情報科学作品一覧

  • 知の構造化の技法と応用
    -
    エネルギー、環境、高齢化など、我々が直面している課題の多くは、たくさんの要素が複雑に関連し合う問題である。ここで重要なことが「知の構造化」である。知識が凄まじい勢いで増えて、細分化された結果、全体像が見えなくなっているということである。科学が発展し、細分化していくにつれ、人間の価値と科学との距離が、次第に遠くなってしまった。知の構造化は、細分化されて知識を再構成しビジョンを「解りやすく、良くする」ために必要なのである。知の構造化は、「知識の構造化」と「行動の構造化」からなる。(カバー袖より/小宮山宏)

    試し読み

    フォロー
  • ChatGPTは質問・指示が9割(池田書店)
    3.6
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ChatGPTは、入力する質問・指示次第でいくらでも使い勝手が変わります。しかし、その圧倒的な自由度のせいで、効果的に使いこなせていない人が多いのが現状です。特に多いのが、ChatGPTに自分の知らない知識を求めてしまうパターンです。ChatGPTはでたらめな回答をすることも多いので、失望して「使えない」と思った人も多いでしょう。しかし、それはあくまで使い方に問題があっただけなのです。ChatGPTには、あなたの優秀な部下だと思って接してあげましょう。部下への指示の出し方にコツがあるように、ChatGPTにも質問や指示の出し方にコツがあります。そのコツさえ掴んでしまえば、ChatGPTはいくらでもあなたのために働いてくれます。 ※本書はGPT-4にも完全に対応し、解説した1冊となっています。 ※本書はKindleで発売されている『おばちゃんでもわかる超入門ChatGPT』『ChatGPT の応答精度はプロンプトが9割』に最新情報を加え、大幅に加筆修正して出版したものです。
  • チューリングさんの贈りもの コンピュータサイエンス入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンピュータサイエンスの祖、チューリングの世界を知るための本。
  • チューリングの考えるキカイ ~人工知能の父に学ぶコンピュータ・サイエンスの基礎
    4.0
    本書はチューリングの理論をもとに,コンピュータの原理やしくみから人工知能までを,わかりやすくていねいに解説しています。チューリングは現在のコンピュータサイエンスの基礎となる理論を作り上げた,とても重要な人物です。また,『知性を持つ機械』という論文やチューリングテストを考案するなど,人工知能の父とも呼ばれています。本書はこのチューリングの重要な理論を,できるだけわかりやすく楽しんで理解できるように,難しい専門用語を避け,ふんだんなイラストを用いて説明しています。コンピュータサイエンスの入門書として最適です。
  • 超実践 アンサンブル機械学習
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ポスト深層学習!! 本書は、ポスト深層学習の最右翼として注目される「アンサンブル機械学習」を、具体的にプログラムを動かしながら概観できる“超実践”の書である。 アンサンブル機械学習とは簡単に言えば、従来のいくつかの機械学習法の“良いとこ取り”である。その主な手法であるランダムフォーレスト、ブースティング、バギングなどについて、簡潔に紹介している。 「とにかく使ってみたい」という読者にはうってつけの、まさに「超実践の必読書」となるだろう。
  • 「作りたい」をカタチにする動画生成AI 基本からプロンプトのコツまでわかる!
    NEW
    -
    全1巻2,530円 (税込)
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIに指示するだけで動画を作れる「動画生成AI」がこの1冊でわかる! 専門知識や高価な機材は不要で、誰もが動画クリエイターになれる時代が来ました。本書は「作りたい」をカタチにするための動画生成AIの活用ガイドです。基本操作はもちろん、クオリティを左右するプロンプト(指示文)のコツや、動画の素材にする画像の作り方、キャラクターを思い通りに動かす技術まで、動画生成AI利用のコツを解説しています。本書では高精度な動画生成AIサービス「Midjourney」を活用して動画を作ります。特典のプロンプトとサンプル画像をダウンロードして、すぐに実践可能です。ご自身のPCで手を動かしながら読み進めることで、動画制作のノウハウが自然と身につく、最初の一歩に最適な一冊です。
  • つくりながら学ぶ!PyTorchによる発展ディープラーニング
    4.3
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書ではディープラーニングの発展・応用手法を実装しながら学習していきます。ディープラーニングの実装パッケージとしてPyTorchを利用します。扱うタスク内容とディープラーニングモデルは次の通りで「ビジネスの現場でディープラーニングを活用するためにも実装経験を積んでおきたいタスク」という観点で選定しました。 [本書で学習できるタスク] 転移学習、ファインチューニング:少量の画像データからディープラーニングモデルを構築 物体検出(SSD):画像のどこに何が映っているのかを検出 セマンティックセグメンテーション(PSPNet):ピクセルレベルで画像内の物体を検出 姿勢推定(OpenPose):人物を検出し人体の各部位を同定しリンク GAN(DCGAN、Self-Attention GAN):現実に存在するような画像を生成 異常検知(AnoGAN、Efficient GAN):正常画像のみからGANで異常画像を検出 自然言語処理(Transformer、BERT):テキストデータの感情分析を実施 動画分類(3DCNN、ECO):人物動作の動画データをクラス分類 本書は第1章から順番に様々なタスクに対するディープラーニングモデルの実装に取り組むことで高度かつ応用的な手法が徐々に身につく構成となっています。各ディープラーニングモデルは執筆時点でState-of-the-Art(最高性能モデル)の土台となっており、実装できるようになればその後の研究・開発に役立つことでしょう。 ディープラーニングの発展・応用手法を楽しく学んでいただければ幸いです。
  • テキスト処理の要素技術
    値引きあり
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 実践・自然言語処理シリーズの第3巻。本書は自然言語処理におけるテキスト処理の様々な要素技術を、実用的な手法に厳選してまとめている。前処理、類似度、重要度、検索、要約、フィルタリング処理といった基礎的な処理方法が網羅され、自然言語処理の各種ツールの使い方も丁寧に解説している。教科書だけでは不十分な、実践に足る情報をこの一冊を通して得ることができる。
  • テキストマイニング入門 ExcelとKH Coderでわかるデータ分析
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 テキストマイニングの手法がよくわかる!! 本書はテキストマイニングの基礎と事例について、フリーの計量テキスト分析ソフトKH Coderを利用したテキストの解析と、Excelによるその分析手法を通して解説する入門書です。  テキストマイニングをいかに業務に活かしていくか、つまづきがちなポイントをマンガやイラスト、図解を用いてわかりやすく解説します。 はじめに 登場人物 プロローグ 第1部 テキストマイニング 基礎編  第1章 テキストマイニングとは  第2章 テキストマイニングで実現できること  第3章 気軽に始めるテキストマイニング  第4章 テキストデータを準備する  第5章 KH Coderで伝える!分析アウトプット5選  第6章 分析の精度を高める!データクレンジング 第2部 テキストマイニング 実践編  第7章 アンケートのテキストマイニング 付録 A.1 Jaccard係数の計算方法 A.2 先輩おすすめの参考書籍 索引
  • 徹底解説 NFTの理論と実践
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 NFTを仕組みとコードで知り尽くす!  NFTは、ブロックチェーン技術における最大のトレンドです。唯一無二のデジタルトークンとして、アートはもちろん、メタバースの不動産、チケット機能など、様々な応用があります。本書は、NFTについて基礎から応用まで深く学べる、実践的なガイドです。暗号通貨の歴史やブロックチェーンの基本概念、そしてスマートコントラクト設計やデプロイ方法など、理論と実践の双方を広くカバーします。すぐにデプロイできる多数のサンプルも紹介、NFTやDeFiの開発に興味ある方は必読の一冊です。この本を手に取って、NFTの深い世界に飛び込んでみてください! はじめに 第1章 NFTの全体像  1.1 NFTとは  1.2 NFTが誕生するまで  1.3 NFTの様々な事例  1.4 Fungibility?代替可能性とは  1.5 ブロックチェーンとNFT  1.6 NFTのエコシステム 第2章 NFTを体験する  2.1 ウォレットの準備  2.2 ETHの購入と出庫  2.3 NFTの購入  2.4 NFTの発行と販売. 第3章 NFTを支える技術  3.1 ブロックチェーンの設計思想と仕組み  3.2 BitcoinとEthereum  3.3 ブロックチェーンノードとNode as a Service  3.4 メインネットとテストネット  3.5 ブロックチェーンエクスプローラ  3.6 スマートコントラクト  3.7 Ethereum上のスマートコントラクト  3.8 コンテンツのホスティング  3.9 Dappsフロントエンドとweb3.js 第4章 最初のトークン:Hello NFT  4.1 事前準備  4.2 NFTコードの作成  4.3 ローカル環境でのテスト  4.4 パブリックブロックチェーンへのデプロイ  4.5 フロントエンドの実行  4.6 コントラクトコードのアップロード 第5章 スマートコントラクト開発に役立つ知識  5.1 Solidity言語について  5.2 Ownableによる管理用の関数の実装  5.3 アップグレード可能なコントラクト  5.4 ガスの節約  5.5 パブリックブロックチェーンへのデプロイ  5.6 テストの記述  5.7 TypeScriptを用いた開発 第6章 NFTの規格ERC-721について  6.1 実装すべき関数  6.2 2種類の移転関数  6.3 2種類の委任  6.4 実装すべきイベント1  6.5 トークンのメタデータについて  6.6 トークンを列挙できるようにするERC721Enumerable  6.7 発展的な内容 第7章 IPFS上のアートNFT  7.1 IPFSについて  7.2 Pinataへのアップロード  7.3 コントラクトの作成  7.4 トークンの発行  7.5 NFT売買サービスでの確認 第8章 チケットトークンの実装  8.1 設計について  8.2 チケットコントラクトの開発  8.3 フロントエンドの開発  8.4 バックエンドの開発  8.5 動作の確認  8.6 発展的な検討事項 第9章 ジェネラティブNFTの実装  9.1 設計について  9.2 コントラクトの開発  9.3 メタデータ生成ロジックとバックエンドの準備  9.4 フロントエンドの準備  9.5 動作の確認  9.6 テストネットでの実験 付録 索引
  • TensorFlowとKerasで動かしながら学ぶ ディープラーニングの仕組み 畳み込みニューラルネットワーク徹底解説
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、ディープラーニングの代表とも言える「畳み込みニューラルネットワーク(CNN)」を例として、その仕組みを根本から理解すること、そして、TensorFlowを用いて実際に動作するコードを動かしながら学べる書籍です。 ディープラーニングについて解説する書籍は多数発行されていますが、本書では、「きちんとニューラルネットワークの原理から理解すること」と、「その原理をどのようにコードとして書くか」の両方がバランスよく学べます。 表面的にコードを覚えるだけでは、応用力は身に付きません。本書で根本から理解しておくことで、現場に出てからも長く使える基礎力を身に付けましょう! ※本書では、プログラムの実行環境としてGoogle Colaboratoryを利用するため、面倒な環境構築は不要です。 ※本書は、2016/9発行の『TensorFlowで学ぶディープラーニング入門』をもとに、Python3系、TensorFlow 2.0ベースに書き換えたほか、全体的に解説を見直し、修正しています。そのほか、実行環境をGoogle Colaboratoryに変更、オートエンコーダーによるアノマリー検知やDCGAN による画像生成などのトピックを追加しています。
  • 天然知能
    4.0
    「考えるな、感じろ」とブルース・リーは言った。計算を間違い、マニュアルを守れず、ふと何かが降りてくる。すべて知性の賜物である。今こそ天然知能を解放しよう。人工知能と対立するのではなく、想像もつかない「外部」と邂逅するために。
  • ディジタル情報流通システム コンテンツ・著作権・ビジネスモデル
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、ITの本質を分析し、これからのブロードバンド社会にむけた技術開発の方向を明らかにすることを目的とする。
  • DETR&最新・物体検出アーキテクチャ入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Transformerを用いた代表的検出モデル「DETR」を中心に、ViT(Vision Transformer)による物体領域の検出、「CenterNet」による中心点予測型の検出、言語生成型アプローチである「Pix2Seq」、さらには「RetinaNet」などのCNN系アーキテクチャまで幅広くカバー、近年の物体検出分野の主要モデルを、比較・理解しながら習得できます。 全編にわたり、「Keras」(一部対応)と「PyTorch」の両ライブラリに対応しており、モデルの構築、推論、可視化、バックボーン(ResNet101/152)の変更や、COCOデータセットを用いた大規模推論処理の実装までを丁寧に解説しました。 画像分類のその先…「どこに、何があるのかを検出する」という実践的課題に挑むすべての人にお勧めの一冊です。 1章 開発環境について 2章 ViTモデルによる物体領域の検出(Keras) 3章 ViTモデルによる物体領域の検出(PyTorch) 4章 CenterNetによる物体領域の検出(PyTorch) 5章 DETRモデルによる物体検出(ResNet101) 6章 ResNet152をバックボーンとするDETRによる物体検出 7章 COCOトレーニングセットを使用下物体検出 8章 事前トレーニング済みDETRモデルによる物体検出 9章 Pix2Seqモデルを用いた物体検出(PyTorch) 10章 RetinaNetによる物体検出(Keras)
