリズムを数式なしで理解できる。 Pythonを使って少ないコードで簡単に実装できる。 異常検知や画像認識など、様々なケースの実装を体験できる。 ◆本書の構成 ・第I部 AI技術の最新動向やPyTorchライブラリの概要、実装環境の構築方法 ・第II部 機械学習の全体像、ニューラルネットワーク・アルゴリズムを使った学習の実装方法 ・第III部 深層学習のアルゴリズム(DNN、CNN、Deep Q Network)を使った学習の実装方法

    試し読み

    フォロー
  • PyTorchニューラルネットワーク 実装ハンドブック
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 PyTorchは動的計算グラフ(define by run)を採用した、Pythonプログラムと同じ感覚でニューラルネットワークを構築できる深層学習フレームワークです。本書は、深層学習の基礎をすでに習得したエンジニアが、より難しいタスクへ挑戦するためにPyTorchの開発環境構築から、畳み込み/リカレント/GAN/物体検出まで実装方法を実際にサンプルを作りながら学べる入門書です。データ分析ツールJupyter Notebookに対応しています。
  • PyTorchによる物体検出
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 PyTorchで物体検出アルゴリズムを実装しよう! 本書は、PyTorchを利用して、物体検出のアルゴリズムと実装方法を解説する書籍です。 ・ PyTorch(パイトーチ)とは? 2018年にFacebook が発表した、ディープラーニングのフレームワークです。世界的にユーザーが多く、GitHubで公開されるディープラーニングのプログラムもPyTorchで作られたものが多数存在します。 ・ 物体検出とは? 画像認識の一分野で、画像から特定の物体の位置と、その物体のカテゴリ(クラスタ)を検出する技術です。 ディープラーニングは当初、物体の識別において従来手法を大きく上回る精度を出したことから注目されました(例:2012年の画像認識コンテストILSVRC)。ただし物体識別自体はどちらかといえば要素技術であるため、そのまま現実のシステムに応用することは多くありません。実際に必要とされるものは、多くの場合、物体識別を発展させた物体検出です。自動運転・外観検査・医療分野の画像診断など、どれも物体識別ではなく物体検出の技術が使われています。 本書は、PyTorchの使いかたを習得することと、物体検出の各種アルゴリズムを理解して自力でプログラムを作れるようになることを目的とします。前半はPyTorchについて解説し、後半は物体検出の代表的なアルゴリズムを解説しながら、PyTorchでの実装例を示します。 <本書の特徴> ・PyTorchを使って物体検出アルゴリズムを実装できるようになります。 ・Pythonによるサンプルコードを例示&配布し、自分で手を動かしながら理解を深められます。 第1章 PyTorch によるプログラミング 第2章 物体検出アルゴリズムSSDの実装 第3章 SSDに関連した話題
  • PIED PIPER DAYS
    4.0
    1巻2,640円 (税込)
    日本のロックの貴重な証言者にして 豊富な知識で数々の名盤を紹介してきた ポップスの水先案内人によるマジカルな音楽体験記70年代はシュガー・ベイブ~ティン・パン・アレー~細野晴臣のマネージャーとして、80年代は伝説のレコード・ショップ、パイドパイパーハウスの店主として、国内外の音楽シーンを見つめてきた長門芳郎による初の回顧録。シュガー・ベイブ誕生秘話、未発表作品も含むティン・パン・アレーの関連作やコンサートにおける数々の逸話、小説にも登場し流行の最前線といわれたレコード・ショップの店頭での出来事、渋谷系勃興前夜の東京の音楽シーン、さらに取材、招聘やプロデュース、リイシューを通じた海外ミュージシャンとの交流などが、貴重な写真や資料をまじえて丹念に綴られる。関連作を紹介するディスク・ガイド付き。
  • パイドロス
    4.0
    真実そのものの把握なしには真実らしく語ることさえ本来的に不可能であることを立証し、「哲学」の立場から鋭く当時の弁論術を批判したのがこの対話編である。本書はプラトンの代表作の一つであって、特に『ソクラテスの弁明』をはじめとする前期著作群を『テアイテトス』以降の著作に結びつけてゆく重要な役割を担っている。

    試し読み

    フォロー
  • パイドン~魂について~
    3.8
    死後、人間の魂はどうなるのか? 肉体から切り離され、それ自身存在するのか? 永遠に不滅なのか? ソクラテス最期の日、獄中で弟子たちと対話するプラトン中期の代表作。魂の存在を哲学し、威厳をもっておだやかに死を迎えるソクラテスの姿は、「知を愛し求める人」そのものと言えよう。ソクラテスが死を迎えるその瞬間は、その簡潔な描写で美しい一幅の絵画のようであり、感動のラストシーンでもある。
  • パイドン 魂の不死について
    4.7
    毒杯をあおぎ刑死するその日,ソクラテスは集まった弟子たちとともに「魂の不死」をめぐる探究に挑戦する.魂はいかにして肉体の死を超えうるのか.魂のあり方は人間の生き方にいかなる意味をもつのか.イデア論の豊かな可能性を切り開きつつ,主著『国家』へと続くプラトン哲学の代表的対話篇.文字を大きくし新解説を加えた改版.

    試し読み

    フォロー
  • パイナップル編みのこもの
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 一度は編んでみたい人気のパイナップル編みを、ドイリー、アクセサリー、つけ衿、バッグ、ショールなど初心者でも編みやすいこものを中心に掲載。繊細でロマンティックなデザインが満載!
  • パイナップルあみのショールとストール30
    4.5
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 手あみが大好きな人に向けて、人気のパイナップル模様をテーマにしたかぎ針あみのレシピブック。ひと口に「パイナップルあみ」といっても様々なバリエーションがあります。ここでは様々なパイナップルの形、あしらい方を紹介。好みの形がきっとみつかるでしょう。テーマカラーごとにパートをわけたので好みの色から選べます。オールカラーで1見開きに作品写真とあみ方を掲載しているので、写真とカラーのあみ方図を見比べながらあめます。 ●レースあみの華麗な世界観に定評がある河合真弓がデザイン。 ●使用糸はすべてハマナカ株式会社のコットン糸やリネン糸などです。
  • パイナップルに見た夢(たくさんのふしぎ2025年7月号)
    -
    そのまま食べても、お菓子にしても、さわやかに甘くておいしいパイナップル。どんなふうにできる果物か知っていますか? パイナップルの花を見たことはありますか? パイナップルができるまでを紹介します。そして、パイナップルの栽培を日本で始めたのは、沖縄県石垣島に移住してきた台湾の人たちでした。約90年前のことです。パイナップルの歴史も描きます。 *電子版には、折り込み付録の「ふしぎ新聞」および年3回の一枚絵付録はつきません。

    試し読み

    フォロー

最近チェックした作品からのおすすめ