情報科学作品一覧

  • 詳解セキュリティコンテスト
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 情報セキュリティ技術を競うコンテスト:CTF(Capture the Flag)について技術的な背景の解説を通し実践的に学んでいく一冊です。現代CTFにおいて主流である4ジャンルを解説します。 ・Web(Webアプリケーションへの攻撃) ・Crypto(暗号解読) ・Reversing(バイナリ解析) ・Pwnable(低級プログラムの掌握) 各Part冒頭には必要な基礎知識の説明を用意、幅広くかつ丁寧に解説しますので現代CTFの傾向が理解できるとともに、競技を楽しむための足腰を鍛えることができます。 「問題をどのような目線で分析するか」「どのような時に、どの解法を検討するか」といった問題と向き合う際の思考法への言及にも注目してみてください。 情報セキュリティの技を磨く足掛かりに。 CTFに臨むための技術を理論と実践で身に付けよう Part 1 準備 1章 CTF入門 2章 実習環境の準備 3章 問題環境の構築 4章 Python入門 Part 2 Web 5章 WebセキュリティとCTF 6章 Webの基礎知識 7章 ディレクトリトラバーサル 8章 XSS 9章 SQLインジェクション 10章 SSTI 11章 SSRF 12章 XXE Part 3 Crypto 13章 暗号について 14章 環境構築 15章 ハッシュ関数 16章 共通鍵暗号 17章 初等整数論 18章 RSA暗号 19章 ElGamal暗号 20章 その他の公開鍵暗号 21章 乱数 22章 練習問題 Part 4 Reversing 23章 Reversingを始める前に 24章 アセンブリ言語 25章 アセンブリを読んでみよう 26章 静的解析に触れてみよう 27章 動的解析を組み合わせよう 28章 より発展的な話題 29章 実践問題の解答 Part 5 Pwnable 30章 導入 31章 シェルコード 32章 スタックベースエクスプロイト 33章 共有ライブラリと関数呼び出し 34章 ヒープベースエクスプロイト 35章 仕様に起因する脆弱性 36章 実践問題の解法 付録A ASCIIコード 付録B Linuxシステムコール(x86_64) 付録C 主要な定数値一覧
  • 初心者でもOK ゼロから稼げるChatGPT入門(きずな出版)
    4.0
    【「わかりやすい」「即実践」「上級者まで上達」すべて凝縮!】多くのニュースなどで取り上げられ、広く知られてきているAI、ChatGPT。いまやChatGPTはLINEの操作と同じ気軽さで使えて、専門家レベルの頭脳とクオリティで仕事をこなしてくれます。ChatGPTを代表とする生成AIが浸透していないいまは「お金を稼ぐチャンス」でもあります。本書は ・知識がない人でも始められる丁寧な解説 ・著者のノウハウを凝縮し、プロ仕様のカスタマイズや知識が身につく ・副業やビジネスなどで使う方法を職業別や用途別に分けて、自分の稼ぎ方がわかる ・面倒な指示(プロンプト)も本書をそのまま使うだけでバッチリ! と、誰にとってもスキルアップが実現できる一冊です。
  • 進化する銀行システム 24時間365日動かすメインフレームの設計思想
    4.3
    人々の生活や企業活動を支える銀行のオンラインシステム。地震などの大規模災害対策として,銀行の国際競争力を高める手段(振込の24時間化や休日・夜間の即時決済など)として,24時間365日止まらずに稼動し続けることが求められています。本書は,多くの銀行システムで採用されているメインフレームのしくみ,とくに信頼性,可用性,保守性を高める技術をわかりやすく解説します。銀行システムの歴史や特性,メインフレームやそのOS「z/OS」の特徴や機能を学びたい人,システムの障害・災害対策を検討したい人に役立つ1冊です。
  • やさしく知りたい先端科学シリーズ3 シンギュラリティ
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 シンギュラリティ(Singularity)とは人工知能(AI)が人間の能力を超えることで起こる「技術的特異点」のこと。ロボット技術がさらに進化し、大変革が起こって後戻りできない世界に突入すると、人類はどうなるのか――。本書はシンギュラリティの実例と最新動向をわかりやすい文章と写真・イラストで解説し、近未来に訪れる世界を多角的に描き出す。話題の先端科学に触れたいとの知的好奇心に応えるシリーズ第3弾。
  • 新人工知能の基礎知識
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 1988年初版発行以来27刷を重ねた本を時代に合わせてアップデート!述語理論を詳説! 本書は、人工知能という分野で行われている議論や研究を理解するために必要な基礎知識の提供を目的として、単に「こういうことがある」という知識ではなく、「なぜこのように考えるのか?」という疑問に答えられる真の理解と実力を身につけられるような構成と解説をしている。新たに演習問題とその解答も掲載。
  • 新装改訂版 Excel VBA 本格入門~マクロ記録・If文・ループによる日常業務の自動化から高度なアプリケーション開発までVBAのすべてを完全解説
    -
    Excel VBAを本気で自分のものにしたい方、入門書を終えてから一気のレベルアップを狙う方、ユーザーフォームやコントロールなど実務でExcel VBAを思いのままに操りたい方、そんなExcel VBAユーザーの皆さまにとっての最高の教科書です。 マクロ記録やVBEの使い方といった基本のキから、関数、イベント、エラー処理まで、Excel VBAプログラミングにマストな22テーマを完全網羅。本書をやりきることで、Excelユーザーの方がExcel VBAプログラマーと名乗れるレベルに到達できることを請け合います。
  • 深層学習
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 深層(多段層)ニューラルネットワークの構築は人工知能を模索する研究者にとっては、長年の課題であり夢でもあり、まさに研究対象でもあった。しかしただ単に多層化するだけでは、能力をうまく発揮することは出来なかった。近年、大きなブレークスルーがあり深層学習の手法を使うことにより、機械が自ら表現を学習出来ることが分かった。しかし、新しい手法でもあり、未解決な課題も多く存在している。 本書は、この分野の最先端の著者らが、人工知能学会誌に掲載した連載解説を、大幅に加筆再編したものである。今までの到達点、今後の課題が、具体的な研究成果と共に書かれている。深層学習の理論・応用を、自らの研究に取り込むことを考えている読者には、まさに必携必読の書籍である。
  • 深層学習とメタヒューリスティクス ディープ・ニューラルエボリューション
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層学習、進化計算、メタヒューリスティクス...人工知能キーワード!!  本書は、深層学習・ディープラーニング、進化計算、メタヒューリスティクスについて解説します。深層学習は画像処理や自然言語処理などさまざまに応用され、人工知能の重要手法です。またメタヒューリスティクスは生物や物理化学現象をもとにした最適化・AI手法です。  本書ではDeep Neural Evolutionの基礎から応用までをわかりやすく説明します。また、メタヒューリスティクス、進化計算についてデモンストレーションとなるサンプルプログラム(C++、Java等)を提供します。 第1章 AIのための進化論 第2章 深層学習とディープラーニング 第3章 メタヒューリスティクス 第4章 生物らしい計算知能 第5章 ニューロ進化と遺伝子ネットワーク 第6章 ディープ・ニューラルエボリューション
  • 深層学習による画像認識の基礎
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 CNNとViTによる画像認識を本格的に学ぶために! 本書は、深層学習(ディープラーニング)に基づく2つの技術、畳込みニューラルネットワーク(CNN)とVision Transformer(ViT)を通して、画像認識の基礎を実践例とともに解説するものです。 画像認識技術は、顔認証や異常検知など、現代社会に欠かせない技術として広く応用されており、研究開発も盛んに行われています。本書では、確かな理解のもとに画像認識技術の研究開発が可能となるよう、前半において理論的な基盤(深層学習の基本事項、畳込みニューラルネットワーク(CNN)、Vision Transformer(ViT))を、紙数を割いてわかりやすく解説していきます。また後半では、画像認識の基本的手法である物体検出と領域分割、学習データの大規模化に欠かせない自己教師あり学習を実例とともに解説し、最終章では今後ますます重要になると見込まれるVision and Languageのマルチモーダル処理を詳細に扱います。 全体を通して、擬似コードなどでアルゴリズムを把握できるようにしたほか、Python(PyTorch)のサンプルコードも用意し、読者自身が手を動かして画像認識を実践することができるようにしました。 第1章 画像認識の概要 第2章 深層学習の基礎 第3章 畳込みニューラルネットワーク 第4章 Vision Transformer(ViT) 第5章 物体検出 第6章 領域分割 第7章 自己教師あり学習 第8章 画像と自然言語
  • 深層学習による自動作曲入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能は作曲家の夢を見るか? 【本書のポイント】 ・深層学習による自動作曲技術の全体像を知る ・Colaboratoryを使った自動作曲のお試し ・データセットを多数紹介  機械学習による自動作曲(AI作曲)技術を解説した専門書です。機械学習やメディアアート関係の研究者、学生、音楽産業の技術者を主な読者対象として、現在の自動作曲技術をまとめています。また、実践要素(Python/Colaboratoryを使った自動作曲の実践)を設けて、情報科学の知識のないクリエイターやアマチュア作曲者、動画制作者などが自動作曲にチャレンジできるようにしました。  近年、画像生成を中心にAI(機械学習)によるメディア生成が注目を集めています。自動作曲はその名の通り、音楽を生成する技術で、近年では機械学習・深層学習による自動作曲・音楽分析が盛んに研究されています。  本書では、言語・音声などの従来の時系列データと異なる音楽データの特徴に基づく分析や、音声の生成のような「それっぽい」にとどまらない美的な質の学習方法や評価といった、音楽に特化した機械学習のアプローチを解説します。  読者は本書によって、現時点での深層学習による自動作曲の全体図を理解でき、またGoogleのMusic TransformerやOpenAIのJukeboxなど、最先端の重要モデルの仕組みや性能を学ぶことができます。自身のAI作曲の性能向上や実用性の改善を図ることが可能となります。 第 1 章 AI による自動作曲とは 1.1 背景 ── AI と作曲 1.2 自動作曲の歴史 1.3 本書の目的と構成 1.4 本章のまとめ 第 2 章 音楽の基礎知識 2.1 音楽の存在形式 2.2 平面的な要素 2.3 立体的な要素 2.4 音楽制作の流れ 2.5 本章のまとめ 第3章 AI モデル 3.1 時系列モデル 3.1.1 RNN・LSTM・GRU 3.2 畳み込みネットワークネット (CNN) 3.3 生成モデル 3.4 強化学習 3.5 本章のまとめ 第4章 楽譜(MIDI)としての自動作曲 1:時系列学習による自動作曲 4.1 RNN 基盤の自動作曲 4.2 トランスフォーマー基盤の自動作曲 4.3 本章のまとめ 第5章 楽譜(MIDI)としての自動作曲 2:生成モデルによる自動楽曲 5.1 GAN 基盤の自動作曲 5.2 VAE 基盤の自動作曲 5.3 拡散モデルによる自動作曲 5.4 本章のまとめ 第6章 楽譜(MIDI)としての自動作曲 3:強化学習による自動作曲 6.1 報酬の設定 6.2 他モデルとの融合 6.3 強化学習の二つのアプローチ 6.4 本章のまとめ 第7章 波形としての自動作曲 7.1 なぜ難しいのか 7.2 音声生成 7.3 波形としての音楽生成 7.4 本章のまとめ 第 8 章 データセットおよび評価指標 8.1 データセット 8.2 評価指標 8.3 本章のまとめ 第 9 章 前処理とデータ拡張 9.1 前処理 9.2 データ拡張 9.3 本章のまとめ 第 10 章 AIの他の音楽分野への応用 10.1 音源推薦 10.2 ジャンル識別 10.3 音源分離 10.4 自動ミックスダウンおよびマスタリング 10.5 本章のまとめ 第 11 章 まとめと今後の課題 11.1 今後の課題 11.2 音楽への関わり方の変化と意義 11.3 本章のまとめ 参考文献 索引
  • 深層ニューラルネットワークの高速化
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆推論のしくみから紐解く高速化の原理◆ 本書は深層ニューラルネットワークによる予測を高速化する技法を解説します。巨大なニューラルネットワークを用いた予測には多くの時間と計算コストがかかります。これにより、応答が遅くなりユーザー体験が悪くなるといった問題や、運用コストが大きくなるといった問題が生じます。本書はニューラルネットワークの予測性能を下げることなく高速化することでこれらの問題を解決する技法を解説します。紹介する技法は量子化・枝刈り・蒸留・低ランク近似・モデルマージなど多岐にわたり、幅広い局面に対応します。また、平坦解や宝くじ仮説など、深層ニューラルネットワークの理論を通して、これらの手法がうまくいく理由についても深く本質的な理論を解説します。深層ニューラルネットワークを活用するエンジニアや研究者は必読の一冊です。 ■こんな方におすすめ ・ニューラルネットワークの計算や時間にかかるコストを削減したい人 ・Webサービスにニューラルネットワークを使っている方 ■目次 ●第1章 はじめに ・1.1 高速化の意義 ・1.2 高速化の理論的背景 ・1.3 用語の整理 ●第2章 高速化手法の概要 ・2.1 量子化と低精度計算 ・2.2 枝刈り ・2.3 蒸留 ・2.4 低ランク近似 ・2.5 高速なアーキテクチャ ・2.6 ハードウェアの改善 ・2.7 複数の技法の組み合わせ ・2.8 その他の技法 ●第3章 量子化と低精度計算 ・3.2 その他の低精度浮動小数点数フォーマット ・3.3 自動混合精度計算 ・3.4 整数量子化 ・3.6 なぜ低精度計算でうまくいくのか ●第4章 枝刈り ・4.1 代表的な枝刈り手法 ・4.2 訓練前の枝刈り ・4.3 構造枝刈り ・4.4 枝刈りの実装 ・4.5 ReLU活性化関数を用いた適応的な枝刈り ・4.6 なぜ枝刈りを行うのか・なぜうまくいくのか ・4.7 枝刈りの使いどころ ●第5章 蒸留 ・5.1 蒸留の問題設定 ・5.2 蒸留のアプローチ ・5.3 生徒モデルの選び方 ・5.4 推論に必要なデータの変更 ・5.5 生成モデルの利用 ・5.6 事例 ・5.7 なぜ蒸留でうまくいくのか ・5.8 蒸留の使いどころ ●第6章 低ランク近似 ・6.1 低ランク性とは ・6.2 畳み込みニューラルネットワークの低ランク近似 ・6.3 注意機構の低ランク近似 ●第7章 高速なアーキテクチャ ・7.1 深さ単位分離可能畳み込み ・7.2 高速なトランスフォーマーの亜種 ・7.3 ニューラルアーキテクチャ探索 ・7.4 高速なアーキテクチャと圧縮手法の比較 ●第8章 チューニングのためのツール ・8.1 PyTorchプロファイラ ・8.2 CPU上のプロファイリング ・8.3 GPU上のプロファイリング ●第9章 効率的な訓練 ・9.1 省メモリ化 ・9.2 モデルパラメータの算術 ■著者プロフィール 佐藤竜馬:1996年生まれ。2024年京都大学大学院情報学研究科博士課程修了。博士(情報学)。現在、国立情報学研究所 助教。専門分野はグラフニューラルネットワーク、最適輸送、および情報検索・推薦システム。NeurIPSやICMLなどの国際会議に主著論文が採択。競技プログラミングでは国際情報オリンピック日本代表、ACM-ICPC世界大会出場、AtCoderレッドコーダーなどの戦績をもつ。PDF翻訳サービスReadableを開発し、深層ニューラルネットワークを用いた翻訳システムにも詳しい。著書に『グラフニューラルネットワーク』『最適輸送の理論とアルゴリズム』(ともに講談社)がある。