  • DXがわかる本 動き出す金融・流通・公共、大変革の時代へ
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ポストコロナ時代、企業はどうあるべきか?生き残りにはDXによる変革が一段と重要に――。 ポストコロナ時代、企業の在り方が問われる時代になった。本書では、単なる概論にとどまらず、金融、公共、流通といった業界を中心にDXの最新動向を追いかける。さらにデジタル庁のトップ、日本を代表する大手金融機関トップのインタビューを含め、ほかでは読めない独自コンテンツを満載した1冊。 ■総合解説 ポストコロナ、DXはこう進む ■金融DX最新動向 地銀の反転攻勢 東京海上、正攻法のDX インタビュー 東京海上ホールディングス社長 小宮暁氏 勘定系の新常態 インタビュー SBIホールディングス社長 北尾吉孝氏 「eKYC」急拡大/岐路の全銀システム/CAFISの葛藤 求められる競争原理 迷走、給与デジタル払い 賛否拮抗で解禁見えず ほか ■公共DX最新動向 激変する行政システム/デジタル庁 その理想と課題 役所・銀行・薬局 マイナカード利用に挑む/デジタル庁の試金石 ワクチン接種DX 政府テレワークの今 拒むのは技術にあらず ほか ■流通DX最新動向 クルマも化粧品も 「ノールック商売」台頭 デジタル直販「D2C」 最新EC誰でも手軽に 物流、再発明 ほか ■DXコラム システムの保守運用体制が瓦解 他人事ではない、みずほの惨事 量子コンピューターとメタバース IT産業と社会を変える技術はこれ 2022年に日本のDXの真価を問う 「地獄の沙汰」が意味するもの 日本のDXを阻む規制を見直す デジタル臨調への期待と不安 公取委がIT業界の暗部を調査 ESGで「見ぬふり」は許されず 岸田新政権
  • DX時代のプライバシー戦略 ―個人データ保護とビジネス強化両立の実践ガイド―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 個人データ活用ビジネスの指南書!  ユーザーの行動や購買のデータをもとに、サービスが最適化されることが当然の時代となりました。ネットで買いものをするときは閲覧や購買の履歴に基づいて商品の推薦が行われますし、動画を閲覧するときは過去の視聴履歴に基づいてホーム画面に表示される動画が変わります。データに基づいた調整によって、ユーザーはより適切なサービスを受けられるようになりました。  しかしユーザーに紐づくデータ(≒個人データ)は、うまく活用すればビジネス強化につながる反面、使いかたを間違えれば社会的に大きな非難を受ける可能性があります。近年ではプライバシー保護に対する社会の目が厳しくなっており、グローバルプラットフォーマーがGDPRで高額な罰金を課せられたり、これまで明確な法規制のなかった国に日本の個人情報保護法に相当する法律が次々と制定されるなど、国際社会は法規制を強める方向に動いています。日本国内でも、データの不適切な取扱いにより問題となった事例は枚挙に暇がありません。いままさに個人データを活用するサービスを開発・運用している実務担当者であっても、以下のような不安を抱えている人は多いのではないでしょうか。 ・いま行っている個人データ活用の施策が、プライバシー法規制に抵触するリスクはないか? ・ユーザーの同意はどんなときに必要で、必要となる場合はどうやって合意を取得するべきか? ・事業者間でのコラボレーションや第三者機関での分析を考えるとき、適法性やセキュリティをどのように担保すればよいか? ・データ処理過程で個人が特定されるリスクはないか? ・レピュテーションリスクを想定したとき、どんな情報を公表しユーザーへ提供するべきか? 本書では、こういった疑問への解答を示し、顧客の個人データを扱う当事者が実務レベルで適切な対応をとれるよう導きます。まずはビジネスでの個人データ活用の利点と懸念点を概説し、関連する法律や技術を説明したのち、どう対応していけばよいか具体例を示していきます。   <本企画のポイント> ・国内外のプライバシー規制の動向を理解できる ・企業におけるプライバシー保護体制(プライバシーガバナンス)の具体的な確立方法がわかる ・ビジネスにおける個人データ活用のリスクを適切に評価し、必要な対策がとれるようになる はじめに/目次 1章 なぜ個人データの活用が注目を集めているのか? 2章 プライバシー保護と炎上 3章 個人データと法規制 4章 プライバシーガバナンスを構築する 5章 個人データの定義と活用における注意点 6章 個人データを守るプライバシーテック 7章 プライバシーテックを活かした個人データ活用のフレームワーク おわりに/索引
  • DNAナノエンジニアリング
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 本巻は、DNAナノエンジニアリングについて、基礎から最先端の研究までを解説。読者は、情報科学、材料科学、生命科学、システム工学等の学生・研究者である。
  • DeepSeek革命 オープンソースAIが世界を変える(池田書店)
    -
    本書では激化する東西AI覇権争いの最前線を読み解き、AIの本質と未来像を示します。さらに、この東西AI覇権争いの狭間で、日本はどう立ち向かうべきかを解説します。日本が独自の強み――漢字文化、省エネ技術、文化翻訳――を武器に、AI先進国へと飛躍するための具体的な戦略を提言します。AIの最前線を知り、次の一手を考える上で、欠かせない視点を提供する一冊です。
  • ディープフェイクの衝撃 AI技術がもたらす破壊と創造
    3.3
    ディープフェイクとは、人工知能(AI)の技術を用いて合成された、本物と見分けがつかないほどリアルな人物などの画像、音声、映像やそれらを作る技術のことである。大統領が敵国への降伏を呼びかける動画が拡散されたり、ある企業のCEOの偽音声を用いた詐欺事件が発生するといった事例が生まれる一方、画像生成AIを用いて作成された絵画が米国の美術品評会で優勝するなど、アートやエンターテインメントの分野にも大きな変革が生じる可能性がある。ディープフェイクを生み出す原理や社会への影響などを平易に解説し、共存せざるを得ない未来に向けて知っておくべきことを語る。 ●偽ゼレンスキーかく語りき ●ディープポルノ――日本では逮捕者も ●GANの発明――敵対的生成ネットワークというアイデア ●画像生成AI――言葉を入力すれば絵ができる ●人はディープフェイク顔を信頼する ●脳はディープフェイクに気づいている ●フェイク動画を見破る ●ディープフェイクと共存する
  • DEOS 変化しつづけるシステムのためのディペンダビリティ工学
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 変化し、長期運用するシステムの信頼性を確保する! 本書は、現代社会において、変化しつつ長期的に運用される巨大で複雑な複合システムに対し、いかにしてその不具合を減らし、重大事故を防ぎ、信頼性を保ちつつ運用を継続していくかについて体系的に議論した初めての技術書である。機能や構造、その境界が変化するシステムは通常「オープンシステム」と呼ばれる。我々はこのための技術体系を「オープンシステムのためのディペンダビリティ工学」、英文で“Dependability Engineering for Open Systems”、その略称をDEOS(デオス)と呼んでいる。システム開発・保守・運用に従事する技術者、研究者に必携の書である。
  • デジタル時代の出版メディア
    4.0
    印刷本なのか、電子本なのか。これからの出版社・取次・書店・読者を考えるために必読の1冊! 出版をめぐる状況は世界的な規模で、大きな変貌を遂げている。学術雑誌はインターネット上であたりまえに公開。電子出版・インターネット書店・出版情報と物流情報のデジタル化・電子図書館、そして出版メディアのゆくえを語り尽くす、書店員の書いた一冊。 前書きより〜 (前略)私は「電子出版」と呼ばれるものが、現在の出版物の一般的な形態である本や雑誌をすべてなぎ払ってしまうなどと主張するつもりはありません。また、「電子出版」の良いところだけをことさら取りあげて、バラ色の出版未来論を展開する気もありません。そうではなく、現在進行形の事態をできるだけ総合的に分析して、今後の出版メディアをその流通も含めて展望してみたいと思っているのです。(後略) 【目次】 はじめに ●一時間目 学術出版の世界は激変している ●二時間目 電子出版は出版を変えるか ●三時間目 成長するインターネット書店 ●四時間目 出版情報・物流情報のデジタル化 ●五時間目 出版メディアのゆくえ あとがき 索引 【著者】 湯浅俊彦 1955年、大阪府豊中市生まれ。追手門学院大学・国際教養学部・教授。学校法人追手門学院図書・情報メディア部長。日本図書館協会・出版流通委員。 著書に『電子出版学概論―アフターコロナ時代の出版と図書館』(出版メディアパル)、『図書館情報学用語辞典 第5版』(丸善出版)、『文化情報学事典』(勉誠出版)、『電子出版活用型図書館プロジェクト―立命館大学文学部湯浅ゼミの総括』(出版メディアパル)、 『ICTを活用した出版と図書館の未来―立命館大学文学部のアクティブラーニング』(出版メディアパル)など
  • デジタルネイティブの時代
    3.7
    デジタル通信メディアを軽々と使う若者たちは、どんなコミュニケーションをしているのか? 緻密な調査から、彼らの生態とともに、現代の日本社会が抱える問題点が浮かびあがってくる。 物心ついたころから、PCやケータイでコミュニケーションをとることが当たり前の“デジタルネイティブ世代”。彼らのコミュニケーションは、旧世代のものとどう違っているのだろうか? 文化人類学の手法を駆使して、15年にわたって調査をつづけてきた著者に見えてきたのは、PCやケータイなどのコミュニケーションメディアや、SNSやツイッターなどのサービスによって、大きく違いが出てきているという実態だった。そして驚いたことに、彼らがコミュニケーションで抱える問題は、現代の日本社会が抱えている問題──不確実なことを避ける傾向、ネット社会への不信感──と同じものだった。若者への調査から鮮やかに浮かびあがってくる、現代日本の姿。
  • デジタル・プラットフォーム解体新書 製造業のイノベーションに向けて
    値引きあり
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 イノベーションを解き明かす! インターネットを基盤とした情報技術が、あらゆる分野の産業に新しいイノベーションを起こしている。本書は、これらの背景を歴史的変遷と技術的変遷の両方から紹介する。特にその中核となるデジタル・イノベーションやデジタルプラットフォームについては、単なる技術の視点だけでなくビジネスと技術の両面から本質を解き明かしており、また、イノベーション・モデルの転換やプラットフォームの役割についても、技術基盤としてのソフトウェアとビジネス思想としてのオープン&クローズ戦略という、2つの視点から解説する。ドイツのインダストリー4.0をはじめとする各国の動きにも触れており、産業政策などに関心のある読者にとって有意義な1冊である。
  • データ×アイデアで勝負する人々
    -
    「データ」はビッグデータ時代の新たな通貨となり、 企業や政府、個人などが持つデータを掛け合わせることで新たなサービスを生み出している。 地中深くの“油田”に蓄積されていたデータが一気に吹き出ることで何が起きようとしているのか。 保険、金融、不動産、食品、農業、エネルギー、医療、広告、防犯、街づくり、科学、選挙など、 あらゆる産業と公共分野で進行する驚異の「データ革命」をレポート!
  • データ×AI人材キャリア大全 職種・業務別に見る必要なスキルとキャリア設計
    5.0
    データ×AI領域のキャリア設計を徹底解説! 自分に合った道筋と戦略がわかる ビッグデータや人工知能の活用が本格化されつつある現代、 データ×AIの領域で活躍できる人材が、様々な業界で求められています。 本書は、そんなデータ×AI人材への就職・転職を目指す方に向けて、 職種やプロジェクトごとの具体的な仕事内容、 求められるスキルなどを、網羅的に解説した書籍です。 【本書で扱う職種】 ・データサイエンティスト ・データエンジニア ・機械学習エンジニア ・データアナリスト ・BIエンジニア 【本書で扱うプロジェクト】 ・機械学習システム構築プロジェクト ・データ分析プロジェクト ・データ可視化・BI構築プロジェクト 本書を読めば、ファーストキャリアを獲得するために取るべきアクション、 自分の市場価値を高めてキャリアアップするための戦略がわかります。 これからデータ×AI領域で活躍したい方、 どのようなキャリアを描いていけばいいのか知りたい方にお薦めの一冊です。 【目次】 ■第1部 データ×AI業界の全体像 第1章 データ×AIによる社会の変革 第2章 データ×AI活用に関する基礎知識 ■第2部 データ×AIプロジェクトの全体像と各職種の果たす役割 第3章 データ×AIプロジェクトの種類と概要 第4章 機械学習システム構築プロジェクト 第5章 データ分析プロジェクト 第6章 データ可視化・BI構築プロジェクト ■第3部 データ×AI人材になるために必要なこと 第7章 データ×AI人材になるためのロードマップ 第8章 データ×AI人材としての転職を決めるポートフォリオ(概要編) 第9章 データ×AI人材としての転職を決めるポートフォリオ(作成編) 第10章 10年後を見据えたキャリア設計 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • データ仮説構築 データマイニングを通して
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 誰もが頭を悩ます仮説構築を学び,データマイニングを習得する!  データマイニングで重要な仮説の設定について,その枠組みを解説した書物は世の中にあまりない。そこで本書では誰もが一番悩むデータマイニングのための仮説構築の手法を重点的にまとめた。さらに,データマイニングに必要な,統計スキル・ITスキル・企画スキル・コミュニケーションスキルという4つのスキルを養成するために,2種類のPBLに基づく課題を設定することで,より実践的な学習を目指した。
  • やさしく知りたい先端科学シリーズ10 データサイエンス
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ICTやIoT技術の発展によって社会にあふれる「ビッグデータ」を活用して、有用な「価値」を引き出す学問分野「データサイエンス」は、ビジネスから行政、医療、スポーツなど、あらゆる分野で注目されている。データサイエンスの基礎となるデータ処理(情報学)やデータ分析(統計学)手法の基本やあらまし、さまざまな分野での活用実例などを、図版や写真、イラストを使ってやさしく解説するシリーズ第10弾。
  • データサイエンス1年生 Pythonで体験してわかる!会話でまなべる!
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 あたらしい1年生シリーズ 「データサイエンス1年生」の登場! ヤギ博士、フタバちゃんと一緒に データサイエンスの世界に飛び込んでみよう! 【本書の概要】 Python1年生でもおなじみのヤギ博士とフタバちゃんと一緒にデータサイエンスの基本について体験できる書籍です。データサイエンスに必要な知識から始まり、基本的なデータの読み解き方や、データの傾向や特徴をつかむ方法について解説します。 【本書の開発環境】 Google Colaboratory 【対象読者】 ・Pythonの基本文法は知っている方(『Python1年生』を読み終えた方) ・データサイエンスについて知りたい初心者 ・Pythonを使ってデータサイエンスの手法を体験したい初心者 【本書のポイント】 ・対話形式で、イラストを交えながら、基礎知識を解説します。 ・データの読み解き方をサンプルを元に学習できます。 ・データの傾向や特徴のつかみ方を学習できます。 【目次】 第1章 「好奇心×データ」で世の中の謎を解き明かそう 第2章 データサイエンスの基本的な手順 第3章 データからわかることは?:探索的データ分析 第4章 本当にそうだろうか?:確証的データ分析 第5章 アイスクリームの売り上げ分析で体験 第6章 AIで変わるデータサイエンスの未来 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコンBASICマガジン』(電波新聞社)の時代からゲームを作り続けて、現在はコンテンツ制作や執筆活動を行い、関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。近著に『Python2年生 スクレイピングのしくみ 第2版』、『Python2年生 データ分析のしくみ 第2版』『ChatGPTプログラミング1年生 Python・アプリ開発で活用するしくみ』、『Python3年生 ディープラーニングのしくみ』、『Python2年生 デスクトップアプリ開発のしくみ』、『Python1年生 第2版』、『Python3年生 機械学習のしくみ』、『Java1年生』、『動かして学ぶ! Vue.js 開発入門』(いずれも翔泳社)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • データサイエンス教本(第2版) ―Pythonで学ぶ統計分析・パターン認識・時系列データ分析・深層学習―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonでデータサイエンスの理論と実践を学ぶ  データサイエンスは、「データを科学的に扱う」学問分野です。近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。  本書は、データサイエンスの基礎となる統計分析からパターン認識(機械学習)、時系列データ分析、深層学習などを、Pythonを使って実際に分析しながら学ぶものです.  データの取り扱い、確率・統計の基礎といった基本的なところから、パターン認識、深層学習といった統計・機械学習手法、時々刻々と変化する時系列データの分析などの解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。  Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。  第2版にあたっては深層学習を大幅に拡充し、自然言語処理、生成系(AutoEncoder、GAN)などの近年重要視されるテーマを取り上げました。 1章 はじめに 2章 データの扱いと可視化 3章 確率の基礎 4章 統計の基礎 5章 回帰分析 6章 パターン認識 7章 時系列データ分析 8章 深層学習の基礎 9章 深層学習による画像処理 10章 深層学習による自然言語処理 11章 生成系深層学習 12章 深層強化学習 索引
  • データサイエンスの考え方 ―社会に役立つAI×データ活用のために―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」準拠テキスト データ活用社会を生きる学生・社会人に必須の【データ分析・解析の基本的な考え方と手法】をわかりやすく解説! データサイエンスは、さまざまなデータを分析・解析し、そこから新しい知見や価値を生み出していく技術・手法です。統計学などの数学を基礎とし、必要に応じコンピュータを活用して、さまざまな分野の専門知識と融合しながら、データから新しい価値を生み出していくデータサイエンスは、いまや大学生・社会人にとって必須の教養といえます。 本書は、政府の「AI戦略2019」での議論を経て策定・公表された「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に準拠した内容です。具体的な事例と分析手法を扱いながら、社会のさまざまな場面で必要とされるデータサイエンスの考え方を、関連する数学とともに丁寧に解説します。また、大学におけるリテラシーレベルの授業に続く、半期の授業に対応した構成としました。 【著者一覧】 第1章  小澤誠一 神戸大学数理・データサイエンスセンター 第2章  大川剛直 神戸大学大学院システム情報学研究科情報科学専攻 第3章  藤井信忠 神戸大学大学院システム情報学研究科システム科学専攻 第4章  青木 敏 神戸大学大学院理学研究科数学専攻 第5章  光明 新 神戸大学数理・データサイエンスセンター 第6章  為井智也 神戸大学数理・データサイエンスセンター 第7章  大森敏明 神戸大学大学院工学研究科電気電子工学専攻 第8章  為井智也 神戸大学数理・データサイエンスセンター 第9章  寺田 努 神戸大学大学院工学研究科電気電子工学専攻 第10章 熊本悦子 神戸大学情報基盤センター 第11章 高島遼一 神戸大学都市安全研究センター 第12章 村尾 元 神戸大学大学院国際文化学研究科 第13章 白石善明 神戸大学大学院工学研究科電気電子工学専攻 第14章 小澤誠一 神戸大学数理・データサイエンスセンター 第15章 羽森茂之 神戸大学大学院経済学研究科 第1章 データサイエンスの考え方 1.1 データサイエンスとは 1.2 データサイエンスを学ぶ理由 1.3 データから価値を生み出すプロセス 第2章 アルゴリズムとデータ構造 2.1 はじめに 2.2 データサイエンスにおけるアルゴリズムとデータ構造 2.3 アルゴリズムの基礎 2.4 基本的なデータ構造 2.5 探索 2.6 ソーティング 第3章 システム最適化 3.1 最適化問題とは 3.2 線形計画問題 3.3 非線形計画問題 3.4 整数計画問題 第4章 統計的データ解析の考え方 4.1 標本調査 4.2 信頼区間と仮説検定 4.3 分布の近似と標準誤差 4.4 線形回帰モデル 4.5 非線形回帰モデル 第5章 教師なし学習 5.1 クラスタリング 5.2 高次元データの次元削減と可視化 第6章 教師あり学習 6.1 教師あり学習とは 6.2 学習モデルとトレーニング(パラメータ最適化) 6.3 データのセットの分割とテスト(モデルの評価) 6.4 実データへの適用例(回帰) 第7章 確率モデル・確率推論 7.1 はじめに 7.2 確率モデルとベイズの定理 7.3 確率推論 7.4 確率推論の応用 第8章 強化学習 8.1 強化学習とは 8.2 強化学習の理論 8.3 強化学習アルゴリズム 8.4 探索と利用のトレードオフと意思決定モデル 第9章 情報センシング 9.1 情報センシングとは 9.2 センサデータ処理 9.3 センシング応用 第10章 画像解析・深層学習 10.1 画像解析 10.2 デジタル画像の特徴とフィルタ処理 10.3 深層学習 第11章 時系列データ解析・音声解析 11.1 時系列データ解析 11.2 音声解析 第12章 テキスト解析 12.1 はじめに 12.2 テキストデータの収集 12.3 テキストクレンジング 12.4 トークン化 12.5 ベクトル化 12.6 探索的データ分析 12.7 テキスト分析 第13章 情報セキュリティ 13.1 情報資産と情報セキュリティ 13.2 情報セキュリティの基本:アクセス制御 13.3 情報セキュリティのCIA 第14章 プライバシー保護技術 14.1 データが価値を生む仕組みと提供リスク 14.2 匿名化によるプライバシー保護 14.3 差分プライバシーによるプライバシー保護 14.4 準同型暗号によるプライバシー保護 14.5 協調学習によるプライバシー保護 第15章 意思決定論 15.1 意思決定の基本的枠組み 15.2 相関関係と因果関係 参考文献 索引
  • データサイエンスの作法 データを活かし切る科学のツボ
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データサイエンスの社会的需要が高まる中、データサイエンティストにはデータを的確に把握し正しく理解する能力が求められる。そのためにはデータ全体をさまざまな角度から丹念に調べる技術が必須となる。本書ではデータの形式や属性、型などの骨子を解説し、データを扱う上で抑えるべき基本を学ぶ。 また著者が開発したソフトウェア「TRAD」(無償)を利用してデータの属性や背景を読み解いた事例も紹介している。20年以上に渡り「サイエンスとしてのデータサイエンス」を追い求めてきた著者が贈る、データの時代に迷わないための必読書。
  • データサイエンスの無駄遣い 日常の些細な出来事を真面目に分析する
    3.3
    技術の無駄遣い!? 日常の些細な出来事を データサイエンスを駆使して 「まじめに」分析 【本書の概要】 ITmedia NEWS で大人気の連載記事 『データサイエンスな日常』をもとにした書籍です。 「飲み会での孤立」「LINEの既読スルー」「満員電車での立ち振る舞い」。 日常生活で気になるテーマを著者の持つ独特の視点で分析。 読み物としてもデータ分析の学習本としても楽しめます。 【本書の対象読者】 ・データやテクノロジー、デバイスを用いたテック系の読み物に興味のある方 ・データ分析、アプリケーション開発に興味のある方 【本書の目次】 PROLOGUE それはコミュニケーションの問題ではなくデータサイエンスの問題 PART 1 家の孤独に立ち向かう CHAPTER1 LINEの既読スルーにランダムフォレストで立ち向かう CHAPTER2 多面的な自分と向き合うためのチャットボット CHAPTER3 電子デバイスを駆使して強制的に感情移入できる漫画を作る CHAPTER4 在宅ワークの孤独に対抗してプロジェクションマッピングで“バーチャル職場”を作り出す PARTT 2 街の孤独に立ち向かう CHAPTER5 「休日に会社の同僚と遭遇しないための動き方」を物理シミュレーションとゲーマーの英知で解き明かす CHAPTER6 飲み会で孤立しないためのセル・オートマトン CHAPTER7 飲み会の帰り道での孤立に、ARシミュレーションで立ち向かう CHAPTER8 「満員電車で快適に過ごすための動き方」を物理シミュレーションで解き明かす CHAPTER9 すべての孤独に悟りとデータサイエンスで立ち向かう ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Data-centric AI入門
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆高品質なデータを設計・開発する技術◆  Data-centric AIとは、機械学習の権威でありGoogleのAI研究チームを率いたAndrew Ngが2021年に提唱した、モデルよりもデータに主眼を置くというAI開発のアプローチです。過去数十年にわたりAI開発においては、固定されたデータセットに対してニューラルネットワークをはじめとしたモデルを適用し、そのモデルを改善することに関心が寄せられていました。しかし、このモデルを中心としたアプローチでは、データセットへの過度な依存やデータセットが抱える課題への無意味な適合により、実用において期待ほどモデルの性能が改善しないといった問題が指摘されています。そのため近年はモデルを固定したうえで、データ拡張、アノテーションの効率化や一貫性の担保、能動学習といったデータに工夫を加えることによってモデルの性能を向上させるアプローチに注目が集まっています。本書では、Data-centric AIの概要を解説したあとに、画像認識、自然言語処理、ロボットといった分野におけるデータを改善するための具体的なアプローチを解説します。最終章では、企業における実践的な取り組みを紹介します。 ■こんな方におすすめ ・データセットの作成、データの学習方法に興味のある方 ・基盤モデルに興味がある方 ■目次 ●第1章 Data-centric AIの概要 ・1.1 Data-centric AIとは ・1.2 データセットのサイズとモデルの性能の関係 ・1.3 データの品質の重要性 ・1.4 おわりに ●第2章 画像データ ・2.1 画像認識におけるData-Centric AIとは ・2.2 画像認識モデルの基礎知識 ・2.3 データを拡張、生成する技術 ・2.4 不完全なアノテーションからの学習 ・2.5 画像と言語ペアの関係性を学習した基盤モデル ・2.6 能動学習 ・2.7 おわりに ●第3章 テキストデータの収集と構築 ・3.1 言語モデルの事前学習 ・3.2 事前学習データの収集 ・3.3 ノイズ除去のためのフィルタリング ・3.4 データからの重複除去 ・3.5 テキストデータ収集の限界 ・3.6 おわりに ●第4章 大規模言語モデルのファインチューニングデータ ・4.1 ファインチューニングとは ・4.2 Instruction Data ・4.3 Preference Data ・4.4 ファインチューニングモデルの評価 ・4.5 日本語における大規模言語モデルのファインチューニング ・4.6 おわりに ●第5章 ロボットデータ ・5.1 はじめに ・5.2 RTシリーズの概要 ・5.3 多様なロボット ・5.4 ロボットにおけるデータ収集 ・5.5 データセット ・5.6 データ拡張 ・5.7 おわりに ●第6章 Data-centric AIの実践例 ・6.1 テスラ ・6.2 メタ ・6.3 チューリング ・6.4 LINEヤフー ・6.5 GO ・6.6 コンペティションとベンチマーク ・6.7 Data-centric AI実践のためのサービス ・6.8 おわりに ■著者プロフィール 片岡裕雄(かたおかひろかつ):2014年 慶應義塾大学大学院 博士(工学)。2024年現在、産業技術総合研究所 上級主任研究員、オックスフォード大学 Academic Visitor および cvpaper.challenge 主宰。時空間モデルのベースライン3D ResNetの研究開発,実データ不要の事前学習法 数式ドリブン教師あり学習(Formula-Driven Supervised Learning; FDSL)を提案。2019/2022年度AIST Best Paper、2020年 ACCV 2020 Best Paper Honorable Mention Award、2023年 BMVC 2023 Best Industry Paper Finalist。研究はMIT Technology Reviewや日経等メディアにて掲載。本書の監修を担当。