  • 新・標準プログラマーズライブラリ RISC-Vで学ぶコンピュータアーキテクチャ 完全入門
    5.0
    【コンピュータアーキテクチャがわかる!】 コンピュータアーキテクチャとは、より良いコンピュータの構成を模索し、設計し、実現するための方式です。学習には、重要概念の理解とハードウェアの設計、実装、そのシミュレーションによる動作確認と性能評価、また、FPGAなどにハードウェアを実装し、動作・検証・性能確認することが大切です。本書は、これらを通じてコンピュータアーキテクチャの本質を学ぶことを目指します。特に、オープンな命令セットアーキテクチャとして注目されているRISC-Vの採用、Verilog HDLによるハードウェアの記述、FPGAによるハードウェア動作まで、広い範囲を扱っている点が特徴です。 ■こんな方におすすめ ・コンピュータアーキテクチャの初学者および再入門者 ・コンピュータサイエンスをしっかり身につけたい学生の方 ・RISC-Vの入門者 ■目次 第1章 イントロダクション   1-1 コンピュータの基本構成   1-2 コンピュータの性能   1-3 特定用途向け半導体とFPGA 第2章 ディジタル回路の基礎   2-1 組み合わせ回路   2-2 順序回路   2-3 やわらかいハードウェアとしてのFPGA 第3章 ハードウェア記述言語Verilog HDL   3-1 ANDゲートのモジュール記述   3-2 記述したモジュールのインスタンス化とシミュレーション   3-3 文字列を表示するシステムタスク$display   3-4 ブロックの指定   3-5 指定した時間が経過するまで待たせる命令#   3-6 システムタスク$finishと$time   3-7 不定値xとハイインピーダンスz   3-8 複数本の信号線、数値の表現、default_nettype   3-9 三項演算子とマルチプレクサ   ……ほか 第4章 RISC-V命令セットアーキテクチャ   4-1 RISC-V RV32I命令セットアーキテクチャの概要   4-2 データ形式、負の整数の表現   4-3 命令形式   4-4 R形式の算術演算命令、論理演算命令、シフト命令   4-5 I形式の算術演算命令、論理演算命令、シフト命令   4-6 ロード命令、ストア命令、エンディアンと整列   4-7 条件分岐命令とプログラムカウンタ   4-8 lui、auipc、jal、jalr命令とその他の命令 第5章 単一サイクルのプロセッサ   5-1 単一サイクルのプロセッサの設計方針   5-2 最初の版のプロセッサを設計するための構成要素   5-3 add命令を処理するx1のみの単一サイクルのプロセッサ   5-4 add命令を処理する単一サイクルのプロセッサ   5-5 addとaddi命令を処理する単一サイクルのプロセッサ   5-6 add、addi、lw、sw命令を処理する単一サイクルのプロセッサ   5-7 add、addi、lw、sw、bne命令を処理する単一サイクルのプロセッサ   5-8 シミュレーションの工夫と例題 第6章 プロセッサの高性能化の手法   6-1 回路の動作周波数とパイプライン処理   6-2 パイプライン処理(2段)のプロセッサの設計と実装   6-3 パイプライン処理(3段)のプロセッサの設計と実装   6-4 パイプライン処理(4段)のプロセッサの設計と実装   6-5 パイプライン処理のプロセッサと同期式メモリ   6-6 パイプライン処理(5段)のプロセッサの設計と実装   6-7 ここまでのプロセッサの性能 第7章 分岐予測   7-1 分岐予測の枠組み   7-2 分岐先バッファ   7-3 分岐の成立/不成立の予測   7-4 bimodal分岐予測   7-5 gshare分岐予測 第8章 キャッシュメモリ   8-1 メインメモリとキャッシュ   8-2 容量が大きくて遅いメモリ   8-3 プロセッサのストール   8-4 ダイレクトマップ方式のキャッシュメモリ   8-5 マルチワードのダイレクトマップ方式のキャッシュメモリ   8-6 セットアソシアティブ方式のキャッシュメモリ   8-7 データキャッシュ 第9章 FPGA評価ボードを利用した動作の確認   9-1 ファイルの準備   9-2 Vivadoで論理合成、配置・配線してFPGAで動作確認 ■著者プロフィール 吉瀬 謙二:東京工業大学教授。アダプティブコンピューティング研究推進体の代表、ACRiブログの編集長を務める。コンピュータアーキテクチャとFPGAシステムの研究と教育に従事している。
  • 実践MLOps ―作って理解する機械学習システムの構築と運用―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 手を動かして理解する、実務で役立つMLOps 本書は、サービスに活用できる機械学習システムの開発・運用を解説する書籍です。  機械学習をサービスで活用するとき、機械学習モデル自体ではなく、運用上・管理上の問題に直面することは数多くあります。どれだけ優れた機械学習モデルを構築できたとしても、それをサービスに活かすためのシステムがなければ運用できません。  そこで本書では、機械学習システムを運用するための技術であるMLOpsを、機械学習システムの構築を通じて学んでいきます。具体的には、広告クリック率をリアルタイムで予測する機械学習システムをAWS上にデプロイします。  機械学習パイプラインや推論サービスの構築だけでなく、バージョニングやシステム監視など、サービス活用のために必要とされる一歩進んだ内容にまで踏み込んでいる点が特徴です。 【このような方におすすめ】 ◎ 機械学習システムに関わるソフトウェアエンジニア ◎ 開発だけでなくデプロイまで行うデータサイエンティストや機械学習エンジニア 〇 機械学習をビジネス活用しようと考えているプロダクトマネージャー 〇 機械学習をサービスで活用している企業で働きたいと考えている大学生 はじめに・目次 1章 MLOps概要 2章 環境構築 3章 モデル作成 4章 機械学習パイプライン 5章 実験基盤 6章 バージョン管理 7章 CI・CD 8章 推論サービス 9章 継続的学習 10章 監視 索引
  • 実践GAN 敵対的生成ネットワークによる深層学習
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 GAN(Generative Adversarial Networks):敵対的生成ネットワークは機械学習技術の一種で、2つの分離したニューラルネットワークを使い実物と区別が付かないほどリアルな画像を生成することを可能とします。 本書はGAN:敵対的生成ネットワークを学びたい方のために入門から実装まで、理論を交えつつ解説していきます。本書全体を通じてJupyter Notebookを使い、実装はPython、Kerasで行っていきます。 機械学習とニューラルネットワーク、Pythonプログラミングについてある程度の経験がある方を主な対象読者としており、数学に関しては最小限のものに絞って解説します。 本書の目的は、GANが達成してきたことを理解するための知識と道具を提供し、そこから新しい応用を見つけ作り出す力をつけていただくことです。GANは多くの可能性に満ちていますから、意欲的な方々であれば学術界・実世界に大きなインパクトを与えられることでしょう。 Part 1 GANと生成モデル入門 Part 2 GANの発展的な話題 Part 3 ここからどこへ進むべきか
  • 実践スクラム ―スクラム開発プレイヤーのための事例―
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 エヌアイデイ流スクラムのトリセツ&スクラムの品質管理 【雛型】プロジェクト計画書兼報告書解説付き  本書は、筆者が実施してきたスクラム開発の経験を基に、「これからスクラム開発プロジェクトに参画しようとしているが、どのように進めてよいかよくわからない方」や、「すでにスクラム開発に従事しているが、あまりうまくいっていない方」のために開発の進め方やアプローチの方法を具体的にガイドしているものです。プロジェクト計画書の雛形も掲載しており、共通認識としてスクラムチームで活用参照してほしい書籍です。 発刊にあたって はじめに 第1部 アジャイル開発の基礎 第1章 アジャイル開発とは 1.1 なぜアジャイル開発が求められるのか 1.2 アジャイルソフトウェア開発宣言とその意図 1.3 アジャイル宣言の背後にある原則 1.4 ウォータフォール開発とアジャイル開発との違い 第2章 アジャイル開発の手法 2.1 アジャイル開発の手法と特徴 2.2 開発手法の適用状況 第3章 スクラム開発 3.1 スクラム開発とは 3.2 スクラム開発の理論 3.3 スクラム開発の価値基準 3.4 スクラム開発の流れとフレームワーク 3.5 スクラム開発の進め方 第4章 スクラム開発での契約 4.1 契約の前に 4.2 契約形態について(請負契約と準委任契約) 4.3 顧客と当社の役割分担 4.4 契約前チェックリスト 第2部 開発の現場 第5章 受  注 5.1 契約前の合意および確認事項 5.2 見積りおよび契約 第6章 計画・立ち上げ 6.1 スクラムチームの編成と立ち上げ計画策定 6.2 インセプションデッキ作成 6.3 プロダクトバックログ作成 6.4 プロダクトバックログ見積り 6.5 初期リリース計画 6.6 スプリント準備 6.7 プロジェクト計画書の作成 第7章 スクラム開発のフレームワーク 7.1 スプリントプランニング 7.2 開発(技術プラクティス) 7.3 デイリースクラム 7.4 問題・障害・リスクの共有 7.5 進捗管理 7.6 スプリントレビュー 7.7 スプリント・レトロスペクティブ 7.8 リリース 7.9 プロダクトバックログ・リファインメント 第8章 品質管理 8.1 スクラム開発での品質の考え方 8.2 品質管理活動 8.3 品質データの収集および分析について 第9章 終 結 9.1 プロジェクトの実績評価とふりかえり 9.2 プロジェクト完了報告 9.3 プロジェクト実績の保管 第3部 各種資料 資料1 インセプションデッキの作り方・注意点 項目1:我われはなぜここにいるのか 項目2:エレベーターピッチを作る 項目3:パッケージデザインを作る 項目4:やらないことリストを作る 項目5:「ご近所さん」を探せ 項目6:解決案を描く 項目7:夜も眠れなくなるような問題は何だろう 項目8:期間を見極める 項目9:優先順位は? 項目10:何がどれだけ必要なのか 資料2 プロジェクト計画書の解説 1 管理表 2 体制 3 リスク管理 4 予算・要員計画 5 マスタスケジュール 6 進捗管理 7 品質管理 8 完了報告書 資料3 【雛型】プロジェクト計画書兼報告書 資料4 見積リスク評価表 資料5 スクラム開発プロセス俯瞰図 資料6 スクラムの実例紹介 1 プロジェクトの背景 2 プロジェクトの概要 3 インセプションデッキ 4 プロダクトバックログ 5 スプリントバックログ 6 デイリースクラム 7 スプリントレビュー 8 レトロスペクティブ 資料7 用語集 参考文献 あとがき
  • 実践ソフトウェアエンジニアリング (第9版)
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ソフトウェアエンジニアリング・スタンダードの第9版 「ソフトウェア技術者なら、この財産を活用しない手はない」とマイクロソフト榊原彰氏よりの推薦文にあるように、その通りに期待できる内容です。 「本書は米国においての第1版が発行(1982年)されて以来、世界累積300万部を超えるベストセラーの最新刊である第9版の邦訳書です。ソフトウェア同様、改良が続けられているソフトウェアエンジニアリングの「最良の手法」を解説している書籍であり、現役のソフトウェアエンジニアならびに学生諸氏におすすめする1冊です。 原書:Roger S. Pressman, Bruce R. Maxim, Software Engineering,McGraw-Hill, 2020 著者について/まえがき/訳者まえがき 第1章 ソフトウェアとソフトウェアエンジニアリング 第1部 ソフトウェアプロセス 第2章 プロセスモデル 第3章 アジャイルとプロセス 第4章 推奨のプロセスモデル 第5章 ソフトウェアエンジニアリングの人間的側面 第2部 モデリング 第6章 プラクティスの指針となる原則 第7章 要求エンジニアリング 第8章 要求モデリングの推奨手法 第9章 設計の概念 第10章 アーキテクチャ設計の推奨手法 第11章 コンポーネント設計 第12章 ユーザエクスペリエンス設計 第13章 移動体端末におけるソフトウェアの設計 第14章 パターンに基づく設計 第3部 品質とセキュリティ 第15章 品質の概念 第16章 レビューの推奨手法 第17章 ソフトウェア品質保証 第18章 ソフトウェアセキュリティエンジニアリング 第19章 ソフトウェアテスト―コンポーネントレベル 第20章 ソフトウェアテスト―統合レベル 第21章 ソフトウェアテスト―移動体端末と特定ドメインに対するテスト 第22章 ソフトウェア構成マネジメント 第23章 ソフトウェアメトリクスと分析 第4部 ソフトウェアプロジェクトのマネジメント 第24章 プロジェクトマネジメントの概念 第25章 実行可能で役立つソフトウェア計画 第26章 リスクマネジメント 第27章 ソフトウェアサポート戦略 第5部 先端的な話題 第28章 ソフトウェアプロセス改善 第29章 ソフトウェアエンジニアリングの新興トレンド 第30章 おわりに 付録/参考文献/索引/訳者プロフィール
  • 実践的ソフトウェア工学
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ありそうで無かった解説書!机上の理論ではなく、開発の現場で活かせる実践的知識と理論の体系化! ソフトウェア開発の裏表を知り尽くした現役エンジニアが語る基本とエッセンス! ソフトウェア工学は、ソフトウェア開発に内在する課題や問題を解決する土台となる基礎知識。しかし、様々な要素が複雑に絡まる開発現場では、抽象化された理論では対応しきれない面があることも否定できない。本書は著者が長く開発の第一線で活躍してきた中で、理論と経験を現場で活かせる知識として体系化した、実践に使えるソフトウェア工学の解説書。エンジニアの目からウロコの1冊です。
  • 実践的プライバシーリスク評価技法 プライバシーバイデザインと個人情報影響評価
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 マイナンバー法が求める個人情報影響評価の手法が分かる 2013年に成立した行政手続番号法(通称マイナンバー法)は、2016年1月から運用が開始され、行政機関に提出する税や社会保険などに関する書類への番号記載が必要となる。同法は大変重要な個人情報を扱うため、違反者には厳罰が用意されている。 そのマイナンバー法が、個人情報を適正に運用するために義務づけたものが「個人情報影響評価」である。本書はプライバシーバイデザインと個人情報影響評価の考え方を示し、実践例や評価書のサンプルを提示して具体的なスキルが身につくよう工夫してある。 同法に直接携わる行政機関、ソフトウェア会社、または民間においても従業員の「個人番号」、個人支払先等の「個人番号」を取扱う担当部門には必携の書である。
  • 実装 強化学習 Cによるロボットプログラミング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 強化学習の基礎からロボットへの実装までがわかる!!  本書は、強化学習の基礎からロボットへの実装までを解説した実務書です。プログラミングは、C言語でロボットへの実装までが解説された、実践的な内容となっております。ロボットへの実装は、誰でも購入できるライントレースロボットを使った例と、ソフトロボット(柔らかい素材を使ったロボット)を使った例で、具体的な方法を解説しています。 はじめに 第1章 人工知能とロボット 第2章 強化学習 第3章 C 言語による強化学習のプログラム 第4章 実ロボットへの適用 付録 Excel VBA による実装 参考文献 索引
  • 実務で使える Excel VBA プログラミング作法 ~「動けばOK」から卒業しよう!生産性が上がるコードの書き方
    5.0
    業務でVBAプログラムを組んでいる人の多くは,部署で一番パソコンやExcelに詳しいからという理由で任されていることも多く,プログラミングの基本的な素養や知識を知らない方も多いでしょう。このため,動けばOKといった,その場しのぎのコードを書いてしまいがちです。そういったコードは,あとから見直したり再利用する際にトラブルを起こしやすく,またどこになにが書いてあるかわかりにくいので,せっかくの生産性や効率性を落としがちです。本書は,そのようなVBAではじめてプログラムを組んだという人たちにプログラミングの基礎を示し,あとから見て読みやすく,変更や再利用に強いVBAプログラムの書き方を身につけるための本です。
  • JavaScriptによるアルゴリズム入門
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はアルゴリズムの基礎的な内容をJavaScriptを用いて解説したものです。従来の教科書で扱われていた内容を大幅に削減し,初等的なアルゴリズムに限定して実例を入れて詳しく解説しました。また,それらのアルゴリズムを用いて解ける問題のプログラム例をできる限り含めています。それは,著者がこのような基礎的なアルゴリズムの理解とプログラミングは不可分であると考えているからです。 本書を通じて多くの人たちがアルゴリズムの本質を理解して,そのスキルを色々な場面で,よりスマートで洗練されたシステムづくりのために発揮してもらえれば,本書の目的は十分に達成されたとものと考えます。
  • Juliaではじめる数値計算入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【例題を通してJuliaを学ぼう!】 Juliaは、2018年にver.1.0がリリースされて以降、速さと書きやすさで、特に数値計算分野で注目を集めている言語です。本書ではそれぞれの数値計算問題に対し、さまざまな手法でアプローチしており、例題を通してJuliaを学べる書籍となっています。原理まで解説しており、他の手法とどのように違うのか、またどのようなメリット・デメリットがあるのかも解説しています。 第I部ではJuliaの基礎的な内容を、第II部では具体的な計算方法を例題と一緒に実装していく構成になっています。fortranやPythonから移行してくるユーザーが多いと考えられますが、初学者でも学べるような内容になっています。みんなもJulianになろう! ■こんな方におすすめ ・理工系のJuliaプログラミングを始めたい学生 ・FortranやPythonから移行したい人 ・数値計算プログラミングに興味のある人、更にレベルアップしたい人 ■目次 第I部 基礎編   Chapter1 Juliaをはじめよう   Chapter2 Julia の基本   Chapter3 そのほかの特筆すべき点 第II部 実践編   Chapter0 Julia的数値計算   Chapter1 連立一次方程式   Chapter2 非線形方程式   Chapter3 固有値   Chapter4 数値積分   Chapter5 補間と近似   Chapter6 常微分方程式   Chapter7 偏微分方程式 付録 Jupyter Notebookを利用した環境作りと実行方法 ■著者プロフィール 永井 佑紀(ながい ゆうき):1982年 北海道生まれ。2005年 北海道大学工学部応用物理学科卒業。2010年 東京大学大学院理学系研究科物理学専攻博士課程修了。博士(理学)。2010年-2019年 国立研究開発法人日本原子力研究開発機構 研究員。2016年-2017年 米国マサチューセッツ工科大学物理学科客員研究員。2018年-2023年 国立研究開発法人理化学研究所革新知能統合研究センター客員研究員。2019年-2024年 国立研究開発法人日本原子力研究開発機構 副主任研究員。現職 東京大学情報基盤センター学際情報科学研究部門 准教授。専門は物性理論、計算物理。近年では機械学習と物理学を組み合わせた研究も行っている。
  • 情シス・IT担当者[必携]システム発注から導入までを成功させる90の鉄則
    4.1
    本書は,IT担当者,情報システム部門に向けた,システム発注から導入までのノウハウ集です。なぜシステムの発注~導入には失敗がつきまとうのでしょうか。筆者は,「失敗の原因はユーザー企業の力量不足」と喝破します。ユーザー企業は,少なからず何らかのシステム導入を経験しているものです。であれば,経験はノウハウとして蓄積されているはずです。しかし,プロジェクトは失敗してしまいます。ノウハウに体系的なまとまりがないからです。本書には,ITコンサルタントという立場だからこそ知りえた筆者のノウハウが詰まっています。
  • 情報科学入門~統計・データサイエンス・AI
    -
    本書は文系理系を問わず、高校卒業レベルの読者が、情報科学とデータ分析の基礎を学ぶための入門書です。とくに「データサイエンス」を理解するための基礎知識と、その関連技術の紹介に重点を置いています。 また、本書は数理・データサイエンス教育強化拠点コンソーシアムが公開しているリテラシーレベルのモデルカリキュラムを参考に構成しています。たとえば、第1章は標準カリキュラムの「1.導入、社会におけるデータ・AI 利活用」に、第2章は「2.基礎、データリテラシー」、第3章は「3. 心得、データ・AI 利活用における留意事項」、第4章は「4.選択、オプション」に相当します。数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル)に 対応させると、第1章が「項目1」と「項目2」、「項目3」に、第2章が「項目5」に、そして第3章が「項目4」に対応しています。
  • 情報科教育法 (改訂3版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「社会と情報」「情報の科学」の指導法に対応!教職課程・情報教育指導のための座右の書! 高校の情報科の教員免許取得には欠かせない、大学教職課程の講義「情報科教育法」の教科書です。前版(改訂2版)は平成20(2008)年度に告示され、平成25(2013)年度から実施されている学習指導要領の内容をふまえて実施に先がけて発行したものでしたが、発行後に一部教科名が変更される(『普通教科「情報」→共通教科「情報」』)、文科省が推奨する教科「情報」の学習の目的区分が変更されるなど、現在の高校の教科「情報」の教育実態に合わせた記述となるよう全体的に見直して、改訂3版として発行するものです。 序章 情報科教育法とは  1.  教育はなぜ必要か  2.  情報教育はなぜ必要か  3.  情報科教育法とその必要性 第1部 情報科とは  1章  情報科の成立   1・1 情報科設立経緯の概観   1・2 情報科の目標   1・3 情報科の学習内容   1・4 他の教科などとの関連   1・5 その他の特記事項  2章  現行学習指導要領における情報教育   2・1 小学校における情報教育   2・2 中学校における情報教育   2・3 高学における情報教育   2・4 現行学習指導要領とPISA 第2部 情報活用の実践力の指導法  第2部の概説  3章  情報活用の実践力の指導法   3・1 「情報活用の実践力」   3・2 「情報活用の実践力」の指導項目   3・3 小中学校における「情報活用の実践力」育成   3・4 高等学校における「情報活用の実践力」育成   3・5 情報フルーエンシーへの昇華 第3部 情報の科学的な理解の指導法  第3部の概説  4章  情報の科学的な理解の指導法   4・1 情報の科学的な理解の指導法   4・2 コンピュータを使わない指導法   4・3 コンピュータを使う指導法  5章  問題解決とモデル化・シミュレーションの指導法   5・1 問題を選定する   5・2 モデル化とシミュレーションを授業で取り上げる   5・3 まとめ  6章  アルゴリズムとプログラミングの指導法   6・1 アルゴリズムとプログラミング学習の必要性   6・2 アルゴリズムとプログラミング指導のポイント   6・3 プログラミングの指導法  7章  情報検索とデータベースの指導法   7・1 情報の整理と検索の必要性   7・2 情報検索と検索エンジン   7・3 データの重要性   7・4 データベースとDBMS   7・5 関係モデルと関係データベース   7・6 データウェアハウスとデータマイニング 第4部 情報社会に参画する態度の指導  第4部の概説  8章  情報モラル・情報倫理の指導法   8・1 情報モラル・情報倫理とは   8・2 指導方法  9章  メディアリテラシーの指導法   9・1 メディアリテラシーの概念   9・2 構成されるメディア   9・3 メディアの変化   9・4 メディアリテラシーの教育   9・5 授業の進め方   9・6 まとめ 10章 情報通信ネットワークとコミュニケーションの指導法   10・1 コミュニケーションとその構造   10・2 コミュニティと情報社会   10・3 情報通信ネットワークの仕組み   10・4 情報通信ネットワークとセキュリティ 11章 情報システムと社会の指導法   11・1 社会における情報システムの役割   11・2 生活の中の情報システム   11・3 情報システムの具体例   11・4 情報システムの社会的な重要性   11・5 授業への展開 第5部 情報科の教員として 12章 「総合的な学習の時間」との協調   12・1 指導要領における「総合学習」の位置づけ   12・2 どのような授業形態が考えられるか   12・3 「総合学習」に臨む教員の姿勢 13章 コラボレーションとプレゼンテーション,および授業システム改善の動き   13・1 コラボレーションプログラムの必要性   13・2 プレゼンテーションプログラムの必要性   13・3 プログラム展開において留意すべき点   13・4 授業システム改善の動き 14章 評価の工夫   14・1 観点別評価と評価の工夫   14・2 評価の計画と学習指導案   14・3 観点別評価の実際   14・4 生徒による自己評価,相互評価 15章 学習指導案の作成   15・1 学習指導案の内容   15・2 作成上の注意点   15・3 学習指導案の例 16章 情報科とプレゼンテーション   16・1 プレゼンテーションとは   16・2 プレゼンテーションの方法   16・3 スライドを用いたプレゼンテーション   16・4 実習としてのプレゼンテーション   16・5 授業におけるプレゼンテーション   16・6 プレゼンテーションのツール 17章 授業形式の実習   17・1 マイクロティーチングと教壇実習   17・2 実習の概要   17・3 ふりかえりの必要性 18章 これからの情報教育   18・1 ドラッカーが主張する21世紀の教育   18・2 知識のストックとフロー   18・3 ブートストラッピング   18・4 身体軸としてのキーボード練習   18・5 入門教育の重要性と熟練の獲得   18・6 プログラミング教育(論理軸) 第6部 情報教育に必要な知識 19章 情報の表現と発信   19・1 情報とデータ,情報量とデータ量   19・2 情報とデザイン   19・3 ユーザーインターフェイスのデザイン   19・4 コンテンツ構成の設計   19・5 Webページの論理構造と物理表現   19・6 情報システムとしてのWWWの設計 20章 ソフトウェア制作から見た情報教育   20・1 専門教科「情報」から見た情報技術教育   20・2 プロジェクトとして見たソフトウェア開発   20・3 見たこともないものを作る難しさ   20・4 お絵かきプログラム開発演習   20・5 ソフトウェア開発の実際   20・6 指導設計(ID) 索  引
  • 情報技術者倫理の基礎知識
    値引きあり
    -
    本書では,情報技術の利活用を通して重要になる情報ならびに情報技術に係る倫理についての様々な考え方を紹介します.本書により①倫理と情報技術についての用語を理解②情報技術開発で必要となる倫理面での課題と解決手法を理解③情報技術がもたらす社会的影響を理解④情報技術者が遵守すべき法令と制度を知っている、これらの能力を身につけられることを想定しています.発展を続ける情報技術社会の中で本書を役立てていただければ幸いです.