  • データテック XMLルネサンスによる最強のデータ戦略
    3.0
    あらゆる企業や組織の中で価値あるデータが、新しい時代のために十分に活用されないまま大量に眠っている。さまざまな情報システムの中枢をなすRDBに保管されてきたデータはもちろん、日常使われるワープロやPDFの文書、ネットのWebページなどのデータもそれぞれの目的に応じて囲い込まれていると言っていい。これらを解放してAIやブロックチェーンで活用できた者は、第4次産業革命の勝者となる。そのためにはデータの生成から変換、管理、流通までのプロセス全体を円滑に回すことのできる、デジタル時代にふさわしい新しい「データサイクル」を実現することが欠かせない。その鍵は、AIなどの機械がそのまま理解することのできるデータの形式を採用することにある。そこで今、オープンな国際標準に基づくXMLデータ形式による低コストで柔軟なシステム作りが、あらためて注目されている。本書が提唱する革新的なXML自動変換技術によって、企業や組織は最強のデータ戦略を手に入れることができる。
  • データの力を100%引き出す「データ分析脳」の鍛え方
    -
    令和のビジネスマンにはデータ分析が求められています。 もはや特定の専門家だけのものではありません。 大人気書籍「Python実践 データ分析 100本ノック」の著者が、 数字で考える思考技術を伝授します。 --- 『AIを使う側になる』 数字で考える技術と 現代に必要な発想法。 実はデータ分析の世界は、想像以上に “クリエイティブ”で“楽しい”のです。 ―――― データを活用するためのツールや技術が広まっています。 TableauなどのBIツールなどで、今ある手持ちの数字を、デジタルデータ化するという流れは非常に多く、グラフ化、ビジュアル化、データ基盤やダッシュボードなどは多くの企業で導入されています。 しかしながら、言われたとおりにデータをビジュアライズすることができても、その意味を理解するデータ分析脳が育っていないので、手順通りにやってみたにとどまり、説明ができずにデータが活用できていません。 本書は、その何故と方法を結び付け、データ分析をするための思考を学ぶことのできる必読の書籍です。
  • データのつながりを活かす技術~ネットワーク/グラフデータの機械学習から得られる新視点
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆誰でもはじめられる「関係性」活用の第一歩◆  ネットワークデータは、点と点の「つながり」によって表現されるデータです。決して特別なデータではなく、私たちの日常生活のさまざまな場面に存在しています。たとえば、SNSのフォロー関係やWebページ間のリンクのような明らかにネットワーク構造を持つデータだけでなく、ECサイトの購買履歴や株式市場の取引といった、一見ネットワークとは無関係に思えるデータにも、つながりの構造を見出すことができます。この「つながり」を活用することで、これまで見えなかったデータの新しい特徴を引き出すことが可能になります。  近年では、計算機リソースの向上や新しいアルゴリズムの登場により、ネットワークデータの実用化が急速に進んでいます。本書では、各手法について平易な言葉で解説することを目指すだけでなく、Pythonを用いたコード例を通じて、データの取り扱いから特徴抽出、さらにNode EmbeddingやGNNといった機械学習手法への応用までを実践的に紹介します。  また、単なる技術の羅列ではなく、身近なデータからネットワーク構造をどのように見出し、意味付けし、課題解決に結びつけるかという思考プロセスや応用事例にも重点を置いています。具体例としては、SNSのフォロー関係やWebページのリンクといった典型的なネットワークデータはもちろん、ECサイトの購買履歴やビジネス文書、さらにはレシートといった、通常「表形式」で扱われるデータに隠れた「つながり」を抽出・活用する手法を丁寧に解説します。 ■こんな方におすすめ ・ネットワーク分析を学びたい方、データから新しい知見を見つけたい方 ■目次 ●1章 ネットワークデータの基礎 ・1.1 ネットワークとは ・1.2 さまざまなネットワーク ・1.3 ネットワークデータの表現方法 ●2章 ネットワークデータの発見・観測・構築 ・2.1 分析前の確認事項 ・2.2 ネットワークを発見する ・2.3 ネットワークデータを観測・入手する ・2.4 ネットワークのデータ形式 ・2.5 ネットワークデータのハンドリング ●3章 ネットワークの性質を知る ・3.1 どのようなノードか ・3.2 2つのノードはどのような関係にあるか ・3.3 どのようなネットワークか ・3.4 NetworkXを用いてネットワークの特徴を知る ●4章 ネットワークの機械学習タスク ・4.1 ネットワークを対象とした機械学習タスクの整理 ・4.2 ノードを対象とした機械学習タスク ・4.3 エッジを対象にした教師あり学習 ・4.4 ネットワーク構造を対象とした機械学習タスク ●5章 ノード埋め込み ・5.1 表データを対象とした機械学習の復習 ・5.2 単語埋め込み ・5.3 ノード埋め込み ・5.4 ノード埋め込みの実装 ●6章 グラフニューラルネットワーク ・6.1 深層学習の発展と構造データの扱い ・6.2 GNNのフレームワーク ・6.3 グラフ畳み込みネットワーク ・6.4 GraphSAGE ・6.5 GATフィルタ ・6.6 Relational GCN ・6.7 GNNの実装 ●7章 さまざまな分野における実例 ・7.1 自然言語処理におけるネットワーク分析 ・7.2 金融分野におけるネットワーク分析 ・7.3 労働市場におけるネットワーク分析 ・7.4 情報推薦におけるネットワーク分析 ・7.5 ネットワーク科学とソーシャルネットワークの分析 ・7.6 生物学におけるネットワーク分析 ■著者プロフィール ●黒木 裕鷹(くろき ゆたか):2020年東京理科大学大学院工学研究科修士課程修了。同年よりSansan株式会社に入社し、現在は企業データのドメイン横断での分析・利用や、実験的な機能の開発に従事。2018年度統計関連学会連合大会 優秀報告賞、2022年度人工知能学会金融情報学研究会 (SIG-FIN) 優秀論文賞 などを受賞。大阪公立大学 客員研究員。 ●保坂 大樹(ほさか たいじゅ):2020年に早稲田大学で工学修士号を取得し、Sansan株式会社に入社。入社後は帳票の解析技術の研究開発および運用に取り組む。現在は同社のSaaS事業においてプロダクトマネジメントを行う一方で、帳票解析チームのリーダーとしてプロジェクトマネジメントも担当する。単語の意味や主体の持つ特性が単語埋め込みやノード埋め込みで得られる数値表現にどのように反映されるかに強い関心をもつ。
  • データビジュアライゼーションのためのデザイン原則 日常的に扱うデータを効果的に伝わる情報に変える
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「データを伝える力」を高める、データ実務者のためのデザイン原則 データ理解からデザインの基礎、ダッシュボード設計まで網羅した可視化の必読書 (Data Graphics Inc. 荻原和樹 推薦) データビジュアライゼーションデザインの実践に役立つ知識を体系的に解説。データの基礎知識から人間が情報をどう認識・処理するか、アクセシビリティ、色彩理論、タイポグラフィ、良いチャートの作り方、インタラクションデザイン、ダッシュボード設計まで幅広く紹介しています。 ●目次 第1部  第1章 データビジュアライゼーションの世界にようこそ  第2章 人はどのようにして情報を認識するか  第3章 データについての基礎知識 第2部  第4章 色の選択  第5章 タイポグラフィ  第6章 よいチャートの作り方  第7章 インタラクションデザイン 第3部  第8章 調査立案、デザイン設計、製作開発  第9章 トラブル対策 付録 参考資料 ●著者 ●著者 Desireé Abbott 製品分析、ビジネス インテリジェンス、科学、設計、ソフトウェア エンジニアリングの分野で10年以上の経験を持つ。 ●日本語版監修 山辺真幸 博士(政策・メディア) 情報可視化研究者。一橋大学大学院ソーシャル・データサイエンス研究科特任講師、慶應義塾大学大学院メディアデザイン研究科特任講師。複雑な大規模データのビジュアライズデザインを専門とし、手掛けた作品は、NHK、日本科学未来館などで展示されている。グッドデザイン賞、可視化情報学会賞、他受賞多数。 ●翻訳 長尾 高弘 株式会社ロングテール社長、技術翻訳者。最近の訳書として『数式なしでわかるAIのしくみ』(マイナビ出版)、『Wiring the Winning Organization 成功する組織を導く3つのメカニズム』(日本能率協会マネジメントセンター)、『scikit-learn、Keras、TensorFlowによる実践機械学習 第3 版』(オライリー・ジャパン)、『Web APIテスト技法』(翔泳社)、『継続的デリバリーのソフトウェア光学』(日経BP 社)、『Scalaスケーラブルプログラミング 第4 版』(インプレス)などがある。 ※この商品は固定レイアウト型の電子書籍です。 ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 ※お使いの端末で無料サンプルをお試しいただいた上でのご購入をお願いいたします。 ※本書内容はカラーで制作されているため、カラー表示可能な端末での閲覧を推奨いたします
  • データ分析の力 因果関係に迫る思考法
    3.8
    本書では「広告が売り上げに影響したのか?」「ある政策を行ったことが本当に良い影響をもたらしたのか?」といった、因果関係分析に焦点を当てたデータ分析の入門を展開していきます。なぜ因果関係に焦点を当てるかというと、因果関係を見極めることは、ビジネスや政策における様々な現場で非常に重要となるためです。また、この「因果関係の考え方」について、数式を使わず、具体例とビジュアルな描写を用いて解説していきます。
  • データプラットフォーム技術バイブル ~要素技術の解説から実践的な構築法、利活用まで~
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 DX・AI時代における技術の本質を掴む!データ基盤技術の叡智とビジネス活用を徹底解説 ★大規模プロジェクトを複数手掛ける著者2名が執筆! ★500ページ超のボリュームで包括的に解説! 近年、データ活用の重要性が高まる一方で、適切な技術を選んで効果的に活かすことは容易ではありません。データ基盤の構築手段は多様化しているため、どの技術をどのように組み合わせるべきか迷う場面も多いでしょう。 本書は、ビジネスの成長に不可欠な「データプラットフォーム」の構築と活用について解説する一冊です。ユーザー行動やセンサーログなどのデータを収集・整理し、ETL処理やELT処理を経て価値ある情報に変換し、意思決定に活かす方法を紹介します。データ品質の維持や、効率的な分析手法についても詳しく解説しています。 DX(デジタルトランスフォーメーション)が進むなか、データとデジタル技術の役割はさらに重要になっています。本書では、Apache Sparkをはじめとする技術の選定や活用方法、設計の考え方を詳しく解説。最新技術だけでなく、将来の変化にも対応できる普遍的な知識を提供します。データを活用してビジネスの競争力を高めたい方、最適なデータ基盤を構築したい方は、本書を通じてデータプラットフォームの理解を深め、より効果的な活用を目指しましょう。 <本書で紹介する要素技術・原則(一部)> ・ログ転送:Fluentd ・アーキテクチャパターン:CQRS+ES、Delta、Kappa、Lambda、Lakehouse、メダリオンアーキテククチャ ・データフォーマット:Apache Hudi、Apache Iceberg、Delta Lake ・データレイク:Apache Spark、Databricks ・データウェアハウス:Amazon Redshift、Google BigQuery、Snowflake、Treasure Data ・ストリーミング:Amazon Kinesis、Apache Kafka ・ジョブスケジューラ:Apache Airflow、Digdag ・ETL処理:Apache Spark、Embulk ・ELT処理:dbt ・BIツール:Metabase、Redash ・データサイエンス:A/Bテスト、LLM、MLflow ・設計開発:データメッシュ、ドメイン駆動設計(DDD)、RDRA ・法則・原則:DIKWモデル、SOLID原則、YAGNI原則 Chapter 1 データプラットフォーム概論 Chapter 2 データプラットフォームの構成要素 Chapter 3 ログ転送 Chapter 4 データ変換・転送(バッチ編) Chapter 5 データ変換・転送(ストリーミング編) Chapter 6 データプロビジョニング Chapter 7 データマネジメントを支える技術 Chapter 8 要件分析 Chapter 9 データプラットフォームの構築 Chapter 10 データプラットフォームの改善 <著者> 島田 雅年(Masatoshi Shimada) インターネット広告、動画メディア、リテール、金融、官公庁など、さまざまな業界のプロダクト設計や開発に従事。得意分野は、組織内のデータを整理して、企業価値の向上を目的とするビッグデータ処理基盤構築。データ活用の現場では、営業職などのビジネス職域における多彩な課題が存在するケースが多く、円滑なデータ提供を支えるデータプロビジョニングシステムの構築はもちろん、組織構築や教育支援などのコンサルティングも手掛ける。 藪本 晃輔(Kosuke Yabumoto) 10年以上にわたりインターネット広告のプロダクト開発に従事。大量のトラフィックを処理する広告配信システムをはじめ、データ管理システムや広告効果計測ツール、媒体収益化など、さまざまなインターネット広告関連プロダクトにて、プロジェクトマネージャーや開発責任者を歴任。ロケーションデータを活用したインターネット広告事業を展開する株式会社ジオロジックではCTOに就任し、データプラットフォーム構築を中心に、エンジニアリングマネージャーから設計・開発まで幅広く担当。現在はスマートニュース株式会社にて、エンジニアリングマネージャーとして広告システムの開発に従事。 <編集者> 丸山 弘詩(Hiroshi Maruyama) 書籍編集者。早稲田大学政治経済学部経済学科中退。佐賀大学大学院博士後期課程編入(システム生産科学専攻)、単位取得の上で満期退学。大手広告代理店勤務を経て現在は書籍編集に加え、さまざまな分野のコンサルティングや開発マネジメントなどを手掛ける。著書に『スマートフォンアプリマーケティング 現場の教科書』(マイナビ出版)など多数、編集書籍に『ブロックチェーンアプリケーション開発の教科書』『ビッグデータ分析・活用の ためのSQLレシピ』(マイナビ出版)など多数。 ※この商品は固定レイアウト型の電子書籍です。 ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 ※お使いの端末で無料サンプルをお試しいただいた上でのご購入をお願いいたします。