  • 情報処理技術遺産とパイオニアたち
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンピュータ発展史に語り継がれる人物と技術的遺産を集約! 本書は、情報処理学会60周年記念事業の一環として企画された。第1部『情報処理技術遺産』と第二部『オーラルヒストリー』の2部構成となっている。 第1部では、コンピュータ技術の発展の歴史を示す具体的事物・資料であることを認定する『情報処理技術遺産』において、2008年〜2019年間に認定された各遺産の情報108件、分散コンピュータ博物館10件を収載している。 第2部では、日本の情報処理技術に多大な影響を与えたパイオニアたち23名を紹介する連載記事「古機巡礼/二進伝心:オーラルヒストリー」を再編している。 本書は、我が国のコンピュータ関連の歴史を紐解く上でも重要なレガシーとして位置づけられる。情報処理分野に携わる方々にとって手元に置いておくべき、高価値な一冊。
  • 情報抽出・固有表現抽出のための基礎知識
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 社会の中で日々蓄積されていく電子データの多くは自然言語で書かれたテキストであり、情報社会の伝達手段や知識源として使われている。 これらの情報をデータベースとして整理・構造化し、活用するには、拡散した情報を適切に抽出し関係づける必要がある。このプロセスを(半)自動化する技術が「情報抽出」である。その際、各分野固有の自然言語表現をいかに的確にとらえて関係づけるかが重要となる。 本書では、固有表現抽出技術と、固有表現間の関係を抽出する関係抽出技術に焦点を当て、機械学習などを駆使して「情報抽出器」を作るための解説を行う。
  • 情報はなぜビットなのか 知っておきたいコンピュータと情報処理の基礎知識
    3.7
    ベストセラー『プログラムはなぜ動くのか』『コンピュータはなぜ動くのか』著者 矢沢久雄 3年ぶりの待望の最新作! ふだん何気なく使っているのに、改めてその意味を問われると、ひと言では答えにくい言葉の一つが、「情報」です。そのとらえどころのない「情報」を処理しているのが、ほかならぬ「コンピュータ」です。では、現実世界のあいまいな情報を、あいまいなことを受け入れられないコンピュータに、どうやって処理させているのでしょう? 本書は、情報をどう表現して、処理手順をどう明確にするか、身近なテーマをひきながら一つひとつ解説していきます。 特徴1:情報を処理することの「知識」と「センス」が身につきます! 「情報を処理する」とは、与えられた情報を計算、変換、検索などして、目的の結果を得ることです。本書では、コンピュータが情報を扱う過程をわかりやすく説明します。「知識」はもちろん、情報を考える「センス」を感じとってもらえるはずです。「情報」をキーワードに、あいまいな現実とコンピュータをつなぐ不思議な世界を一緒にのぞいてみませんか。 特徴2:たくさんの「クイズ」で腕だめし! 途中には、たくさんのクイズが登場します。パズルのように楽しい問題ばかりです。ぜひ挑戦してください。 特徴3:世界初のコンピュータや、偉大な開発者たちを写真とともに紹介! コンピュータの原型となった考え方やコンピュータの開発に貢献した人たちの話なども写真とともに多数紹介します。どのような発明と発見があって現在のコンピュータになったのか、ぜひ知ってください。

    試し読み

    フォロー
  • 「情報」用語 活用辞典
    -
    日本のAI研究の第一人者(『AIに心は宿るか』の著者。手塚治虫AI新作漫画プロジェクトにも参加)松原仁さん推薦! 「現代の手習いは『読み・書き・情報』! その基礎となる必須の知識がこの一冊に」 高校必修科目の「情報Ⅰ」、文理共通で必修化が進む大学の「数理・データサイエンス・AI」(リテラシーレベル)にも対応!★高校生から社会人に必須の2100語(用語1800語、重要人名300人)を収録。全用語に英語を並記したコンパクトな用語辞典です。
  • 情報利活用 基本演習 Office 2019対応
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 情報利活用」は、15コマ20時間でアプリケーションの利活用スキルをマスターするシリーズです。本書は、Office 2019の基本的な機能と操作方法を解説しています(Office 2016でもほぼ問題なく本書で学習できます)。 作成する機会の多い文書の作成方法、プレゼンテーションに必要なテクニック、集計表やグラフの作成方法などをひととおりマスターできます。また、Windowsの基本的な操作方法も解説しています。 各レッスンの最後および巻末に、習熟度がわかる練習問題があります。
  • 情報リテラシー教科書 ―Windows 11/Office+Access 2021対応版―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Windows 11でのコンピュータ操作、Accessを含めたOffice 2021活用など基礎を学べる1冊。 本書は、パソコンやインターネットを使用するうえで身につけておくべき情報リテラシーの習得を目標としています。 好評の『情報リテラシー教科書』最新版となる本書は、機能・インターフェースが一新されたWindows 11とOffice 2021、Access 2021に対応しています。 キーボードでの入力やマウスの扱い方などの初歩的なPC操作から始めて、コンピューターやネットワークの基礎的な知識を学んだのち、Microsoft Officeのソフト(Word、Excel、PowerPoint、Access)の操作法を学んでいきます。 レポート作成、プレゼンテーション、データ処理、グラフ作成、データベース処理などを解説しつつ、私たちにとって不可欠な存在になりつつあるクラウドコンピューティングや人工知能(AI)の話題にもコラムなどで触れています。 イントロダクションにはマンガページを設けるなど、学生の学習意欲を沸かせるように工夫を凝らしています。苦手意識のある方でも、情報基礎がしっかり身につく一冊です。 第1章 パーソナルコンピュータの基礎 第2章 インターネット利用 第3章 Microsoft Word 第4章 Microsoft Excel 第5章 Microsoft PowerPoint 第6章 Microsoft Access
  • 情報リテラシー教科書 ―Windows 11/Office 2021対応版―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Windows 11でのコンピュータ操作、Office 2021活用などの基礎を学べる1冊。 本書は、パソコンやインターネットを使用するうえで身につけておくべき情報リテラシーの習得を目標としています。 好評の『情報リテラシー教科書』最新版となる本書は、機能・インターフェースが一新されたWindows 11とOffice 2021に対応しています。 キーボードでの入力やマウスの扱い方などの初歩的なPC操作から始めて、コンピューターやネットワークの基礎的な知識を学んだのち、Microsoft Officeのソフト(Word、Excel、PowerPoint)の操作法を学んでいきます。 レポート作成、プレゼンテーション、データ処理、グラフ作成などを解説しつつ、私たちにとって不可欠な存在になりつつあるクラウドコンピューティングや人工知能(AI)の話題にもコラムなどで触れています。 イントロダクションにはマンガページを設けるなど、学生の学習意欲を沸かせるように工夫を凝らしています。苦手意識のある方でも、情報基礎がしっかり身につく一冊です。 第1章 パーソナルコンピュータの基礎 第2章 インターネット利用 第3章 Microsoft Word 第4章 Microsoft Excel 第5章 Microsoft PowerPoint
  • 情報理論のエッセンス (改訂2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「情報理論」のエッセンスを詰め込んだ教科書 大学学部,情報通信系学科の必修課目「情報理論」のエッセンスを詰め込んだ教科書です. 多くの人が難しく感じるところをできるだけ丁寧に,本質をしっかり押さえて解説しています.補足的な説明やより進んだ説明をコラムとして配し,演習問題には難易度に応じて5段階のレベル分けを付し,学習上の区分けが明確になるよう配慮しています. また、改訂にあたっては,現行の大学・高専のカリキュラムに沿った見直しを行ったほか,読者の声をもとによりわかりやすい解説に改めています. 1.情報理論とは? 2.情報のとらえ方と情報量 3.平均情報量(エントロピー)の性質 4.情報源 5.情報源符号化 6.具体的符号化法 7.通信路と相互情報量 8.通信路符号化 9.誤り検出と訂正 10.線形符号 11.巡回符号
  • 事例で学ぶ!あたらしいデータサイエンスの教科書
    3.0
    データ分析は意思決定のためにあり! 現場で役立つデータサイエンスの新・定番書! 本書は、主に統計学の視点からデータサイエンスについて解説しています。 PythonやRといったプログラミング言語を通じて データ分析の手法は一通り学んだという皆さん、そのスキル、 実際に活かせていますか? 具体的な課題解決につながっていますか? ・分析結果から何を読み取ればいいのかわからない ・数字からどんな価値を見いだせるのかがわからない ・そもそも、その分析方法が適切なのかどうか自信がない ・効率のいい分析ができているのかどうかわからない という方、多いのではないでしょうか? データを使って意思決定を行うには、統計学の知識は欠かせません。 そこで本書では、8つの具体的な社会事例を用い、 ・課題に「適した」分析手法やデータの収集方法 ・事例の分析結果の解釈 ・分析や解釈の際に注意すべきこと を数学の知識で補完しながら紹介しています。 著者は首都圏初のデータサイエンス学部として2018年4月に創設された、 横浜市立大学 データサイエンス学部 学部長の岩崎 学先生。 データサイエンティストやエンジニアが見失いがちな、 「何のために分析するのか」を意識しながら読み進めてみてください。 【こんな方にお勧めします】 ・統計学もプログラミングも一通り学んだけれど、  結果をどう判断すればいいのかわからないエンジニア ・分析結果の数字やグラフから、  業務でいかすためのヒントを得たいデータサイエンティスト ・データサイエンスに興味のある学生(専門課程を選ぶ際の  参考資料として) ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • 人工偽脳 AIがつくるのは偽の脳
    値引きあり
    -
    【AIの実体は大したことはないので、何も恐れることはありません】 「最近はすごい人工知能も登場していますが、その背景にはコンピューター性能の飛躍的な向上があります。  人工知能は脳科学という観点からは偽脳つまり偽の脳にすぎず、真の脳ではありません。偽脳では印象は悪いかもしれませんが、「本物か偽物か」となれば「偽物」と言っていいでしょう。人間の脳を模した擬似的な脳になるなら、偽脳は十分役に立ちますし、特定の分野では人間の能力をはるかに超える力を持っています。」 「偽脳を人工知能でつくる技術の変遷はコンピューターの歴史そのものです。ですから、コンピューターの発展と同じようなものですが、技術にはブレークスルー的な変化があるため、ブームという表現が用いられます。  人工知能はコンピュータープログラムの1つですから、コンピューターの実用化が始まった1950年代から研究されてきましたし、そのころすでに人工知能のブームはありました。」 《第0次AIブーム(1955年ごろからの10年間)~人工知能の原理がつくられた時代》 《第1次AIブーム(1985年ごろからの10年間)~人工知能プログラミング基本の時代》 《第2次AIブーム(2015年ごろから現在進行中、2025年ごろまで?)~人工知能プログラミング実用化の時代》 「筆者は第0次ブームの終焉期から人工知能コンピューターの研究に関与してきましたので、今回のブームの“終焉”を2025年と予想しています。」 「ごく大雑把に今回のブームの骨幹をまとめると、人工神経回路網つまりニューラルネットワークでの学習方法が進歩したこと。と同時にコンピューターの発達により、ビッグデータ処理が可能になりました。  ここで人工知能の教科書を書くつもりではありませんので、メディアで取り上げられるような項目、つまり人工知能の応用分野から眺めるようにします。」 (「プロローグ」より)
  • 人工生命と進化システム
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「脳コミュニケーションのための進化システムの研究」の基になった考え方を取り上げ、平易に解説。
  • 人工知能が俳句を詠む ―AI一茶くんの挑戦―
    3.2
    人工知能が俳句を詠む日はいつ訪れるのか。現在の人工知能はどこまでできて、できないのかを、俳句を詠むAIの開発を通して迫る! 突然ですが、  見送りのうしろや寂し秋の風  病む人のうしろ姿や秋の風 このふたつの俳句が松尾芭蕉と人工知能のどちらの作品かわかるでしょうか。  本書は、現在も精力的に研究の進む人工知能について、俳句の生成という視点から現在の研究・開発動向を解説するものです。コンピュータを用いた俳句の自動生成は1968年のCybernetic Serendipityというコンピュータアートの展覧会に端を発し、近年では小説を生成する「きまぐれ人工知能プロジェクト 作家ですのよ」などとともに、人工知能による文学生成研究のひとつとして進められています。俳句という身近でわかりやすいテーマであるため、TVや新聞などのメディアでも取り上げられるなど、人工知能による俳句生成は現在注目が集まっています。  本書では、実際に俳句を生成する人工知能である「AI一茶くん」を研究・開発している著者らが、現在の人工知能技術の動向から創作分野における人工知能の展開、俳句をどのように人工知能に解釈させ、生成するのかを具体的に解説します。そして「AI一茶くん」の活動の紹介を通して、現在の人工知能がどこまで達成し、なにができていないのかまで見ていきます。  人工知能がどんなことをできるのか気になる方、とくに人工知能の創造性について興味のある方にピッタリの1冊となっています。もちろん人工知能がどんな俳句を生成するのかが気になる俳句好きの方にもわかりやすく、ていねいに解説しています。 第1章 人工知能が俳句を詠む日 第2章 人工知能の歴史と未来 第3章 人工知能を実現する技術 第4章 人工知能と創作 第5章 俳句の人工知能的解釈 第6章 俳句を生成する人工知能、AI一茶くんの仕組み 第7章 AI一茶くんの活動 第8章 人工知能と俳句の未来 付録 AI俳句百句選
  • 人工知能システムのプロジェクトがわかる本 企画・開発から運用・保守まで
    4.8
    自社システムに人工知能を導入したいときに読む本! 人工知能の開発は進んでいますが、人工知能システムを開発するプロジェクトマネージャーの数は現在足りておらず、その数は今後さらに必要になっていきます。 また、大規模システムに人工知能が入るようになっていくと、それを運用・保守する仕事も必要となります。 しかし、人工知能の運用・保守に関するノウハウは世にほとんど存在せず、近い将来大きな需要が生じることが予想できます。 本書では、人工知能のシステムの企画に対して提案して開発し運用・保守したい人向けに、 人工知能システムの企画書の書き方やベンダーの提案書や開発計画の良し悪しの判断基準、 人工知能システムの開発および運用・保守の一連のプロセスについて解説します。 【本書のポイント】 ・人工知能の導入を検討しているビジネスマン向けの人工知能プロマネ読本 ・人工知能システムの企画書が書けるようになる ・ベンダーに要求仕様を提案したり、ベンダーの提案書や開発計画の良し悪しが判断できるようになる ・人工知能システムの開発および運用・保守の一連のプロセスを把握できる ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • 人工知能《超入門》 ディープラーニングの可能性と脅威
    -
    2012年に実現した「ディープラーニング」は、人工知能の進化に衝撃をもたらしました。人間が学ぶ過程と同じような方法で自ら学ぶというディープラーニング。この技術は、世界をどのように変えるのでしょうか。本書では人工知能の知識がない方でも理解しやすいように、「人工知能」と「ディープラーニング」についてわかりやすく解説。人工知能の基本はもちろん、ビジネスへの応用や将来についても考察を進められる一冊です。
  • 人工知能と社会 2025年の未来予想
    4.5
    ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 2025年に人工知能が到達しているであろう地点を現実的に予想! これからの社会に人工知能を活かすための技術を解説! 東京五輪も終わり、超・超高齢社会を迎え大きく様変わりしているであろう「2025年」。人工知能はどこまで発展・進歩し、我々の社会に活用されているのでしょうか。 本書は、2025年に人工知能が到達しているであろう地点、およびクリアできていないであろう問題点について、AIX(電気通信大学人工知能先端研究センター)を代表する研究者が独自の視点で予想します。 1章 2025年が やって来る! 2章 ロボットと人工知能 3章 IoTとは 時間・空間・人―物間をつなげることの効果とインパクト 4章 自然言語処理と人工知能 5章 人工知能における感性 6章 社会に浸透する汎用人工知能 あとがき
  • 人工知能と哲学と四つの問い
    -
    人工知能と哲学、「人」に迫る二つの学問が影響し合うその先を問い、考える  本書は、人工知能学会誌『人工知能』の連載記事:レクチャーシリーズ「AI哲学マップ」および関連記事を再編集し、書籍化するものです。  レクチャーシリーズ「AI哲学マップ」は、人文系(主に哲学)の研究者と人工知能分野の研究者の対談から、相互の知見を共有し集積した先に、「人工知能のフロンティアを描き出す」ことを目的として企画されました。本書では、記事・対談の内容から浮かび上がった下記四つの問いを提示し、これらを軸に対談内容を理解することで、人工知能研究の「現在地」と「方向性」を明らかにし、学問としての発展に示唆を与えます。  問い1 人工知能にとってコミュニケーションとは何か  問い2 人工知能にとって意識とは何か  問い3 人工知能にとって社会とは何か  問い4 人工知能にとって実世界とは何か  記事再編にあたり、人工知能を専門としない多くの方々にもわかりやすく読めるよう、技術解説の補足や挿絵の追加など、内容理解の助けとなる工夫を凝らしました。 はじめに 問い1 人工知能にとってコミュニケーションとは何か 問い2 人工知能にとって意識とは何か 問い3 人工知能にとって社会とは何か 問い4 人工知能にとって実世界とは何か おわりに 注釈語索引 対談参加者プロフィール一覧
  • 人工知能とは
    値引きあり
    3.8
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 人工知能って、いったい何ですか? 人工知能学会の歴代会長を含む人工知能研究の権威が答えます! ! 今話題の深層学習(ディープラーニング)で注目されている機械学習など、人工知能分野で最先端の研究を行う研究者13人が、人工知能学会誌に連載したものを大幅に加筆修正した。研究者として自ら「人工知能とは何か」の再定義を行い、それをふまえて、各研究について一般読者に伝わるようにシッカリと解説を行っている。人工知能に興味のある読者はもちろん、知能、認知、脳科学、人間、哲学などに関心のある読者は必読必携である。13人の紙面上でのキャッチボールが示唆に富んでおり、読んでいてとにかく面白い! !大変好評を得ている『深層学習 Deep Learning 』に続く、人工知能学会監修企画!
  • 人工知能は人間を超えるか
    4.2
    グーグルやフェイスブックが開発にしのぎを削る人工知能。日本トップクラスの研究者の一人である著者が、最新技術「ディープラーニング」とこれまでの知的格闘を解きほぐし、知能とは何か、人間とは何かを問い直す。
  • 人工知能を超える人間の強みとは
    3.5
    人工知能の進化で人間の価値が見直しを迫られているが,人工知能が常に正しい意思決定をできるとはかぎらない。 では,単純な脅威論に踊らされず,正視眼で人工知能の限界を見極め,対処していくにはどうすればいいか? 世界的認知心理学者ゲイリー・クライン博士に師事する唯一の日本人研究者が,人工知能と人間の直観を比較しながら,人間の可能性とその引き出し方,これからの社会や教育のあり方を示す。
  • GPTsでChatGPTを優秀な部下にしよう! GPTsパーフェクト作成ガイド
    4.0
    1巻2,799円 (税込)
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最新アップデートに対応!! 話題の『GPTs』を解説!!! オリジナルのChatGPTが作れる!!! 今話題のGPTs(ジー・ピー・ティーズ)はこんな事が可能です。 ・ノーコードでオリジナルのChatGPTを手軽に作成できる ・開発したChatGPTを共有できる ・外部サービスとAPI連携できる 本書では、GPTsの概要やCreateモードとConfigureモードによる作成方法だけでなく、チャットボット・文章生成・画像生成・データ分析・外部API利用などの開発事例を上げながら、GPTsの利用方法を、ビジネスマンなどを対象に徹底解説!
  • 数理的発想法 “リケイ”の仕事人12人に訊いた世界のとらえかた、かかわりかた
    -
    「野生の研究者」「弱いロボット開発者」「科学者を描く漫画家」― “リケイ”の仕事にかかわる専門家たちの発想法に迫るインタビュー集。 さまざまな分野から、研究者、技術者、プログラマー、小説家、漫画家、 メディアアーティストの12人が登場。 理系文系の壁、社会科学や人文科学といったジャンルの定義を 軽やかに乗り越えて活躍する彼らは、何をよりどころに その活動を行なっているのか?数理的な知のあり方を探ります。 【目次】 第1章 書く、描く、物語る ・〈物語〉から遠く離れて―高野文子 ・自己出版作家が抱く、〈ラボ〉への大志―藤井太洋 ・数学をめぐる〈対話〉を物語にする―結城浩 第2章 技術をデザインする ・〈野生の研究者〉を可視化する―江渡浩一郎 ・〈UI〉の新たなイディオムを探して―増井俊之 ・コミュニティが〈アーカイブ〉をアップデートする―渡邉英徳 第3章 本と、デジタル ・〈連想検索〉の世界へようこそ―高野明彦 ・図書館を〈オープンソース〉で開発するー河村奨/地藏真作 第4章 科学者たち ・〈弱いロボット〉が切り開くあたらしい人間関係―岡田美智男 ・セミとモンシロチョウが教えてくれた〈進化〉の真実―吉村仁 ・〈目に見えないもの〉から銀河の地図を作る―本間稀樹 あとがき ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • スッキリ!がってん!データサイエンスの本
    NEW
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 『データサイエンスってなんだろう?』 「データサイエンス」という言葉を聞いたことはあるけれど、内容がよくわからないという人に向けて書かれた入門書です。 できるだけ難しい数式は使わずに、データサイエンスの考え方や役割をイメージしやすく紹介しています。たくさんのデータを整理・分析して、未来を予測したり、よりよい判断をするための方法を学ぶのがデータサイエンスです。その根本には、「私たちが見るデータは、見えない確率のルールから生まれている」という考えがあります。 本書では、どんな分野で役立っているのかも具体例を通して解説し、データと向き合う力がこれからの社会でどれほど大切かを伝えています。専門家でなくても、データサイエンスの考え方に触れることは、自分の考える力を育てるために役立つ一冊です。
  • SPINによる設計モデル検証
    値引きあり
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 昨今、ソフトウェアの正しさを保証するソフトウェア検証の技術が重要視されているが、その中でも特にモデル検査が脚光を浴びている。それは数理論理学などに関する知識があまりない技術者にも、ソフトウェア開発の中で利用することが可能だからであろう。本書はSPINを中心にモデル検査をいかにしてソフトウェア開発のプロセスの中に位置づけるかについて実例を通して詳説している。
  • SPIN モデル検査:検証モデリング技法
    値引きあり
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 社会の様々なところにソフトウェアが組み込まれる中、従来その信頼性を確保するための手法であったテスト手法は、時間やコストなどの面で開発の現状に追いつけない状況にある。そのテスト手法に代わるものとして注目されてきているのが形式的手法による検証(モデル検査法)であり、その中の一つがSPINである。本書はSPINの基礎から実際の利用方法までを具体的に解説する日本で初めての書籍である。
  • Splunkユーザーのためのデータ分析実践バイブル SPLとMLTKを駆使した前処理から機械学習の手続きまで
    -
    あらゆるデータの収集・検索・分析・可視化ができる データ分析プラットフォーム×機械学習を目的別に徹底解説 本書は、Splunkを使ったデータ分析の解説書です。 効率的な前処理から機械学習までを扱い、 Splunk上で機械学習を実現するMLTKを丁寧に解説しています。 各章は機械学習の概念に始まり、データ分析をする上で必要な基礎知識、 Splunkを用いたデータの可視化、データ加工方法の紹介から 実際にサンプルケースを用いた分析とその解説で構成されています。 Splunkを用いてデータ分析・機械学習に取り組みたい人には必読の1冊です。 【こんな方にお勧めします】 ・Splunkを使っているが、SPLの書き方に困っている方 ・Splunkでの効果的なデータの可視化の方法を知りたい方 ・Splunkでの機械学習の方法を知りたい方 【目次】 第1章 Splunkについて 第2章 機械学習の流れ 第3章 Splunk・MLTKによる機械学習 第4章 Splunkへデータ登録するまでの基本的な手続き 第5章 特徴量を生成するための前処理と手法 第6章 Splunkによる特徴量評価 第7章 機械学習の実演 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • スモールデータ解析と機械学習
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 スモールなデータの解析手法・ノウハウが身につく! Webデータや画像データに代表されるようなビッグデータが注目される一方で、機械の故障データのように発生自体がまれであったり、患者さんの検査データのように倫理的な問題からデータを集めることに制約があったり、あるいはデータの判読が専門家以外では困難で機械学習に利用しにくいデータは、どうしても忘れられがちです。ビッグデータの時代において、収集が難しいために私たちが忘れかけているデータのことをスモールデータとよびます。 スモールデータでは、測定されている変数の数に比べて学習に必要なサンプルが不足していたり、それぞれのクラスのサンプル数が極端に偏っていたりするため、深層学習のようなビッグデータの方法をそのまま適用するのは適当ではなく、異なるアプローチが必要になります。 本書は、スモールデータとはどのようなデータであるのかを具体的に紹介して、スモールデータ解析の基本となる次元削減と回帰分析を説明します。特に部分的最小二乗法(PLS)はスモールデータ解析の大きな武器となるでしょう。そして、機械学習においてモデルの性能向上のために必要な変数(特徴)選択を紹介し、特にクラスタリングに基づいた新しい変数選択手法を説明します。つづいて、不均衡なデータの解析手法と異常検知を紹介して、最後にスモールデータ解析についての筆者の経験に基づいたポイント・考え方を述べました。本書ではPythonプログラムとスモールデータ解析の例題を通じて、読者がスモールデータを有効に解析できるようになるよう工夫しています。 ビッグデータの世界は、もはやデータ量と資本力が支配するレッドオーシャンとなっています。しかし、スモールデータの世界は、まだまだ現場の創意工夫次第でデータから新たな価値を引き出すことのできるブルーオーシャンなのです。みなさんも、この未知の世界に飛び込んでみませんか? 第1章 スモールデータとは 第2章 相関関係と主成分分析 第3章 回帰分析と最小二乗法 第4章 線形回帰モデルにおける入力変数選択 第5章 分類問題と不均衡データ問題 第6章 異常検知問題 第7章 データ収集や解析の心構え
  • スーパーインテリジェンス 超絶AIと人類の命運
    3.9
    ■AIについての最も重要な命題=人類はAIを制御できるか、という「AIコントロール問題」と真正面から格闘した本命本。 ■近未来に、汎用的な能力においても思考能力においても、そして、専門的な知識・能力においても、人類の叡智を結集した知力よりもはるかに優れた超絶知能(スーパーインテリジェンス)が出現した場合、人類は滅亡するリスクに直面する可能性がありうる。そのリスクを回避するためには、スーパーインテリジェンスを人類がコントロールできるかどうかが鍵を握る。果たして、そのようなことは本当にできるのか? ■オックスフォード大学の若き俊英、ニック・ボストロム教授が、スーパーインテリジェンスはどのようにして出現するのか、どのようなパワーを持つのか、いずれ人類がぶち当たる可能性のある最大の難問、「AIのコントロール問題」とは何か、解決策はあるのかなどについて、大胆にして、きわめて緻密に論じる。2014年秋に原著が出版されるや、瞬く間にニューヨーク・タイムズ紙ベストセラーとなり、イーロン・マスク、ビル・ゲイツ、S・ホーキング博士およびその他多数の学者や研究者に影響を与え、AIの開発研究は安全性の確保が至上命題であることを広く認識させるきっかけとなった。 ■近未来においてスーパーインテリジェンスは実現する可能性はあるのか? どのようなプロセスで実現されるのか?スーパーインテリジェンスはどのような種類の能力をもち、人類に対してどのような戦略的優位性をもつのか? その能力が獲得される要因は何か? 人類が滅亡する危機に直面するリスク、人類との共存の可能性についてどう考えるべきか? これらAIをめぐる真に根源的な問題について著者は、類書をはるかに超えた科学的、論理的な考察を徹底して慎重に積み重ね、検証する。
  • 【図解】コレ1枚でわかる最新ITトレンド[改訂第5版]
    4.0
    【「怖い/むずかしい/わからない」ITを、あなたのビジネスの武器にする】 「技術の背景、価値、そのつながりまでも一望できる」累計7万部のロングセラーが大改訂! 知らないでは済まされない生成AIの基礎知識から、あらためて問うDXの本質まで、新規項目を大幅追加。もちろんクラウド、サイバーセキュリティ、IoTなど、変わらず重要であり続けるITトピックも、時流に合わせて見直しています。デジタル前提のビジネスに適応し、さらに一歩先んじるための知識がコレ1冊で身に付きます!【特典】図版はすべてPowerPointデータで提供、ロイヤリティフリーで利用可能! 研修教材や提案書などで、学んだ知識を活かす際にご活用ください。 ■こんな方におすすめ ・IT業界全体のトレンドを知りたい就活生/エンジニアの方 ・トレンドをビジネスに活用していきたい社会人の方 ■目次 第1章 デジタルの基礎知識~デジタルの本来の意味と役割を理解する 第2章 DX/デジタル・トランスフォーメーション~デジタル前提の社会に適応するために会社 第3章 ITインフラストラクチャー~変化に俊敏に対処できるITの実現 第4章 クラウド・コンピューティング~所有せずに使用するITのこれからの常識 第5章 サイバー・セキュリティ~デジタル化が進む事業基盤の安全対策は重要な経営課題 第6章 IoT/モノのインターネット~現実世界と仮想世界の狭間をつなぐゲートウェイ 第7章 AI/人工知能~人間の知的能力を拡張するコンパニオン 第8章 開発と運用~できるだけ作らずにITサービスを実現する 第9章 いま注目しておきたいテクノロジー~留まることのない進化、置き換わる常識に目を向ける 巻末 DXの実践~まずは「いま」を終わらせることから始める ■著者プロフィール ●斎藤昌義(さいとう まさのり):1982 年、日本IBM に入社、営業として一部上場の電気電子関連企業を担当。その後営業企画部門に在籍した後、同社を退職。1995年、ネットコマース株式会社を設立、代表取締役に就任。産学連携事業やベンチャー企業の立ち上げのプロデュース、大手IT ソリューションベンダーの事業戦略の策定、営業組織の改革支援、人材育成やビジネスコーチング、ユーザー企業の情報システムの企画・戦略の策定などに従事。IT 関係者による災害ボランティア団体「一般社団法人・情報支援レスキュー隊」代表理事。『未来を味方にする技術』『システムインテグレーション再生の戦略』『システムインテグレーション崩壊』(すべて技術評論社 刊)ほかの著書、雑誌寄稿や取材記事、講義・講演など多数。
  • 図解! システム開発で失敗しないためのツボとコツがゼッタイにわかる本
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「システム開発で失敗したくない!」 担当者が抱えてる不安を解消しよう! システム開発の受注者、発注者が抱えるリスクを回避するために知っておくべき知識や視点を架空のプロジェクトを通して解説します。
  • 図解即戦力 IoTのしくみと技術がこれ1冊でしっかりわかる教科書 IoT検定パワーユーザー対応版
    4.0
    IoTについての基本的な知識が身に付く本です。IoTサービスの導入の際に必要となる知識や、IoT機器の仕組みなど、幅広い分野について理解できるようになります。2018年10月より開始されたIoT検定ユーザー試験パワー・ユーザーの教科書&問題集としても使うことができます。
  • 図解即戦力 IT投資の評価手法と効果がこれ1冊でしっかりわかる教科書
    -
    本書は、IT投資の評価手法とその効果を図解でわかりやすく解説した書籍です。汎用機などの IT資産を対象にした従来の評価手法に加え、モバイル機器や情報セキュリティなどの投資効果を定量的に測定する手法も解説しています。モデル例も含めて解説しているため、誰でも即、実務に使えるガイドラインとなるでしょう。さらに、役員向けにIT投資の稟議申請をするときの効果的な企画書の書き方についても紹介しています。職業柄、多くのリーディングカンパニーで幾多もの社内稟議書に目を通してきた著者だからこそ言える貴重なアドバイスも満載です。
  • 図解即戦力 Amazon Web Servicesのしくみと技術がこれ1冊でしっかりわかる教科書
    3.8
    Amazon Web Services(AWS)のしくみや関連技術についてわかりやすく解説する図解本です。エンジニア1年生、IT業界などへの転職・就職を目指す人が、AWS関連の用語、しくみ、クラウドとネットワークの基礎技術などを一通り学ぶことのできる、1冊目の入門書としてふさわしい内容を目指します。本書では、クラウドやネットワークの基礎から解説し、AWSのサーバーサービス、ストレージサービス、ネットワークサービス、データベースサービスについて具体的なサービス名を挙げながら初心者向けにわかりやすく紹介します。今までのAWS解説書では用語がわからず難しかったという人も本書なら安心して学ぶことができます。
  • 図解即戦力 キャッシュレス決済がこれ1冊でしっかりわかる教科書
    3.6
    本書は、現在話題となっているキャッシュレス決済に関心のある方へ向けて、キャッシュレス決済の定義と分類、各決済方式の仕組み、代表的な企業やサービスなど、キャッシュレス決済の全体像を俯瞰して解説する書籍です。現在急速に普及の進む「QRコード決済」の最新情報から、「カード決済」「電子マネー」を含む各種決済サービス、キャッシュレス化が進んだ中国の現状といった情報を整理し、図解を使ってわかりやすく解説します。
  • 図解即戦力 ビッグデータ分析のシステムと開発がこれ1冊でしっかりわかる教科書
    4.0