  • データベース初心者のためのPostgreSQL教室
    値引きあり
    -
    本書はデータベース初心者およびPostgreSQL初心者向けの入門書です。データベースとは何か?からPostgreSQLのインストール、SQLの実行、トランザクションについて、レプリケーション、バックアップまでを解説しています。
  • データマネジメント 業務改善の正攻法 戦略から実践(日経BP Next ICT選書)
    -
    データを使い、業務改善をしてビジネスに貢献する。その担い手として情報システム部門が期待されています。本書はデータを整え、活用する「データマネジメント」の体系を提示し、計画の立て方、取り組む際の勘所、実例を網羅した一冊です。  複数システムに散在するデータの統合手法について一章を設けました。企業合併や国際化にあたって必須の活動です。さらに著者が30年かけて分析した「データモデルパターン」を初公開しました。商品管理、価格、契約、予実対比のパターンを見ると、業務の改善や設計の糸口が得られます。  手法ごとに実践事例を掲載しました。ビッグローブ、ホンダ、ヤマハ発動機、NTTデータ、大成建設、JCBの実務者が寄稿しています。
  • DataRobotではじめるビジネスAI入門 [DataRobot Japan 公式ガイドブック]
    -
    AIの民主化! DataRobotで AIドリブンな意思決定を実現! 【本書の概要】 本書は、データ準備からAI(機械学習)モデルの生成、モデルの実運用化などデータ・AI活用のステップを エンドツーエンドで自動化してくれる「DataRobot」を利用してAIのビジネス活用を実現する手法を解説した書籍です。 DataRobotを使えば、データサイエンティストやAIエンジニアのように専門知識を持たないユーザーでも、 シチズンデータサイエンティストとしてAI活用の最先端に立ち、AIドリブンな意思決定を実現できます。 【対象読者】 ・ビジネスアナリスト:BIツールやSQLなどを使ってデータ分析をしている方 ・マネジメント層:「AIで何かをやれ」ではなく、最低限のAIの知識を持って技術者と話せるようになりたい中間管理職の方 ・エンジニア:統計分析やプログラミングなどの技術を日常的に使っているものの、AI技術には馴染みのない方 【本書の特徴】 本書はDataRobot初心者に必要となる前提知識、基本操作、データ準備、モデル生成、モデルの評価・解釈などにおける ベストプラクティスを網羅した入門書です。 また業務活用編として自社のビジネスに合わせた利用方法のヒントも紹介しています。 【著者プロフィール】 中山晴之、小島繁樹、川越雄介、香西哲弥 DataRobot Japan 執筆メンバー。 【著者・監修者プロフィール】 シバタアキラ(DataRobotJapan チーフデータサイエンティスト) 世界のトップデータサイエンティストが働くDataRobot, Inc. にて、日本事業の技術責任者。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • 東京大学のデータサイエンティスト育成講座
    4.3
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 東大 松尾研究室が提供するあの人気講座が待望の書籍化! 本書は、2017年と2018年に東京大学で実施された講座で使われた教材がベースになっています。約400名ほどの受講枠(2年間)に、のべ1,800人以上の応募があった人気の講義です。この本のベースとなるコンテンツをさらに精査、ブラッシュアップし、読みやすく整えたものが本書になります。 本書には、データサイエンティストになるための基礎をつめこんでいます。データサイエンティストは、Pythonや確率・統計、機械学習など、幅広くさまざまな分野の知識を必要とします。 この本は主にPython 3を使って、基本的なプログラムの書き方、データの取得、読み込み、そのデータ操作からはじまり、さまざまなPythonのライブラリの使い方、確率統計の手法、機械学習(教師あり学習、教師なし学習とチューニング)の使い方についても学びます。取り扱っているデータは、マーケティングに関するデータやログデータ、金融時系列データなどさまざまで、モデリングの前にそれらを加工する手法も紹介しています。データサイエンティストになるには、どれも必要なスキルです。 本書には、さらに以下の3つの特徴があります。 ・実際のデータを使って手を動かしながら、データサイエンスのスキルを身に付けることができる ・データ分析の現場で使える実践的な内容(データ前処理など)が含まれている ・練習問題や総合問題演習など実際に頭を使って考える内容がたくさんある ◆目次 Chapter 1 本書の概要とPythonの基礎 Chapter 2 科学計算、データ加工、グラフ描画ライブラリの使い方の基礎 Chapter 3 記述統計と単回帰分析 Chapter 4 確率と統計の基礎 Chapter 5 Pythonによる科学計算(NumpyとScipy) Chapter 6 Pandasを使ったデータ加工処理 Chapter 7 Matplotlibを使ったデータ可視化 Chapter 8 機械学習の基礎(教師あり学習) Chapter 9 機械学習の基礎(教師なし学習) Chapter 10 モデルの検証方法とチューニング方法 Chapter 11 総合演習問題 Appendix 本書の環境構築について/練習問題解答/参考文献・参考URL
  • となりのアルゴリズム~自分で答えを出すためのデータサイエンス思考~
    3.0
    膨大な量のデータを解析し、企業などにとって有用な知見を導き出す職業、データサイエンティスト。データサイエンスで用いられる、様々な「アルゴリズム(問題を解決するための処理手段)」の考え方を、恋愛や仕事など、日常の難題と立ち向かうために使ってしまう、狂気のデータサイエンティストによる「アルゴリズム入門」エッセイ。
  • なっとく!AIアルゴリズム
    -
    実践的かつ具体的なサンプルで理解を促す ディープラーニングとAIのコアアルゴリズム 【本書の内容】 本書は Rishal Hurbans, "Grokking Artificial Intelligence Algorithms", Manning Publishing, 2021 の邦訳です。 ここ十数年のさまざまな進歩によって、想像をはるかに超 える規模の、人工知能へのハイウェイが整備されてきました。 本書は、そのハイウェイを高速で走行しながら、周囲の景色や走行時の注意事項、交通法 規を図や例題・演習などで理解を促します。 目的地は、AIのコアを形成するアルゴリズムの理解と構築です。 取り上げるアルゴリズムは、画像内のオブジェクトの識別やテキストの意味の解釈、不正 や異常を検知するパターン検索などを、効率よく・手際よく行う手法です。 とはいえ、それぞれを仔細に論じることはありません。かといって、大雑把な地図を広げ るだけでもありません。 本書はあくまでもAIに興味のある読者自身が走行するハイウェイの見どころと、有用なア イテムを提供するだけです。 アイテムのほとんどは高校レベルの代数学ですし、図を多用することで数式は極力排除し ています。Pythonが多少わかれば、すぐにでもハイウェイをぶっ飛ばせます!! 【本書のポイント】 ・小難しい理屈をイタズラ描きのような図で解説 ・直観的にAIの問題と解決を把握できる ・理解を促すための演習問題 【読者が得られること】 ・人工知能を構成するアルゴリズムの理解 ・統計・分析/解析だけにとどまらない未来 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • 7つの言語 7つの世界
    4.6
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 複数のプログラミング言語とパラダイムを使いこなせれば、プログラマとしての幅が広がります。本書は、1週間で1つの新しい言語を学ぶ“Seven Languages in Seven Weeks”を、Rubyの作者まつもとゆきひろ氏の監訳で発行するものです。言語の特徴を映画の登場人物になぞらえて、Ruby、Io、Prolog、Scala、Erlang、Clojure、Haskellという個性的な7つの言語を紹介。各言語の特性とそこにあるプログラミングパラダイムを、体験を通してものにしましょう。 母に捧ぐ 謝辞 序文 第1章 はじめに 第2章 Ruby 第3章 Io 第4章 Prolog 第5章 Scala 第6章 Erlang 第7章 Clojure 第8章 Haskell 第9章 全体のまとめ 付録A 参考資料 監訳者あとがき 索引 著者・監訳者・訳者について
  • 入門 情報処理 ―データサイエンス、AIを学ぶための基礎―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データサイエンス・AIを学ぶ前に読んでおきたい教科書 前版発行後のソフトウェア周りの進展にあわせて内容を見直すとともに今後重要度が増していくであろうデータサイエンス、AI寄りのテクニカルな内容を増強して改訂するものです。情報科学を扱ううえでの基本的なリテラシーやコンピュータサイエンスの基礎、Word、PowerPoint、Excelの操作の基本、Excelによる統計処理の基礎などを文理問わず学部学部生にわかりやすく解説する教科書です。 1章 情報社会とビジネス  1.1 情報社会とは  1.2 プライバシーと個人情報  1.3 ユビキタス社会  1.4 IoT  1.5 Web2.0  1.6 人工知能  1.7 人工知能の応用 2章 コンピュータネットワーク  2.1 コンピュータネットワークとは  2.2 ネットワークの形態  2.3 ネットワークの構成  2.4 インターネット  2.5 有線接続手段  2.6 無線接続手段  2.7 プロトコル  2.8 ネットワークセキュリティ  2.9 パーソナルセキュリティ  2.10 暗号化 3章 コンピュータシステム(ハードウェア)  3.1 コンピュータの歴史  3.2 コンピュータの種類  3.3 コンピュータの機能  3.4 コンピュータの構成要素  3.5 パソコンの内部構成  3.6 記憶装置  3.7 演算装置 4章 コンピュータの動作原理  4.1 演算処理の原理  4.2 論理素子の歴史  4.3 論理素子の動作原理  4.4 論理回路  4.5 基 数  4.6 2進数と10進数の変換  4.7 桁数の多い足し算  4.8 引き算  4.9 掛け算・割り算  4.10 数学関数 5章 情報量  5.1 ディジタルとアナログ  5.2 情報量  5.3 情報量の単位  5.4 英文字の情報量  5.5 日本語の情報量  5.6 文字コード  5.7 音声の情報量  5.8 静止画像の情報量  5.9 動画像の情報量  5.10 通信の情報量  5.11 情報圧縮  5.12 誤り検出・訂正 6章 ソフトウェア  6.1 オペレーティングシステム(OS)   6.1.1 オペレーティングシステムとは   6.1.2 OSの種類   6.1.3 OSの機能  6.2 プログラム   6.2.1 プログラミング言語とは   6.2.2 プログラムの内部動作   6.2.3 高級言語の基本処理  6.3 データベース   6.3.1 データベース理論   6.3.2 データベースの表現法   6.3.3 関係的表現のデータ操作 7章 人工知能のアルゴリズム  7.1 学 習  7.2 教師あり学習の代表的な手法  7.3 教師なし学習の代表的な手法  7.4 深層学習  7.5 手法の評価 8章 メディアリテラシー  8.1 メディアの定義  8.2 メディアリテラシーの必要性  8.3 メール  8.4 Twitter  8.5 Facebook  8.6 LINE  8.7 Instagram 9章 ビジネス文書の基礎(Word)  9.1 画面構成  9.2 文書全体の設定  9.3 文章の編集と保存/印刷  9.4 表の作成  9.5 オブジェクトの配置 10章 ビジネスプレゼンの基礎(Power Point)  10.1 画面構成  10.2 スライドのデザイン  10.3 画面切り替え効果  10.4 アニメーション  10.5 リハーサル  10.6 スライドショーの実行 11章 データ処理の実践  11.1 Excel操作の基本  11.2 グラフ作成   11.2.1 折れ線グラフ   11.2.2 複合グラフ  11.3 数式の計算   11.3.1 複利計算   11.3.2 損益分岐点   11.3.3 共有地の悲劇  11.4 帳票の作成   11.4.1 見積書   11.4.2 確定申告書  11.5 データ集計   11.5.1 データの分類   11.5.2 フィルター   11.5.3 検索表   11.5.4 データベース関数   11.5.5 クロス集計  11.6 統計処理   11.6.1 ヒストグラム   11.6.2 偏差値   11.6.3 相関分析   11.6.4 t検定   11.6.5 カイ2乗検定 索   引