    近年はビッグデータを分析し、ビジネスに活かすのは当たり前の時代となりました。今後IoTやAIなどの活用が期待される中、データを分析するだけではなく、データを集める・溜める・活用することが重要になってきています。本書は一般的なインターネット事業を展開する企業において、ビッグデータ分析システムをしっかり本番システム化する基本知識を図とともにわかりやすく解説しています。
  • 図解即戦力 ブロックチェーンのしくみと開発がこれ1冊でしっかりわかる教科書
    4.2
    本書は、ブロックチェーンの基本やしくみ、開発手法やツールなどを一通り学ぶことのできる図解入門書です。ブロックチェーンの基礎技術としては、最も普及しているビットコインブロックチェーンや、スマートコントラクトのプラットフォームとして注目されるイーサリアムなどを題材に解説を行い、現在のブロックチェーンの技術的課題や最新動向もしっかりフォローします。エンジニア1年生、フィンテック業界への転職・就職を目指す人、ブロックチェーンを導入したい企業の担当者に向け、豊富なイラストや具体的な資料を用いてわかりやすく解説します。
  • 図解入門 最新 RPAがよ~くわかる本
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 RPA(Robotic Process Automation)は、ソフトウェア化されたロボットで、パソコンやサーバに対して人手で行われている業務を自動化する技術です。AIやIoTなどのデジタル技術と同じく、経営や業務の革新に貢献すると期待されています。本書は、RPAの市場動向および導入前の心得から「五段階」導入プロセス、用語までを図表をつかってわかりやすく解説した入門書です。RPAに興味のある方、導入を検討されている方などにおすすめします。
  • 図解入門 最新 AI技術がよ~くわかる本
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ⦅生成AIの登場で社会が変わった⦆ 人工知能の最前線 AI技術の可能性と限界を知り 将来の社会の変革に備える。 ⦅最新用語とメカニズムを基礎から学ぶ!⦆ ●生成AIとは ●トランスフォーマーモデルとは ●大規模言語モデル(LLM) ●LLMの覇権を巡る争い ●AIの弱点となる「ハルシネーション」 ●独自情報に対応する「RAG」 ●続々と登場する「日本語LLM」 ●自律学習型汎用AI ●AI業界の覇者「NVIDIA」の今後の戦略 ●AGIとSGI、強いAIと弱いAI ●バーチャルとロボットとAIエージェント ●AIの開発、機械学習、モデルの作成・推論 ------------------------------------------------------ 最近ChatGPTとか生成AIとか、Office AIとか人工知能(AI)のことを知らないとマズイようだが、簡単に知りたい。 いまビジネスマンが知りたい、現在の人工知能がビジネス的にどこまで活用できるのかという疑問がわかる本。 進化の激しいAIについて、最新の状況をさっと知ることができます。
  • 図解入門 よくわかる最新 IoTシステムの導入と運用
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 IoT導入・運用というとセンサーやデバイスに注目しがちです。しかしIoTをうまく構築するためには、ネットワークとサーバを含むシステム全体を理解する必要があります。本書は、これからIoTシステムについて学習したい方、導入の検討をしている方を対象に、IoTとはどのようなものか、どうすればうまく構築できるのか、そして導入・運用のポイントまでをやさしく解説します。自動化・無人化を進めるコア技術がよくわかります。
  • 図解入門 よくわかる最新 システム開発者のための仕様書の基本と仕組み[第4版]
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 プロジェクトの情報を整理し、メンバーで共有するために必要な仕様書の種類や目的、作成のポイントを最近の開発案件なども交えながら解説する入門書の最新アップデート版。
  • 図解入門よくわかる 最新 データマイニングの基本と仕組み
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データマイニングは、大量のデータを効率よく整理して、ビジネスなどに有用な知見を引き出す作業です。本書は、データマイニングで使われる専門用語や基礎知識の解説から、データ解析に必要な統計学の知識、最前線で使われているテクニックの紹介までを、豊富なイラストを交えながらわかりやすく解説した入門書です。データをどのように集めるのか、前処理とは何か、精度など知っておくべきことがまとめて身につきます!
  • 図解ポケット 画像生成AIがよくわかる本
    3.6
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 画像生成AIの仕組みと概要が図版と解説でわかる入門書です。
  • 図解ポケット 今日から使える! データサイエンスがよくわかる本
    3.7
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 いま多くの企業で、データサイエンスを理解できる人材の需要が急増しています。本書は、データサイエンスや機械学習の概要を、初心者向けに難しい言葉や難解な数式を省き、わかりやすい言葉で解説した入門書です。「データサイエンスって何?」からはじめて、よく聞くキーワードや押さえておきたいトピック、ビジネスシーンでデータサイエンスがどう生かされているのかという最新事例まで、ポイントを絞って具体的に紹介します。
  • 図解ポケット ChatGPTがよくわかる本
    3.5
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ChatGPTは人間に話すような問いかけに応えるだけでなく作曲や演奏、著作、集約、画像の認識まで対応します。このChatGPTの全体像から利用方法やビジネスへの影響までAI初心者向けに丁寧に解説した書籍です。
  • 生成AI開発・運用のための法務の教科書 ―そのAI、訴えられませんか?―
    NEW
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 見えないAIリスクを“見える化”する、生成AI時代の実務ガイド いま、生成AIを活用して新しいサービスを作りたい、自社の業務にAIを取り入れたいという企業が増えています。 しかし、導入や運用の段階で注意すべき法律上のポイントを、明確に理解している人はまだ多くはありません。 本書では、AIに関する法務リスクを体系的に整理し、「ここだけは押さえておきたい実務の勘所」を分かりやすくまとめています。 法律の専門書というよりも、「何を相談すればいいのか分からない」「どこまで聞けばいいのか迷う」という方のための、最初の一冊としてお役立ていただけます。 この書籍を読むことで、AIに関する法的リスクを全体的に把握できます。 開発や運用における法務上の問題点を、一般論から具体的な事例まで体系的に理解できます。 〇AIに関する法的リスクを全体的に把握できる 開発や運用における法務上の問題点を、一般論から具体的な事例まで体系的に理解できます。 〇AI導入・運用の各段階で注意すべきポイントが分かる 企画・開発・運用といったフェーズごとに、どの場面でどんなリスクがあるのかを明確にできます。実際に注意点を把握したうえで運用・開発計画が立てられるので、計画進行中のトラブル発生のリスクを軽減できます。 〇参照すべき法律・ガイドラインを見つけられる ポイントを把握することで、自社に関係するルールやガイドラインをスムーズに確認できます。 〇有識者・法律家・弁護士への相談がスムーズになる どのように相談すれば良いかのイメージがつかめるため、具体的で効率的なやり取りが可能になります。結果として、法務上・ビジネス上の落とし穴を事前に可視化でき、無駄なコストやトラブルを避けられます。 ◎有識者・法律家・弁護士に相談するための下地をつくり、安心してAI活用を進めるための実務的なガイドブックです。 AIを活かした開発や事業を安全に、そして前向きに進めたい方におすすめです。 序章 LLM開発者、LLMを使うスタートテック経営者の皆様へ 第1章 LLMモデル開発、運用とかかわる法律権利の一覧 第2章 LLMモデルの開発運用までのスケジュール 第3章 モデル開発に関する法務 第4章 モデル運用に関する法務 第5章 LLM開発者、提供者として知るべきAIに関する考え方 第6章 おわりに―開発運用後にLLM事業者の進むステージ
  • 生成AIと一緒に学ぶ Excel VBAふりがなプログラミング
    NEW
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆------------------------------------------------------------◆ 生成AIと一緒なら、できることがこんなに広がる! ◆------------------------------------------------------------◆ 『生成AIと一緒に学ぶ Excel VBAふりがなプログラミング』は、生成AIを活用してExcel VBAやマクロの基本を楽しく学べる新しいスタイルの学習書です。企業のDX推進課を舞台に、「AIでプログラムを生成する」→「生成されたコードを読んで、ふりがなをふってみる」→「しくみを理解する」という実践的な流れで進行。プログラムにふりがなをふることで理解が深まり、Excel VBAの基礎をしっかり身につけられます。 AI生成のコードは、意図通りに動かないこともありますが、それを修正したりカスタマイズしたりする力を養えるのがこの本の大きな魅力。「Excel VBAを仕事で使いたい」「入門書で挫折した経験がある」という方にぴったりです。具体的なミッションを解決しながら、プログラミングスキルを楽しくステップアップできます。生成AIと一緒に、Excel VBAの世界に飛び込んでみませんか? ■本書の内容 Chapter 1 「Excel VBAと生成AIでDXして!」といわれて Chapter 2 「1日でExcel VBAの基礎を身に付けて!」といわれて Chapter 3 「便利な小物マクロをたくさん作って!」といわれて Chapter 4 「見積書の作成を自動化して!」といわれて Chapter 5 「大量のデータの突合せ作業をやって!」といわれて Chapter 6 「ピボットグラフを自動的に作って!」といわれて ■本書はこんな人におすすめ ・Excel VBAの基本を身につけたい人 ・過去にExcel VBAの入門書で挫折してしまった人 ・仕事でExcel VBAを活用してみたい人
  • 生成AIの核心 「新しい知」といかに向き合うか
    3.6
    ChatGPTをはじめとする生成AIの可能性と限界を見通す! ChatGPTに代表される「生成AI」は、急速に浸透したが、内容の間違いへの対応や著作権保護等、多数の課題がある。さらに、一層の開発をめぐる企業間、国同士の覇権争いまで、多くの論点を含む。生成AIをどう活かすべきなのか、AIの歴史や動作の理由も知り、その本質をあぶりだす。
  • 製造業向け人工知能講義
    -
    進化の速いAIはここを押さえる 製造業の業務活用のための人工知能講義 業務改革、DX推進部門、IT部門、生産技術部門、経営層の悩みに応える  製造業が人工知能(AI)を業務で活用するために、押さえておくべき「本質」を講義形式(読み物)でまとめました。AIは業務の生産性や付加価値の向上に非常に役立つ技術です。ところが、技術の進化が極めて速いため、多くのビジネスパーソンにとって理解が追い付かず、「どうやって使いこなせばよいのか、よく分からない」という現実があります。こうしたビジネスパーソン、中でも企業の業務改革やDX、AI、IT推進部、生産技術部の社員や管理者、経営者の悩みに応えるために、業務活用を進める上で押さえるべきAIのポイントを伝授し、変化に対応してAIを学ぶ際の「見取り図」を描くためのガイドを提供します。  筆者は、名だたる日本の大手企業からAI活用に関する研修のオファーを受け続けている速水悟教授。AIをどのように学べば実務において活用できるかについて、AIの専門知識を持たない人でも理解できます。
  • 世界一やさしいRAG構築入門 ── Azure OpenAI Serviceで実現する賢いAIチャットボット
    4.5
    ◆世界一やさしいRAG(AIチャットボット)の教科書◆ 本書では、RAGの基本概念から構築・活用までを徹底的にわかりやすく解説しています。初心者でも理解しやすいよう、図解をふんだんに用いて、従来技術との違いを明確にし、さらに実際にRAGを動かせるコードも掲載しています。具体的な内容は以下のとおりです。 ● 生成AIの基礎知識:生成AIの仕組みや活用方法を学び、ChatGPTをはじめとする大規模言語モデル(LLM)の特徴や制約を理解します ● Azureの基礎知識:Azureの基本的な概念や主要なサービスについて理解し、RAGを構築する際に必要なクラウド環境の知識を身につけます ● RAGの概念:RAGの基本原理を学び、従来のチャットボットとの違いや、どのようにしてより正確な回答を導き出せるのかを把握します ● RAGの構築方法:Azure OpenAI ServiceやAzure AI Searchを活用し、実際に動作するRAGを構築する手順を学びます ● RAGの評価と改善手法:RAGの回答精度を評価するための方法や、回答精度を高めるためのチューニング手法を学びます 本書ではクラウド基盤としてMicrosoft Azureを使用していますが、解説の中心はRAGの基本概念にあります。そのため、他のクラウド環境でも応用できる内容になっています。 ■目次 ●第1章 生成AIに挑戦すべき理由 ・1.1 生成AIとは ・1.2 生成AIによって仕事はどう変わるのか ・1.3 独自情報に基づいた生成AIによるチャットシステム「RAG」 ・1.4 まとめ ●第2章 OpenAIとAzure OpenAI Service ・2.1 OpenAIとは ・2.2 OpenAIとAzure OpenAI Serviceの関係 ・2.3 本書でAzure OpenAI Serviceを利用する理由 ・2.4 まとめ ●第3章 Azureを使ってみよう ・3.1 Microsoft Azureとは ・3.2 Azureの主要サービス ・3.3 Azureの課金体系 ・3.4 コスト管理の重要性 ・3.5 Azureのサブスクリプション契約 ……ほか ●第4章 Azure OpenAI Serviceを使ってみよう ・4.1 Azure OpenAI Serviceを利用するための土台作り ・4.2 AIの実行環境 ・ Azure AI Foundryでできること ・4.3 AIとチャットをしてみる ・4.4 AIで画像を生成してみる ・4.5 まとめ ●第5章 Azure OpenAI Serviceのさまざまな機能 ・5.1 トークンとは ・5.2 モデルとデプロイ ・5.3 コンテンツフィルター ・5.4 クォータの制限と管理 ・5.5 認証 ……ほか ●第6章 簡単な生成AIアプリを作ってみよう ・6.1 作成する生成AIアプリの概要 ・6.2 開発方法 ・6.3 開発環境構築 ・6.4 ソースコードの説明 ・6.5 小説生成アプリの実行 ……ほか ●第7章 社内ナレッジを活用する生成AIチャットボット(RAGアプリ)を作ってみよう ・7.1 RAGの基本のおさらい ・7.2 RAGアプリの情報検索を担うAzure AI Search ・7.3 Azure AI Searchの検索手法 ・7.4 作成する社内規程検索RAGアプリの概要 ・7.5 開発方法 ……ほか ●第8章 RAGアプリをどうやって運用していくのか ・8.1 RAGの運用 ・8.2 RAGの評価方法 ・8.3 RAGの評価ツール ・ Prompt Flow ・8.4 簡単なフローを動かしてみよう ・8.5 RAGの評価指標 ……ほか ●第9章 進化のはやい生成AIアプリ開発についていくために ・9.1 RAG実現のための最先端手法 ・9.2 最新技術をキャッチアップするための3つのステップ ・9.3 まとめ ■著者プロフィール 武井 宜行:サイオステクノロジー株式会社 シニアアーキテクト。「最新の技術を楽しくわかりやすく」をモットーに情報を発信し続け、2020年にMicrosoft MVPを受賞。コミュニティやMicrosoftの公式イベントに登壇して、今もなお最新技術の探求と情報発信を続けながら、技術コミュニティの発展に貢献している。得意分野はAzureによるクラウドネイティブな開発やAI関連のテクノロジー。
  • 世界をリードする8つの最新テクノロジー Web3からメタバース 量子コンピュータまで
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 世界を変える技術は絶えることなく誕生している。SNS(交流サイト)やチャットアプリはコミュニケーションの世界を、EC(電子商取引)はビジネスの世界を一変させた。ほかにも、2010年代のスマートフォンやAI(人工知能)、さかのぼれば1990年代のインターネット、さらに1970年代のPCなど、枚挙にいとまがない。本書では、現在にとどまらずこれからの世界の変化をリードするであろう注目の技術を選び解説する。  主なものを挙げれば、Web3、メタバース、ブロックチェーン、デジタルツイン、量子コンピューター、クラウド、5Gを含むネットワーク技術、セキュリティーとなる。これらは独立して存在するのではなく、互いに関連しながら社会への影響度を高めていく。  今まさに、Web1.0、Web2.0に続く、10年、あるいは20年に一度のインターネットの変革が起ころうとしている。この変化にあらがうことはできない。どんな技術が存在し、どういった変化を起こしていくのかを知ることが最良の対応であり、本書はそのガイドとなるものである。 ≪目次≫ 第1章 Web3/メタバース最新動向 第2章 量子コンピューター最新動向 第3章 クラウド/ネットワーク最新動向 第4章 セキュリティー最新動向 第5章 挑戦者たち 第6章 シリコンバレー最新動向 第7章 GAFA深読み最新動向 第8章 サイバー攻撃最新動向
  • セルオートマトンによる知能シミュレーション ―天然知能を実装する―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 あの「天然知能」を情報科学として明快に解説! 本書は、セルオートマトンによる知能のシミュレーションについて、基本的な考え方から学ぶものです。 オートマトンの基礎から解説を始め、セルオートマトンに見られる典型的な現象(相転移、カオスの縁)、セルオートマトンと人工知能との対応、非同期調整セルオートマトンと著者らの提唱する「天然知能」との対応、リザバーコンピューティングによる実装の手法までを、順を追って解説します。 「天然知能」は、人工知能(RNN)のように初期情報と因果関係(規則)のみに従って結論を出すものではなく、推論過程で外部の情報に触れることにより結論が変わり得る仕組みであり、現実の思考過程・創造に向かう意識の変化にふさわしい概念として提唱されたものです。 第0章 本書の構成 第1章 はじめに:オートマトンから生命的計算へ 1.1 計算機としてのオートマトン 1.2 セルオートマトンによる世界の模倣 1.3 カオスの縁は本当なのか 1.4 天然知能的理解・天然知能的オートマトンへ 第2章 非同期ライフゲームによる確率的論理ゲート 2.1 ウォーミングアップ:本書におけるオートマトンの使用法 2.2 ライフゲームの規則とグライダー 2.3 非同期ライフゲームと相転移 2.4 非同期ライフゲームにおける計算の可能性 2.5 ゆらぎを利用する確率的論理回路 第3章 1次元セルオートマトン 3.1 初等セルオートマトン(ECA) 3.2 ECAの時空間パターン 3.3 1次元セルオートマトンの四つのクラス 第4章 ランダムさ・複雑性・べき乗則 4.1 ビット列のランダムさとエントロピー 4.2 1次元セルオートマトンのランダムさと複雑さ 4.3 べき乗則 第5章 カオスの縁 5.1 1次元セルオートマトンと「カオスの縁」 5.2 浸透セルオートマトンと相転移 第6章 セルオートマトンの天然知能化 6.1 同型性の発見・解体・転回 6.2 受動・能動の一致を実現する人工知能的描像 6.3 受動/能動のトラウマ構造―1:順序型・非同期時間 6.4 受動/能動のトラウマ構造―2:休止型・非同期時間 6.5 非同期調整オートマトン:脱色されたトラウマ 第7章 非同期調整オートマトンの実装 7.1 1次元セルオートマトンにおける同期と非同期 7.2 非同期調整オートマトンの実装 7.3 非同期調整オートマトンの時空間パターン 第8章 非同期調整オートマトンの臨界性 8.1 カオスの縁を超えて普遍的臨界性へ 8.2 パワースペクトルと1/fゆらぎ 第9章 計算万能性と計算効率のトレードオフ 9.1 万能性と効率は比較可能か 9.2 同期計算における万能性と効率のトレードオフ 9.3 非同期計算における万能性と効率のトレードオフ 9.4 非同期時間が内包する同期時間ルールの多様性 9.5 非同期調整が破るECAのトレードオフ 第10章 リザバー計算への実装 10.1 ニューラルネットとリザバー計算 10.2 ECAを用いたリザバー計算 10.3 非同期調整オートマトンを用いた天然知能的学習システム 第11章 おわりに 参考文献
  • 戦略ゲームAI 解体新書 ストラテジー&シミュレーションゲームから学ぶ最先端アルゴリズム
    4.7
    ゲーム開発者、AIエンジニア、 すべての意思決定に悩んでいる方に必見! 戦略ゲームAIの仕組み、戦略的意思決定プロセスを紐解くバイブル書 【戦略ゲームAIについて】 戦略ゲームの元にとなるストラテジー&シミュレーションゲームはボードゲームを発端として、発展してきました。 近年では、スマートフォン向けのソーシャルゲームを筆頭に、数多くのゲームでストラテジー&シミュレーション要素が取り入れられており、 いまやゲーム開発において戦略ゲームAIは避けて通れない非常に重要な要素になっています。 またゲーム開発のみならず、一般の人工知能開発、複雑な意思決定のプロセス形成において、その技術は非常に注目されています。 【本書の特徴】 ストラテジー&シミュレーションゲームに利用されている戦略ゲームAI技術について、 国内や海外の事例を交え、その仕組みを丁寧に解説した書籍です。 基本的な技術の概論の解説から始まり、 著者が注目するシミュレーション&ストラテジーゲームAIのアルゴリズムについて、 ビジュアルを交えながら解説します。 【読者対象】 ・ゲーム開発者 ・AI開発者 ・意思決定に興味を持つ方 【本書のゴール】 戦略ゲームAIの仕組みを学ぶことができる 【プロフィール】 ゲームAI研究者・開発者。 京都大学で数学を専攻、大阪大学(物理学修士)、東京大学工学系研究科博士課程(単位取得満期退学)。 博士(工学、東京大学)。2004年よりデジタルゲームにおける人工知能の開発・研究に従事。 国際ゲーム開発者協会日本ゲームAI専門部会設立(チェア)、日本デジタルゲーム学会理事など。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • ゼロからはじめる Apple Pay/Suica スマートガイド
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Apple Payは,Suicaや電子マネーがiPhone7やApple Watchで使える便利なサービスです。電車の乗り降りもコンビニなどでの買い物も,定期券やおサイフを出すことなくタッチだけでスムーズに行うことができます。本書は,Apple Payのはじめ方や使い方,疑問点を初心者の方にもわかりやすくまとめました。
  • ソフトウェア科学基礎
    値引きあり
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 オープンソースの広がりにより、多様な機能を実現することは以前と比較すると驚くばかりに容易になっている。しかし、このような開発法ではスケーラビリティと高信頼性を同時に保証することはできない。機能の実現や追加が比較的安易にできる時代になったからこそ、成長し続けるシステム全体の正常な動作を保証しうる開発検査手法の必要性が増している。 本書では、優れた開発者として最先端の理論やツールと使ってソフトウェア開発をするために必要な基礎知識である、論理学、並行システム、オートマトン、モデル検査のアルゴリズムや実装技術、モデル検証ツールをまとめて解説する。
  • ソフトウェア工学の基礎 30
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2023年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
  • ソフトウェア工学の基礎 31
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2024年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
  • ソフトウェア工学の基礎 32
    NEW
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2025年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
  • ソフトウェア工学の基礎 29
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2022年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
  • ソフトウェア工学の基礎 28
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2021年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
  • ソフトウェア・テストの技法 第2版
    値引きあり
    4.8
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 1979年に発行された『ソフトウェア・テストの技法』は、「作ったソフトウェアが意図した通りに動き、意図していないことはしないようにするにはどうしたらよいか」という、もっとも根本的な問題を扱っており、四半世紀にわたって読み継がれる、この分野の古典となっている。  第2版では、インターネット時代に合ったソフトウェアの品質を確保するため、第8章を全面的に書き換え、第9章と付録を新たに追加した。
  • ソフトウェアパターン
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、実際にアーキテクチャを設計するための具体的なスキルとして設計原則や開発プロセスと対応付けながら、アーキテクトの最も基本的な素養としてのソフトウェアパターンを丁寧に解説している。ソフトウェアアーキテクト育成ための理論と実践という観点でバランスのとれた書籍であり、独習書として実務家にも最適である。
  • ソフトウェア品質保証の極意 ―経験者が語る、組織を強く進化させる勘所―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 現場での問題解決に役立つ、ソフトウェア品質保証のための実践的な指南書/解説書!  組織におけるソフトウェア品質保証部門はソフトウェア品質を向上・維持するべく活動していますが、実際の現場においては、開発部門に対して手数のかかる検査を高頻度に要求せざるをえないなどの理由により、開発部門と対立してしまうことがあります。開発部門はコストや納期の成果達成を重視する傾向があり、品質保証部門からの要求はその支障となりがちなため、品質保証部門は開発部門に協力してもらうために、自身の要求の意図・意義を正しく伝えられなければなりません。  本書は、ソフトウェアの品質を高めたいと思いながらも、具体的な施策を立案できない、開発部門との調整がうまくいかない、などと悩んでいる読者に向けて、解決の基となる普遍的・本質的な考え方と、現場の実践で得られた知見による具体的な解決方法を解説します。 第1章 ソフトウェア品質の基本概念  1.1 品質の概念  1.2 品質マネジメントの概念  1.3 ソフトウェア品質マネジメントの特徴 第2章 組織レベルのソフトウェア品質マネジメント  2.1 ソフトウェア品質マネジメントシステムの構築と運用  2.2 ライフサイクルプロセスのマネジメント  2.3 ソフトウェアプロセス評価と改善  2.4 検査のマネジメント  2.5 監査のマネジメント  2.6 教育および育成のマネジメント  2.7 法的権利および法的責任のマネジメント 第3章 プロジェクト共通レベルのソフトウェア品質マネジ メント  3.1 意思決定のマネジメント  3.2 調達マネジメント  3.3 リスクマネジメント  3.4 構成管理  3.5 プロジェクトマネジメント 第4章 プロジェクト個別レベルのソフトウェア品質マネジ メント  4.1 品質計画のマネジメント  4.2 要求分析のマネジメント  4.3 設計のマネジメント  4.4 実装のマネジメント  4.5 レビューのマネジメント  4.6 テストのマネジメント
  • 続 基礎情報学 : 「生命的組織」のために
    3.8
    「情報からの思索」は、著者がコンピュータ研究やメディア評論を通じ、30余年にわたって考え続けたことを踏まえている。いわば著者の集大成といってもよい壮大な理論構築の試み。
  • 続々・わかりやすいパターン認識 ―線形から非線形へ―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 さらにパターン認識・機械学習を学ぶ! 本書は『わかりやすいパターン認識』(第1版1998年、第2版2019年)、『続わかりやすいパターン認識』(2014年)の姉妹書として、教師付き学習における非線形な識別処理を主テーマに、パターン認識・機械学習を解説したものです。本書ではサポートベクトルマシン、カーネル法、畳み込みニューラルネットワークを取り上げ、それらの前段階として、一般化線形識別関数、ポテンシャル関数法も紹介しています。  パターン認識・機械学習を学びたい初学者が独学で学べるようにわかりやすい記述として、具体例、実験例をできるだけ取り入れて解説しています。また章末に演習問題を設けて、力試しができるようにもなっています。演習問題の解答はオーム社Webページからダウンロードできるようになっています。 第1章 線形識別関数とパーセプトロン 第2章 線形分離不可能な分布 第3章 一般化線形識別関数 第4章 ポテンシャル関数法 第5章 サポートベクトルマシン 第6章 カーネル法 第7章 ニューラルネットワーク 第8章 畳み込みニューラルネットワーク 付録 補足事項
  • 続・わかりやすい パターン認識 -教師なし学習入門-
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 定番「わかりやすい パターン認識」の続編!ベイズ統計学の基礎から、最新のノンパラメトリックベイズモデルまでやさしく解説した唯一の書籍! 初学者にはとっつきにくいパターン認識の基本を丁寧な図解と数式展開で解説して好評を得てきた、1998年発行「わかりやすい パターン認識」の続編です。前作で取り上げることのできなかった教師なし学習を主に取り上げてわかりやすくまとめました。教師なし学習を理解することで、より広い対象の音声・画像処理技術、ビッグデータなどを扱うことができるようになります。また、ノンパラメトリックベイズモデルについてわかりやすく解説した日本語の書籍は本書のみで、機械学習やパターン認識をこれから志す研究者、学生の方にもおすすめです。 第1章 ベイズ統計学 第2章 事前確率と事後確率 第3章 ベイズ決定則 第4章 パラメータ推定 第5章 教師付き学習と教師なし学習 第6章 EMアルゴリズム 第7章 マルコフモデル 第8章 隠れマルコフモデル 第9章 混合分布のパラメータ推定 第10章 クラスタリング 第11章 ノンパラメトリックベイズモデル 第12章 ディリクレ過程混合モデルによるクラスタリング 第13章 共クラスタリング 付録A 補足事項 (凸計画問題と最適化,イェンゼンの不等式,ベクトルと行列に関する基本公式,KLダイバージェンス,ギブスサンプリング,ウィシャート分布と逆ウィシャート分布,,ベータ・ベルヌーイ過程)
  • 対話システムの作り方
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Amazon社のAlexaやマツコロイドなど、人との対話を通して仕事をこなすコンピュータ内蔵システムやロボットが活躍している。  私たちが日常使う言語(自然言語)を、AIを用いてコンピュータに組み込むための技術「自然言語処理」を集めた本シリーズの第5巻『対話システムの作り方』では、様々な実例を通して対話システムを体系的に紹介していく。マツコロイドの制作にも関わった著者が、対話というものの本質から目的に沿った対話システムの作り方まで、幅広く解説する。対話システムの導入書!