  • 入門 ディープラーニング ―NumPyとKerasを使ったAIプログラミング―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 AIのしくみと,使いこなすための技術がいっぺんに身につくディープラーニングの入門書 ディープラーニングをゼロから始めて,しっかりと理解したい人のための入門書です.ディープラーニングの基礎を一歩一歩着実に理解しながら,NumPyとKerasを使った実践的なAIプログラミングを学ぶことができます。 本書は,ディープラーニングの原理を説明しているテキストでも,そのプログラミングを実践形式でまとめたチュートリアルのような本でもありません.それらの両方をバランスよく組み合わせた,本当の意味でディープラーニングをわかるように解説した本です.「AIの学習とは」から,「ディープラーニングによる画像認識プログラムの作成」までを,なるべくやさしい言葉で,しかし大事なところを省くことなく説明しています. これからディープラーニングを学ぶ人,また,いまいちディープラーニングについてわからないことがある人,プログラムがうまく実行できない人におすすめの書籍です. 第1章 AIプログラミングを始めよう 1.1 AIとAIプログラミング 1.2 NumPyを使ってみよう 1.3 Matplotlibを使ってみよう 第2章 AIの学習の基本的な考え方 2.1 AIはどうやって学習するのか 2.2 再帰計算法を理解しよう 2.3 学習アルゴリズムの基本形 2.4 勾配降下法を理解しよう 2.5 多変数関数の勾配降下法 第3章 AIの学習の基本的なしくみ 3.1 重みを導入しよう 3.2 損失関数と重みの最適解 3.3 確率的勾配降下法 3.4 簡単なデータセットをつくってみよう 3.5 確率的勾配降下法による重みの最適解を求めるプログラム 3.6 ミニバッチ勾配降下法 3.7 ミニバッチ勾配降下法による重みの最適解を求めるプログラム 第4章 ニューラルネットワークの導入 4.1 単純パーセプトロン 4.2 活性化関数(その1):ステップ関数 4.3 基本論理ゲートの学習問題 4.4 誤り訂正学習法 4.5 学習プログラムを作成するときの注意点(その1) 4.6 プログラム例:AND ゲートの学習問題 第5章 ニューラルネットワークに勾配降下法を適用する 5.1 活性化関数(その2):シグモイド関数 5.2 単純パーセプトロンに確率的勾配降下法を適用する 5.3 学習プログラムを作成するときの注意点(その2) 5.4 プログラム例:単純パーセプトロンの確率的勾配降下法 5.5 単純パーセプトロンにミニバッチ勾配降下法を適用する 5.6 プログラム例:単純パーセプトロンのミニバッチ勾配降下法 第6章 単純パーセプトロンを組み合わせる 6.1 パーセプトロンを「多出力」にする 6.2 活性化関数(その3):ソフトマックス関数 6.3 多出力のパーセプトロンに確率的勾配降下法を適用する 6.4 学習のためのデータを十分に用意しよう 6.5 プログラム例:アイリスの種類を判別する学習問題 第7章 ニューラルネットワークを2層にする 7.1 ニューラルネットワークの層を重ねる 7.2 1出力2層のニューラルネットワークの確率的勾配降下法 7.3 XORゲートの学習問題 7.4 プログラム例:XORゲートの学習問題 第8章 ニューラルネットワークを多層にする 8.1 多出力多層のニューラルネットワーク 8.2 一般的なニューラルネットワークの確率的勾配降下法 8.3 誤差逆伝播法 8.4 学習プログラムを作成するための補足説明 8.5 プログラム例:手書き数字を認識する学習問題 第9章 Kerasを使ってプログラミングする 9.1 Kerasとは何か 9.2 Kerasの導入 9.3 Kerasを用いたプログラムの基本構成 9.4 Kerasを用いたプログラムにおける損失関数 9.5 Kerasを用いたプログラムにおける学習アルゴリズム 9.6 Kerasを用いたプログラムにおける学習の評価指標 9.7 Kerasを用いた学習プログラムの例 第10章 CNNで時系列データを処理しよう 10.1 畳み込みとは何か 10.2 CNN(畳み込みニューラルネットワーク) 10.3 活性化関数(その4):tanh関数 10.4 1次元CNNのプログラム例 10.5 Kerasによる1次元のCNNの実現 10.6 Kerasによる1次元CNNのプログラム例 第11章 RNNで時系列データを処理しよう 11.1 簡単な再帰型システム 11.2 RNN 11.3 簡単なRNNの学習アルゴリズム 11.4 簡単なRNNのプログラム例 11.5 KerasによるRNNの実現 11.6 KerasによるRNNのプログラム例 第12章 ディープラーニングで画像認識を行おう 12.1 2次元畳み込み 12.2 活性化関数(その5):ReLU関数 12.3 画像処理の2次元CNNのプログラム例 12.4 Kerasによる2次元CNNの実現 12.5 Kerasによる2次元CNNのプログラム例
  • 入門 データベース
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データベース入門の決定版! データベースを学びたい初学者に向けて、平易な言葉で基礎を解説した入門書です。  大規模な情報を効率よく処理するために、いまやデータベースは欠かせないコンピュータの基盤技術となっています。  本書は、データベース技術に関する、大学・高専の標準的な教科書として、また社会人の方の入門書として、データベース技術のポイントを選んで、それぞれの基本的な考え方,内容をていねいにわかりやすく説明しています。 1章 データベースとは 2章 関係表とは 3章 データベースの代数 4章 関係表の正規化 5章 基底表と視野表 6章 やわらかい内部スキーマ 7章 安全なデータベース
  • 人間知能と人工知能 あるAI研究者の知能論
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能に向けて、人間知能のメカニズム解明  現在は、人工知能ブームであり、機械学習・進化学習が花盛りです。本書は、生物は進化のなかでどのように知能を発展させてきたか、そして人工知能はどういうものであるかについて、著者の長年の研究にもとづいた最新の成果をまとめたものです。  コンピュータですぐに実践できるといった派手さのない書籍ですが、人工知能と言われるものが増えていくと考えられる現在、自分たち人間の知能がいったいなんであるかを認識しておくことは大切なことです。 まえがき 第1章 知能とは何か 1.1 知能の構造 1.2 知能構造の進化 1.3 知能への期待 1.4 外界との関わり 1.5 知能化メカニズムの諸様相 1.6 知能をつくる細胞組織 第2章 生命の時代[知能化メカニズムの基盤=生命構造] 2.1 生命構造の各部機能 2.2 教師あり学習─制御学習 第3章 記号化の時代[知能化メカニズムの基盤=原生言語] 3.1 記号化の始まり 3.2 形態素表現への進化 3.3 生命構造の機能拡大─複文の生成 3.4 文化継承としての知能深化 第4章 論理の時代[知能化メカニズムの基盤=意味言語] 4.1 意味言語への進化 4.2 意味言語の基本形式 4.3 ニューラルネットワークによる遷移知および推論の実現 4.4 遷移知の源 4.5 知能活動の原型─規格型の問題解決 4.6 物語生成と表現能力 4.7 意味言語ベースの知能化メカニズム 第5章 知能進化の新たな段階[問題の多様な現れ方] 5.1 知能活動の高度化の例 5.2 高度化問題へのアプローチ 5.3 統合知能論 むすび 参考文献 索  引
  • 抜き身の刃
    -
    2004年、とある銀行のシステムがダウン。 その回復のために戦ったプログラマー達。 しかし、そのデスマーチの結果は……。 大切なモノを失った彼らは、 決意を胸に、新たな戦いに挑む。 2004年の作品を発表するに当たって、特別2016年書き下ろしセルパブ論あとがきエッセイを収録。
  • 能動的サイバー防御 日本の国家安全保障戦略の進化
    -
    頻発するサイバー攻撃に対処するために、導入に向けて国会で議論されている「能動的サイバー防御」。 能動的サイバー防御とは、起こりうるサイバー攻撃が安全保障上の問題になると政府が判断したとき、攻撃による被害の顕在化を未然に防ぐものである。 本書では、能動的サイバー防御に関する議論の歴史的プロセス、サイバー攻撃の実態、核兵器による抑止との違い、主要国のサイバー対策などを官公庁からも頼りにされている専門家が網羅的に解説しています。 セキュリティ、システム・DX担当者から、インフラ事業者、政策立案者まで必読の書です。
  • はじめてのAlexaスキル開発[音声認識アプリ開発の基礎知識を身に付ける!]
    -
    Amazonから発売された注目のAIスピーカー「Amazon Echo」。本書ではこのEchoの音声認識・応答を担うソフトウェアである「Alexa」のスキルを開発する方法を学びます。こうした音声認識に関わるソフトウェアの開発を経験したことのないエンジニアにもやさしい概要の解説から,実践的なスキルの開発を詳細に追うところまで,Alexaスキルの開発に取り組みたいエンジニアであれば必携の一冊です!
  • やさしく知りたい先端科学シリーズ6 はじめてのAI
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 今やニュースで聞かない日はないAI〈人工知能〉。ディープラーニングに代表される先進的技術が世界を変えるとして産業界やビジネス社会からの関心も高い。そもそも人工知能とは何か、どういう歴史を歩んできたのか、どういった課題があるのか、そして私たちの生活にどのような影響を与えるのかを説いた、これからを生き抜く教養としてのAI入門書。話題の先端科学に触れたいという知的好奇心に応えるシリーズ第6弾。
  • はじめてのAIリテラシー
    5.0
    政府は「AI戦略2019」の中で,リテラシー教育として文理を問わず,全ての大学・高専生約50万人を対象に,初級レベルの数理・データサイエンス・AIを課程にて習得する方針を打ち出しました。これを踏まえ,各大学・高専で参照可能な「モデルカリキュラム」の検討と策定が進められています。本書はこのモデルカリキュラムのうち,基礎的な範囲に対応した教科書です。AIリテラシーの基礎を薄く広く扱います。文科省の認定制度に準拠し,半期15回の講義で進められるよう工夫されています。これから導入を考えているすべての大学・高専が対象です。
  • はじめての深層学習(ディープラーニング)プログラミング
    3.5
    本書は,わずか11行のプログラム解説からはじまります。たったそれだけで深層学習を体験できるのが,いまの状況です。自らがハマってコードを書いて習得した著者が,Deel,Chainer,TensorFlowといった深層学習用フレームワークを使い,畳込みニューラルネットワークやリカレントニューラルネットワークのしくみをコードを読み解きながら解説します。ニューラルネットワークの学習には,画像と自然言語を対象に,GUIツール(CSLAIER)を使って行う方法を紹介。さらに後半では,AlphaGoにも使われた深層強化学習,ファインチューニングの手法,深層化の本命と目されているオートエンコーダについても知ることができます。
  • はじめての情報理論
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は高専および学部生を想定し、授業や自学自習で活用できる書籍として、情報理論の基礎やエッセンスを分かり易くまとめた。最も基本となる確率論の知識は第1章で必要十分なもののみ記述。このため初学者にも抵抗なく読み進められる。各章に「STEP」を創り、クイズ、ポイント、実力チェックなど順序よく学べるように工夫してある。
  • はじめての人工知能 Excelで体験しながら学ぶAI
    3.5
    自分で動かすから、よくわかる!専門知識を身につける第一歩! 本書は、今後ますますの発展が予想される人工知能の技術を、はじめて学ぶための本です。機械学習をはじめ、ニューラルネットワーク、遺伝的アルゴリズム、問題解決、ゲーム戦略、知識表現など、人工知能を支えるそれぞれの分野の基礎をつかむことができます。 独特の技術が多く使われている分野ですが、Excelのサンプルプログラムを体験することで、その技術を実感できるようになっています。Excelプログラムは簡単な入力とクリック操作で動くので、専門知識は不要です。操作を繰り返すことでプログラムが賢くなっていく様子は、人工知能技術への大きな期待も感じさせます。 また、本書で取り上げている各論は、高専5年生向けの授業がもとになっているので、学生・社会人問わず入門に最適です。特に、人工知能分野で活躍したい学生や、将来仕事で人工知能にかかわるかもしれない理系職種の方におすすめです。 【Excelサンプルプログラム】 ・多少ゆがんだ文字でも人工知能なら正しく認識できる ・「ちょっと高め/ちょっと低め」の感覚で空調を制御する ・遺産の適正な分配を要領よく行う ・宣教師が「人食い人」に食われずに川を渡れるか? ・最小コストで山の頂上まで登るときの経路を探せ ・簡単なカードゲームでコンピュータに挑戦! ・人工知能にことばの意味を教えよう ・病院に行く前に人工知能に聞いてみよう ・犯人を捕まえろ! 【本書で解説している技術】 機械学習/深層学習(概論)/ニューラルネットワーク/ファジィ/遺伝的アルゴリズム/問題解決/探索法/ゲーム戦略/知識表現/エキスパートシステム/エージェント/Lisp/Prolog など ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • はじめての人工知能 増補改訂版 Excelで体験しながら学ぶAI
    -
    さまざまなAI技術を1冊に網羅 動かしながら学ぶ、本格入門書! 本書は、人工知能の技術をはじめて学ぶための本です。 近年は機械学習・深層学習が注目を集めていますが 人工知能は各技術が相互に進化を促したり いろいろな技術を組み合わせたりして発展しています。 そこで本書では、下記のような 幅広い技術の基礎知識を網羅しています。 【本書で解説している技術】 ・機械学習/深層学習(概論) ・ニューラルネットワーク ・遺伝的アルゴリズム ・エキスパートシステム ・知識表現 ・ゲーム戦略など 独特の技術が多く使われている分野ですが、 Excelのサンプルプログラムを体験することで、 その技術を実感できるようになっています。 操作を繰り返すことでプログラムが 賢くなっていく様子は、人工知能技術への 大きな期待も感じさせます。 特に、人工知能分野で活躍したい学生や、 将来仕事で人工知能にかかわるかもしれない 理系職種の方におすすめの本です。 【Excelサンプルプログラム(一部)】 ・正解がわからなくても人工知能が自力で認識してくれる ・宣教師が「人食い人」に食われずに川を渡れるか? ・簡単なカードゲームでコンピュータに挑戦! ・人工知能にことばの意味を教えよう ・病院に行く前に人工知能に聞いてみよう ・犯人を捕まえろ! ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • はじめてのMATLAB
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 題材で挫折しない。プログラミング経験なしでも大丈夫!はじめてMATLABにふれる読者を対象としている。題材で挫折しないよう,易しい事例で解説を行う。また,プログラミングの経験が無くても学べるよう,導入部分ではプログラムを感じさせないよう進んでいく。4章では,プログラミング経験のない読者にむけて,プログラミングの「いろは」を解説。実際に使いこなすのに有用な14のTipsを収録。MATLAB初学者,必携の書である。
  • はじめての論理回路
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 論理回路は基本の「き」!電子・情報系では必須といわれる論理回路をわかりやすく解説。1章には高校からの橋渡し的な内容を入れ、つまずかないように工夫。また、「論理」がどのように論理回路につながるかも解説する。後半では、現場で使われているHDLも解説し、初歩的な論理回路が組めるようにする。章末に演習問題を多数用意し、A基本問題、B応用問題、C発展問題に分け、ABには詳しい解答をつける。また、側注を設けて、確認する内容やアドバンスな事柄を解説する。論理回路を初めて学ぶ読者には、まさに最良の入門書である。
  • はじめよう!システム設計 ~要件定義のその後に
    4.0
    技術者が不足していると言われるIT業界では,全体を把握しながらシステムを構築できるような人材が希少になっています。本書では「UI・機能・データの三点セット」を「クライアント・サーバ・DB」というシステムの三層セットへと配置する指針と手法を中心に,UIデザインの具体的な手法,機能をプログラムするための構造化やオブジェクト指向の最重要な原則,そしてモダンなDB設計の方法などを解説します。AI,IoTなどの最新技術や領域にも対応しながらシステム構築を行うための,システム設計の知識を体系的に学びましょう!
  • 発見・創発できる人工知能 Otter:論理パズルからのアプローチ
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ライバルはディープラーニング!!  OTTERは、数学における定理やパズルの解法の証明を支援するソフトウェアで、述語論理を用いて解を導き出す。医療・金融システムの安全性構築、ウイルス検知などにも適用され、欧米では近年、高い評価を受けている。最大の特徴は、ユーザが与えた不完全な論理(情報)であっても、自動的に正しい推論を行うことができる点にある。  統計的論理を用いる機械学習等に手詰まり感のある中、OTTERには推論を通して新しい解を導き出す“創発的機能”があり、注目のAI技術である。  本書は、OTTERが得意な論理パズルを具体的な解法プログラムとともに紹介しながら、自動推論・定理証明の方法を解説する。人工知能の研究者・技術者、必読必携の書である。
  • 反実仮想機械学習~機械学習と因果推論の融合技術の理論と実践
    5.0
    【世界初の反実仮想機械学習の教科書!】  反実仮想(Counterfactual)─ 起こり得たけれども実際には起こらなかった状況 ─ に関する正確な情報を得ることは、機械学習や意思決定最適化の応用において必要不可欠です。例えば、「現在運用している推薦アルゴリズムを仮に別のアルゴリズムに変えたら、ユーザの行動はどう変化するだろうか?」や「特定のユーザ群に新たなクーポンを与えたら、収益はどれほど増加するだろうか?」などの実務・社会でよくある問いに答えることを可能にするのが、反実仮想機械学習(CounterFactual Machine Learning; CFML)と総称される機械学習と因果推論の融合技術です。  本書では、反実仮想機械学習の重要な基礎であるオフ方策評価と呼ばれる統計的推定問題を重点的に扱い、反実仮想に関する情報を観測データに基づいて正確に推定するために必要な考え方と統計技術を着実に身につけます。その後、オフ方策評価の自然な拡張として、観測データに基づく意思決定の最適化問題を扱います。こうして、反実仮想推定を最重要の基礎に据える反実仮想機械学習の思想と理論、それらの汎用的な応用力を身につけることが、本書における最大の目標です。  なお本書では、反実仮想機械学習に関する理論やその実践、Pythonを用いた実装をバランスよく扱っています。例えば、関連の学術研究や論文執筆を行う方向けには、理論の理解を深める章末問題を提供しています。6章には、実践現場で働く方々向けに、独自に作成したケース問題を用いた応用例を示しました。学術研究を行いたい学生・研究者の方や実応用を行いたい実務家の方など、幅広い層や用途に有効活用していただける内容に仕上がっています。 ■目次 ●第0章:基礎知識の整理   0.1 確率の基礎   0.2 統計的推定の基礎   0.3 教師あり学習の基礎   0.4 因果推論の基礎 ●第1章:標準的なオフ方策評価   1.1 オフ方策評価の定式化   1.2 標準的な推定量とその性質   1.3 基本推定量の精度を改善するためのテクニック ●第2章:ランキングにおけるオフ方策評価   2.1 ランキングにおけるオフ方策評価の定式化   2.2 ランキングにおけるIPS 推定量とその問題点   2.3 ユーザ行動に関する仮定を駆使したIPS 推定量   2.4 ランキングのオフ方策評価に残された課題 ●第3章:行動特徴量を用いたオフ方策評価   3.1 行動の特徴量を取り入れたオフ方策評価の定式化   3.2 行動特徴量を有効活用する推定量   3.3 これまでに登場した推定量のまとめ ●第4章:オフ方策評価に関する最新の話題   4.1 強化学習の方策に対するオフ方策評価   4.2 オフ方策評価に関するそのほかの最新トピック ●第5章:オフ方策学習に関する最新の話題   5.1 オフ方策学習の定式化   5.2 オフ方策学習における標準的なアプローチ   5.3 オフライン強化学習   5.4 オフ方策学習にまつわるそのほかのトピック ●第6章:オフ方策評価・学習の現場活用   6.1 方策の長期性能に関するオフライン評価   6.2 プラットフォーム全体で観測される報酬を最適化する方策   6.3 本章のまとめ ■著者プロフィール 齋藤優太(さいとうゆうた):1998年北海道生まれ。2021年に、東京工業大学にて経営工学学士号を取得。大学在学中から、企業と連携して反実仮想機械学習や推薦・検索システム、広告配信などに関する共同研究・社会実装に多く取り組む。2021年8月からは米コーネル大学においても反実仮想機械学習などに関する研究を行い、NeurIPS・ICML・KDD・ICLR・RecSys・WSDMなどの国際会議にて論文を多数発表。そのほか、2021年に日本オープンイノベーション大賞内閣総理大臣賞を受賞。2022年にはWSDM Best Paper Runner-Up Award、Forbes Japan 30 Under 30、および孫正義育英財団第6期生に選出。著書に『施策デザインのための機械学習入門』(技術評論社)がある。
  • ハンズオンで分かりやすく学べる Google Cloud実践活用術 AI・機械学習編
    -
    クラウドのサービスが高度化を続けています。素の仮想コンピューターに一からシステムを構築するというのはもはや時代遅れ。用意されたさまざまなサービスを組み合わせて短期間で目的のシステムを構築することが重要になっています。  Google Cloud(旧名称Google Cloud Platform=GCP)にはさまざまなサービスがあり、これらを活用することで、開発・運用・保守の短縮化・低コスト化・安定化が可能です。本書はGoogleの監修を受けており、2巻構成でGoogle Cloudの「AI・機械学習」「ビッグデータ」「コンテナ」の機能と使い方を解説します。本巻ではこの中で「AI・機械学習」に焦点を当てます。  AI・機械学習は自分で一から作るのが困難な分野です。モデルを構築するのに専門知識が必要なだけでなく、数多くのデータを用意したり、それを学習させたりと、大変な労力がかかり、ノウハウも必要です。Google CloudではGoogleが培ってきた学習済みのモデルを使ったり、ユーザーが学習させたりすることで容易にシステムを構築できます。  本書ではハンズオンでこれらを学習できます。データはGoogleがビッグデータとして用意しているものを使っているので、実際に試すのも容易です。
  • ハンズオンで分かりやすく学べる Google Cloud実践活用術 データ分析・システム基盤編
    -
    クラウドのサービスが高度化を続けています。素の仮想コンピューターに一からシステムを構築するというのはもはや時代遅れ。用意されたさまざまなサービスを組み合わせて短期間で目的のシステムを構築することが重要になっています。  Google Cloud(旧名称Google Cloud Platform=GCP)にはさまざまなサービスがあり、これらを活用することで、開発・運用・保守の短縮化・低コスト化・安定化が可能です。本書はGoogleの監修を受けており、2巻構成でGoogle Cloudの「AI・機械学習」「ビッグデータ」「コンテナ」の機能と使い方を解説します。本巻ではこの中で「ビッグデータ」と「コンテナ」に焦点を当てます。  ビッグデータを管理するBigQueryは従来のデータベースと異なり、インデックスを作る必要がないのが特徴。データ分析に力を発揮します。コンテナを管理するオーケストレーション・ツールではGoogleが開発したKubernetesが業界標準となっていますが、Google CloudではKubernetesを使いやすくするGoogle Kubernetes Engine(GKE)を用意しています。  本書ではハンズオンでこれらを学習できます。データはGoogleが用意しているものを使っているので、実際に試すのも容易です。
  • バージョン8&9両対応! Red Hat Enterprise Linux完全ガイド
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 レッドハットのエンジニアが直伝! 導入からシステム管理コンテナー構築まで完全網羅。 サーバー向けLinux分野で圧倒的なシェアを誇る米Red Hat社の商用Linuxディストリビューション「Red Hat EnterpriseLinux(RHEL)」解説書の決定版。 2022年5月にリリースされた最新バージョン9だけでなく、いまだ多数のユーザーが利用しているバージョン8についても完全対応。 すぐに移行せず、しばらく8を使おうと考えている人にも役立ちます。 RHELの導入方法から各種サーバーのインストール方法や設定・管理方法、運用に役立つコマンドやツールの利用方法などを豊富なコマンド実行例と共に解説。 本書を片手にサーバーの管理や運用に必要な作業をすぐ試せる構成になっています。 セキュリティやコンテナ技術、仮想化技術など今どきのサーバー管理者に必須の技術要素についてもしっかりと学べます。 さらに、RHELを運用する際に起こりがちなトラブルの対処法や、RHELでサーバーを安定的に運用し続けるために欠かせない メンテナンスに関する知識なども70ページ以上のページを使って詳しく紹介しています。RHELを初めて触る人から既にサーバーを運用している人まで、 RHELの導入・管理・運用に欠かせない情報を網羅的に掲載しています。
  • Python・Colab・NLP入門 PythonとGoogle Colaboratoryではじめる自然言語処理
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は自然言語処理のPythonプログラミングに必要な要点を簡潔かつわかりやすく解説しています。環境構築の手間がかからないGoogle Colaboratoryで手軽にプログラミングを試し、自然言語処理の習得へステップアップしていける入門書にふさわしい一冊です。
  • Pythonで動かして学ぶ! あたらしい機械学習の教科書 第2版
    -
    数学の基礎知識とPythonコードを紐づけて機械学習の基本を学べる! 【本書の目的】 現在、人工知能関連のプロダクト・サービスが数多く見受けられるようになりました。 人工知能関連の開発に機械学習の基礎知識は必須です。 本書はそうした機械学習の基礎知識を学びたいエンジニアに向けた書籍です。 【本書の特徴】 本書は機械学習の基本について、数学の知識をもとに、 実際にPythonでプログラムしながら学ぶことができる書籍です。 ・最新のPython 3.7に対応 ・学習内容を「要点整理」で復習 ・数式とコードをつなげたわかりやすい解説 【読者が得られること】 本書を読み終えた後には、機械学習のしくみとプログラミング手法を理解できます。 【対象読者】 機械学習の基礎を学びたい理工学生・エンジニア 【目次】 第1章 機械学習の準備 第2章 Pythonの基本 第3章 グラフの描画 第4章 機械学習に必要な数学の基本 第5章 教師あり学習:回帰 第6章 教師あり学習:分類 第7章 ニューラルネットワーク・ディープラーニング 第8章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 第9章 教師なし学習 第10章 要点のまとめ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonで動かして学ぶ!あたらしい深層学習の教科書 機械学習の基本から深層学習まで
    -
    【本書の概要】 本書は株式会社アイデミーで大人気の講座『ディープラーニングで画像認識モデルを作ってみよう!』を書籍化したものです。 機械学習の基本からはじまり、Pythonの基礎、データの処理、深層学習の基本から応用ついて、 サンプルを元に実際に動かしながら、わかりやすく解説します。 各項には練習問題がありますので、学習効果を確かめながら読み進めることができます。 本書を読めば、機械学習から深層学習の基本を一気通貫で学習できます。 これから深層学習をはじめたい、初学者の方におすすめの1冊です。 【本書の対象】 人工知能関連の開発に携わる初学者(開発者、研究者、理工系学生) 【本書の構成】 第1章から第3章で機械学習の基本を、 第4章から第6章ではPythonの基礎知識を、 第7章から第9章ではNumPyやPandasの基礎知識を、 第10章から第13章では可視化の基礎知識を、 第14章から第15章ではデータの扱い方の基本を、 第16章から第18章では教師あり学習やハイパーパラメータとチューニングを、 第19章から第22章では深層学習について基本から応用まで、 丁寧に解説します。 【著者プロフィール】 石川 聡彦(いしかわ・あきひこ) 株式会社アイデミー 代表取締役社長 CEO。 東京大学工学部卒。株式会社アイデミーは2014年に創業されたベンチャー企業で、 10秒で始める先端テクノロジー特化型のプログラミング学習サービス「Aidemy」を提供。 様々な企業のアプリケーション制作・データ解析を行った。現在の主力サービス「Aidemy」は AIやブロックチェーンなどの先端テクノロジーに特化したプログラミング学習サービスで、 リリース100日で会員数10,000名以上、演習回数100万回以上を記録。 早稲田大学主催のリーディング理工学博士プログラムでは、AIプログラミング実践授業の講師も担当した。 著書に『人工知能プログラミングのための数学がわかる本』(KADOKAWA/2018年)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonで動かして学ぶ!あたらしい数学の教科書 機械学習・深層学習に必要な基礎知識
    -
    AI開発に必要な数学の基礎知識がこれ1冊でわかる! 【本書の目的】 本書は以下のような対象読者に向けて、 線形代数、確率、統計/微分 といった数学の基礎知識をわかりやすく解説した書籍です。 【対象読者】 • 数学がAIや機械学習を勉強する際の障壁になっている方 • AIをビジネスで扱う必要に迫られた方 • 数学を改めて学び直したい方 • 文系の方、非エンジニアの方で数学の知識に自信のない方 • コードを書きながら数学を学びたい方 【目次】 序章 イントロダクション 第1章 学習の準備をしよう 第2章 Pythonの基礎 第3章 数学の基礎 第4章 線形代数 第5章 微分 第6章 確率・統計 第7章 数学を機械学習で実践 Appendix さらに学びたい方のために ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonで動かして学ぶ!Kaggleデータ分析入門