  • “巧みさ”とロボットの力学 プレミアムブックス版
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ロボットが“巧みさ”を手に入れるには? 冗長自由度系の不良設定性から“巧みさ”の力学的原理に迫る 人が日常的に何気なく行っている、目標物に向けて手を伸ばしたり、物を掴んだりするような巧みな動作。 それを多関節・多自由度なロボットで実現するには、その動作を生み出す「プログラム(計算式)」を用意しなければなりません。そして、そのプログラムを記述する時に、逆運動学の不良設定性が問題となります。 この問題をいかに解消するか? それがロボットで「巧みさ」を実現するための鍵となります。 本書では、ロボットが自然にこの問題を解消するための、数学的道筋に言及し、「巧みさ」の源泉を探ります。 本書は『"巧みさ"とロボットの力学』(2008年5月刊行)をプレミアムブックス版として復刊したものです。内容は変更されていませんので、ご了承ください。
  • たった1日で即戦力になるExcelの教科書【増強完全版】
    3.7
    ★【シリーズ累計35万部】Excel本の歴史を塗り替えた伝説の1冊が5年ぶりに全面リニューアル! 「前向きな怠惰」で仕事はもっとラクになる―― かつてない内容でExcel本の歴史を塗り替えた伝説の1冊が全面リニューアル。 グラフの落とし穴と使い方、神Excelやリンク貼り付けなどの話題を追加し、画面をすべてOffice 365+Windows 10に刷新しました。 300社5000人の指導実績に裏打ちされた実務直結のExcel入門、決定版!
  • たった1秒で仕事が片づくExcel自動化の教科書【増強完全版】
    3.9
    ★【シリーズ累計35万部】Excel本の歴史を塗り替えた伝説の1冊が全面リニューアル! 「5時間かかる作業が3時間でできます」ではなく「1秒で終わらせます」へ―― 作業そのものをゼロにしてしまう“究極の効率化”を実現するExcel VBAのポイントと、毎日の業務を瞬時に終わらせるしくみの作り方をかつてないアプローチで解説した定番書がリニューアル。 大量の書類作成の自動化、イミディエイトウィンドウによる効率的なデバッグなどの話題を追加し、画面をすべてOffice 365+Windows 10に刷新しました。 300社5000人の指導実績に裏打ちされた、実務直結のExcel入門決定版!
  • 楽しいAI体験から始める機械学習  ~算数・数学をやらせてみたら~
    -
    1巻2,398円 (税込)
    AIを使えばこれからの世界での生き方・働き方が大きく変わるはずです。AIは、Excelを使うことさえできれば、数学もプログラミングもなしで無料で作ることができるのです。本書では、足し算をAIに教えるという、拍子抜けするほど簡単にできる手法を応用し、モンティ・ホール問題、東大入試問題予測、エイリアン遭遇回避作戦、囚人のジレンマ等をAIで解きます。本書のほぼ全ての実習ができるデータを作成するためのExcelマクロダウンロード特典付。
  • 試して学ぶ スマートコントラクト開発
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、スマートコントラクトアプリケーションを事例として、パブリックなブロックチェーンを用いたスマートコントラクト開発の手法を紹介する書籍です。 スマートコントラクトプラットフォームのデファクトであるEthereumと、スマートコントラクトを開発するためのプログラミング言語Solidityを中心に取り上げ、実際にアプリケーションを開発するためのプロセスを体験することができます。 スマートコントラクトのコーディングやテスト手法はもちろん、フロントエンドやミドルウェアを含めたアプリケーション提供のための包括的な手順を説明しています。さらに、ブロックチェーンの特徴を活かすサービスデザインの取り組みも紹介します。
  • 試して学ぶ Dockerコンテナ開発
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンテナ型の仮想環境を作成、実行するためのプラットフォーム、Dockerの実践解説書。 本書は、エンジニアが普段行うようなWebアプリケーション開発環境の構築を、Dockerを用いて行うにはどのようにすればよいか、またその環境をDockerで作ることによってどのように開発を効率化させることができるか、にフォーカスした内容となっています。 PHPのLaravel、Node.jsのNuxt.js、RubyのSinatraとRuby on Rails、PythonのPyTorchといった、Webアプリケーションや機械学習の領域で用いられているものを対象として取り上げました。それぞれの解説は独立したものとなっているので、読者の方が使っている言語はもちろん、経験していない言語やフレームワークを試すのにも良いでしょう。
  • 大規模言語モデル入門Ⅱ~生成型LLMの実装と評価
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆コンピュータが言語を理解するしくみ◆ 「大規模言語モデル入門」の続編です。「大規模言語モデル入門」は理論と実装のバランスをとって構成しましたが、本書では実装部分で扱い切れなかった話題を取り上げ、特に大規模言語モデルの評価と生成LLMに関連する解説を充実させます。「大規模言語モデル入門」の9章に続き、10章から始まります。 10章では、後続する章で行う言語モデルの評価方法について解説します。自動評価と人手評価の2つの側面から、ベンチマーク、評価指標、具体的な評価ツールやデータセットなどを取り上げます。11~13章では、主に大規模言語モデルの性能を上げるためのトピックとして、指示チューニング、人間のフィードバックからの学習、RAGに焦点を当て、それぞれの実装方法、利用するデータセット、評価の方法について解説します。14章では大規模言語モデルの学習における並列・分散処理について詳しく解説します。大規模なデータを限られた計算資源で学習させるノウハウは多くのエンジニアにとって有益な情報となるでしょう。 大規模言語モデルの性能を高めるための各トピックの実装とともに、それぞれの評価について理解できる一冊です。 ■目次 ※第1章~第9章は前巻「大規模言語モデル入門」掲載。 ●第10章 性能評価 ・10.1 モデルの性能評価とは ・10.2 評価指標を用いた自動評価 ・10.3 LLM を用いた自動評価 ●第11章 指示チューニング ・11.1 指示チューニングとは ・11.2 指示チューニングの実装 ・11.3 指示チューニングしたモデルの評価 ●第12章 選好チューニング ・12.1 選好チューニングとは ・12.2 選好チューニングの実装 ・12.3 選好チューニングの評価 ●第13章 RAG ・13.1 RAGとは ・13.2 基本的なRAGのシステムの実装 ・13.3 RAG向けにLLMを指示チューニングする ・13.4 RAGの性能評価 ●第14章 分散並列学習 ・14.1 分散並列学習とは ・14.2 さまざまな分散並列学習手法 ・14.3 LLMの分散並列学習 ■著者プロフィール 山田 育矢(やまだ いくや):株式会社Studio Ousia チーフサイエンティスト・名古屋大学 客員教授・理化学研究所革新知能統合研究センター客員研究員。2007年にStudio Ousiaを創業し、自然言語処理の技術開発に従事。2016年3月に慶應義塾大学大学院政策・メディア研究科博士後期課程を修了し、博士(学術)を取得。大規模言語モデルLUKEの開発者。全体の監修と12章の一部の執筆を担当。 鈴木 正敏(すずき まさとし):株式会社Studio Ousia ソフトウェアエンジニア・東北大学データ駆動科学・AI教育研究センター学術研究員。2021年3月に東北大学大学院情報科学研究科博士後期課程を修了し、博士(情報科学)を取得。博士課程では質問応答の研究に従事。日本語質問応答のコンペティション「AI王」の実行委員。東北大学が公開している日本語BERTの開発者。第13章の執筆を担当。 西川 荘介(にしかわ そうすけ):LINEヤフー株式会社 自然言語処理エンジニア。2022年3月に東京大学大学院情報理工学研究科修士課程を修了。現在は情報検索分野での言語処理に取り組む。第12章の執筆を担当。 藤井 一喜(ふじい かずき):東京工業大学 情報工学系 修士1年・Turing株式会社嘱託研究員。学士、修士課程では大規模モデルの分散並列学習に従事。llm-jp、Swallow Projectにて日本語大規模言語モデルの事前学習を担当。第14章の執筆を担当。 山田 康輔(やまだ こうすけ):株式会社サイバーエージェント AI Lab リサーチサイエンティスト・名古屋大学大学院情報学研究科協力研究員。2024年3月名古屋大学情報学研究科博士後期課程を修了し、博士(情報学)を取得。2024年4月より現職。博士後期課程では自然言語処理、特にフレーム意味論に関する研究に従事。第10章の執筆を担当。 李 凌寒(り りょうかん):SB Intuitions株式会社 リサーチエンジニア。2023年3月に東京大学大学院情報理工学系研究科博士後期課程を修了し、博士(情報理工学)を取得。博士課程では言語モデルの解析や多言語応用の研究に従事。現在は日本語大規模言語モデルの開発に取り組む。第11章の執筆を担当。
  • 大規模言語モデルへのアプローチ ―機械翻訳における文例を用いた文解析木発生方式―
    NEW
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 もう一つのLLM ―大規模言語モデルの一手法―  解析木を中間データとする機械翻訳方式は,原言語解析木発生,原言語解析木から目的言語解析木への言語変換,目的言語解析木から目的言語文発生という縦続する3つの処理から構成される.このうち原言語文解析木発生処理は,方式が原言語文を理解することに相当し,処理誤りの9割がこの処理で発生するといわれている.  本書の「文例を用いた文解析木発生方式」は,この原言語解析木発生動作を行うものであり,既存の機械翻訳方式KATEの解析木発生部分をベースとして,これに多数の文例文とその句構造解析結果である文例解析木の対を用いるための改良を加えた方式である.この方式は,大量の言語データを用いる点において大規模言語モデル(LLM)の一種といえる.  「文例を用いた文解析木発生方式」は,1つのデータ対の効果が大きいことにより,学習データの枯渇の影響を受けにくいという利点が得られる.本書の後半で通常のニューラルネットワークを用いた単語列間変換(seq2seq)方式との共同動作の構想を示している.同一入力に対して「文例を用いた文解析木発生方式」とニューラルネットワークを用いたseq2seq変換方式という動作機構の全く違う2つの方式の出力間の共通部分を得ることにより,信頼度の高いデータ対を獲得し,それを新しいデータ対として用いることにより,両方式に対してより信頼性の高いデータ対の自動取得が可能となることが期待される. Ⅰ編 文解析木発生方式 序章 まえがき 1章 機械翻訳における文例を用いた文解析木発生方式の構成 2章 共通単語列の検出 3章 文例排他木の作成 4章 一時排他木木値算出 5章 上位被覆 6章 解析木発生 7章 禁止木非含有判定 8章 文解析木発生方式各部分の役割 9章 機械翻訳における文例を用いた文解析木発生方式の動作実験 10章 ニューラルネットワークを用いた単語列間変換との結合動作に関する構想 11章 ニューラルネットワーク単語列間変換による翻訳に対する1つの提案 12章 Ⅰ編のまとめ Ⅱ編 文解析木発生方式のアルゴリズム A. Ⅱ編の構成 B. 一時排他木木値ユニットを除く一時排他木発生モジュール C. 一時排他木木値ユニット D. 上位被覆モジュール E. 最大木値木発生ユニット F. 解析木発生モジュール G. ニューラルネットワークを用いた単語列間変換との共同動作 H. ニューラルネットワーク単語列間変換による翻訳に関するアルゴリズム
  • Chainer v2による実践深層学習
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Chainerのバージョン2でディープラーニングのプログラムを作る 本書はChainer を使ってディープラーニングのプログラムの作り方を示すものです。ディープラーニングは複雑なネットワークで表現された関数の回帰の問題と見なせます。そしてこのような問題は勾配法で解きます。この観点から Chainer によるプログラムの作成法を示しました。Chainerが2にバージョンアップしたため、2に対応し発行するものです。畳み込みニューラルネットワークについても解説しています。 主要目次 はじめに 第0章 Chainer とは 第1章 NumPy で最低限知っておくこと 第2章 ニューラルネットのおさらい 第3章 Chainer の使い方 第4章 Chainer の利用例 第5章 Trainer 第6章 Denoising AutoEncoder 第7章 Convolution Neural Network 第8章 word2vec 第9 章Recurrent Neural Network 第10章 翻訳モデル 第11章 Caffe のモデルの利用 第12章 GPU の利用 参考文献 ソースプログラム

最近チェックした作品からのおすすめ