    3.8
    世界最大のデータ分析コンペサイト Kaggle(カグル)に挑戦して データ分析の基礎知識を身に付けよう! 【本書の概要】 本書はこれからデータ分析をはじめたいと思っている方や、 Kaggleに興味のあるデータ分析の初心者に向けて、 Pythonの実際のコードとともに丁寧に解説した書籍です。 データ分析で必要な一般的な知識とともに、 Kaggleへチャレンジするフローや、 Kaggleの初心者向けコンペへの取り組み方を紹介します。 データ分析や機械学習の一端に触れ、 実際に課題を解決するプロセスを体感できます。 【本書の対象読者】 ・データサイエンティストを目指す学生 ・データ分析に興味はあるが、あまり経験や知見がないデータ分析の初学者の方 【本書のポイント】 Kaggleの初心者向けチュートリアル「Titanicコンペ」「House Pricesコンペ」について、 分析の準備から結果の考察、そして精度を上げるプロセスを ステップバイステップでコードとともに、わかりやすく解説しています。 【本書より扱うコンペの特徴:本書より抜粋】 ・Titanicコンペの特徴 乗客ごとに性別や年齢、乗船チケットクラスなどのデータが、 生存したか死亡したかのフラグとともに与えられています。 生死に影響する属性の傾向をデータから分析して、 生死がわからない(予測用に隠されている)乗客について、 生死結果を予測することが目的です。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonで学ぶ統計的機械学習
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで機械学習に必要な統計解析を学べる!! 機械学習を使いこなすには、確率・統計に根ざしたデータ解析の基礎理論の理解が不可欠です。そこで本書は、Pythonの簡単な使い方から確率・統計の基礎、統計モデルによる機械学習を解説します。 第I部 Pythonによる計算  第1章 Pythonの初歩  第2章 確率の計算 第II部 統計解析の基礎  第3章 機械学習の問題設定  第4章 統計的精度の評価  第5章 データの整理と特徴抽出  第6章 統計モデルによる学習  第7章 仮説検定 第III部 機械学習の方法  第8章 回帰分析の基礎  第9章 クラスタリング  第10章 サポートベクトルマシン  第11章 スパース学習  第12章 決定木とアンサンブル学習  第13章 ガウス過程モデル  第14章 密度比推定 付録A ベンチマークデータ  A.1 UCI Machine Learning Repository  A.2 mlbench  A.3 datasets 参考文献 Python索引 用語索引
  • Pythonと実例で学ぶ機械学習 識別・予測・異常検知
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習による異常検知と系列データ解析を実例をもとに学ぶ  本書は、現在産業界で注目されている、機械学習による ・機器の振動データに対する異常検知 ・系列データ(例として睡眠系列データ)に対する解析 を解説したものです。  業務や研究開発に必要だが機械学習については素人という方でも実践できるように、本書前半では、基本的な識別器・予測器のPythonによる実装例・使い方を解説しています。後半では、実問題への適用例を著者の研究経験をもとに解説しています。 第1章 機械学習とは何か 第2章 基本的な識別器・予測器 第3章 機器の振動データに対する異常検知 第4章 系列データの解析
  • Pythonによる機械学習入門
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。検索やハイライト等の機能が使用できません。 初心者でもPythonを用いて機械学習が実装できる!   本書は、今後ますますの発展が予想される人工知能の技術のうち機械学習について、入門的知識から実践まで、できるだけ平易に解説する書籍です。「解説だけ読んでもいまひとつピンとこない」人に向け、プログラミングが容易なPythonにより実際に自分でシステムを作成することで、そのエッセンスを実践的に身につけていきます。 また、読者が段階的に理解できるよう、「導入編」「基礎編」「実践編」の三部構成となっており、特に「実践編」ではシステム計画研究所が展示会「Deep Learning実践」で実際に展示した「手形状判別」を実装します。 詳細目次 第1部 導入編  第1章 はじめに  1.1 機械学習とは  1.2 Python と機械学習  1.3 インストール&セットアップ  1.4 Python 早分かり ― NumPy とmatplotlib  1.5 クイックツアー   小話 深層学習って何だ?  第2 章 機械学習の様々な側面 33  2.1 機械学習をとりまく環境.. 33  2.2 関連分野. 34  2.3 学習法による分類. 35  2.4 手法や課題設定による分類. 36  2.5 応用例. 37 第2部 基礎編  第3章 分類問題  3.1 分類問題とは  3.2 最初の分類器  3.3 学習データとテストデータ   ミニ知識 色々な用語 ―学習・訓練・教師 vs テスト・評価・バリデート・検証   ミニ知識 k- 分割交差検証  3.4 分類器の性能を評価しよう   ミニ知識 正答率(Accuracy)と適合率(Precision)   ミニ知識 色々な平均.調和平均・算術平均・幾何平均  3.5 色々な分類器  3.6 まとめ  第4章 回帰問題  4.1 回帰問題とその分類  4.2 最初の回帰 ― 最小二乗法と評価方法  4.3 機械学習における鬼門 ― 過学習  4.4 過学習への対応 ― 罰則付き回帰  4.5 様々な回帰モデル  4.6 まとめ  第5章 クラスタリング  5.1 iris データセット   ミニ知識 フィッシャーのあやめ  5.2 代表的なクラスタリング手法 ― k-means  5.3 その他のクラスタリング手法  5.4 まとめ 第3部 実戦編  第6章 画像による手形状分類  6.1 課題の設定  6.2 最初の学習  6.3 汎化性能を求めて ― 人を増やしてみる  6.4 さらに人数を増やしてみる   ミニ知識 学習データに含める人数について  6.5 データの精査と洗浄 ― データクレンジング  6.6 特徴量の導入  6.7 パラメータチューニング  6.8 まとめ  第7章 センサデータによる回帰問題  7.1 はじめに  7.2 準備  7.3 センサデータの概要  7.4 データの読み込み  7.5 高松の気温データと四国電力の消費量  7.6 もっと色々、そしてまとめ  7.7 終わりに 第4部 付録  付録A Python で作る機械学習  A.1 この付録の目的  A.2 最小二乗法  A.3 行列計算による解析解の導出  A.4 反復法  A.5 コードを書く前に  A.6 実装例  付録B 線形代数のおさらいと代表的な非線形モデル  B.1 この付録の目的  B.2 そもそも「線形」とは  B.3 線形変換とアフィン変換  B.4 ノルムと罰則項  B.5 線形回帰の最小二乗解を考える  B.6 機械学習における「非線形」
  • Pythonによる深層強化学習入門 ChainerとOpenAI Gymではじめる強化学習
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層強化学習の入門から実装まで、この一冊でわかる! アルファ碁などのゲームAIやロボットアームの制御、自動運転などで注目されている深層強化学習の基礎と、Pythonによる実装について解説した入門書です。 強化学習に適したライブラリであるChainer(ChainerRL)と、AIシミュレーション環境であるOpenAI gymを用いて解説しています。 ソフトウェアシミュレーションだけでなくRaspberryPiとArduinoを用いた実環境への応用も解説しているので、ソフト・ハード問わず自身の課題に深層強化学習を応用することができるようになっています。 1章 はじめに 2章 深層学習 3章 強化学習 4章 深層強化学習 5章 実環境への応用 付録 付録1 VirtualBoxのインストール 付録2 RaspberryPiの設定 付録3 Arduinoのインストール 付録4 Graphical Processing Unit(GPU)の利用 付録5 Intel Math Kernel Libraryを用いたNumPyのインストール
  • Pythonによる数値計算とシミュレーション
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『C による数値計算とシミュレーション』のPython版登場!!  本書は、シミュレーションプログラミングの基礎と、それを支える数値計算の技術について解説します。数値計算の技術から、先端的なマルチエージェントシミュレーションの基礎までをPythonのプログラムを示しながら具体的に解説します。  アルゴリズムの原理を丁寧に説明するとともに、Pythonの便利な機能を応用する方法も随所で示すものです。 まえがき 第1章 Pythonにおける数値計算 1.1 Pythonによる数値計算プログラムの構成 1.1.1 Pythonによる数値計算プログラム 1.1.2 Pythonモジュールの活用 1.2 数値計算と誤差 1.2.1 数値計算における誤差 1.2.2 数値計算における誤差の実際 1.2.3 Pythonモジュールの活用 章末問題 第2章 常微分方程式に基づく物理シミュレーション 2.1 質点の1次元運動シミュレーション 2.1.1 自由落下のシミュレーション 2.1.2 着陸船のシミュレーション 2.2  ポテンシャルに基づく2次元運動シミュレーション 2.2.1 ポテンシャルに基づく2次元運動 2.2.2 2次元運動シミュレーション 2.3 Pythonモジュールの活用 章末問題 第3章 偏微分方程式に基づく物理シミュレーション 3.1 偏微分方程式の境界値問題 3.1.1 ラプラスの方程式 3.1.2 ラプラスの方程式の境界値問題 3.1.3 境界値問題の数値解法 3.1.4 ガウスの消去法による境界値問題の計算 3.1.5 逐次近似による境界値問題の計算 3.1.6 その他の二階偏微分方程式 3.2 ラプラスの方程式による場のシミュレーション 3.2.1 ラプラスの方程式の反復解法プログラム 3.2.2 より複雑な形状の領域の場合 3.3 Pythonモジュールの活用 章末問題 第4章 セルオートマトンを使ったシミュレーション 4.1 セルオートマトンの原理 4.1.1 セルオートマトンとは 4.1.2 セルオートマトンの計算プログラム 4.2 ライフゲーム 4.2.1 ライフゲームとは 4.2.2 ライフゲームのプログラム 4.3 交通流シミュレーション 4.3.1 1次元セルオートマトンによる交通流のシミュレーション 4.3.2 交通流シミュレーションのプログラム 章末問題 第5章 乱数を使った確率的シミュレーション 5.1 擬似乱数 5.1.1 乱数と擬似乱数 5.1.2 乱数生成アルゴリズム 5.1.3 Pythonの乱数生成モジュール 5.2 乱数と数値計算 5.2.1 数値積分と乱数 5.2.2 乱数と最適化 5.3 乱数を使ったシミュレーション 5.3.1 ランダムウォーク 5.3.2 ランダムウォークシミュレーション 5.4 Pythonモジュールの活用 章末問題 第6章 エージェントベースのシミュレーション 6.1 エージェントとは 6.1.1 エージェントの考え方 6.1.2 Pythonによるエージェントシミュレーションの実現 6.1.3 マルチエージェントへの拡張 6.1.4 相互作用するマルチエージェント 6.2 マルチエージェントによる相互作用のシミュレーション 6.2.1 マルチエージェントによるシミュレーション 6.2.2 マルチエージェントシミュレーションプログラム 章末問題 付録 A.1 4次のルンゲ=クッタ法の公式 A.2 ラプラスの方程式が周囲4点の差分で近似できることの説明 A.3 ナップサック問題の解法プログラムrkp30.py A.4 シンプソンの公式 章末問題略解 参考文献 索  引
  • Pythonによるテキストマイニング入門
    3.5
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Python 3を使ったテキストマイニングの入門書! 本書は、Pythonを使ったテキストマイニングの入門書です。Pythonのインストールから基本文法、ライブラリパッケージの使用方法などについてもていねいに解説していますので、Pythonに触れたことがない方でも問題なく使用できます。また、テキストマイニングも、概要から実例に至るまで一から解説していますので、Python・テキストマイニング両方の知識が全くない方にとって最適な入門書となっています。 目次 第1章 テキストマイニングの概要 1.1 テキストマイニングとは 1.2 応用の例 第2章 テキストデータの構造 2.1 テキストの構成要素 2.2 統計分析・データマイニングの基本的な手法 2.3 テキストマイニング固有の考え方 第3章 Pythonの概要と実験の準備 3.1 Pythonとは 3.2 プログラムを作って動かす環境 3.3 Pyrhonの書き方ルール 3.4 テキストマイニングに役立つライブラリパッケージ 3.5 データの準備 第4章 出現頻度の統計の実際 4.1 文字単位の出現頻度の分析 4.2 単語の出現頻度の分析 第5章 テキストマイニングの様々な処理例 5.1 連なり・N-gramの分析と利用 5.2 共起(コロケーション)の分析と利用 5.3 語の重要性とTF-IDF分析 5.4 KWICによる検索 5.5 単語のプロパティを使ったネガポジ分析 5.6 WordNetによる類語検索 5.7 構文解析と係り受け解析の実際 5.8 潜在的意味論に基づく意味の分析とword2vec 付録 Python, Jupyter notebook のインストール
  • Pythonによるバイオデータ解析入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 バイオのデータもPythonで! 生物学に関わる理解・研究では、コンピュータによるデータ処理が欠かせないものとなってきています。生物学の扱う系はもともと非常に複雑で雑音が多く、統計的な解析が広く使われてきましたが、特に最近のDNA/RNA解析ではいわゆる次世代シーケンサ(NGS)が大量のDNA配列データを生み出してそれを整理しなければならないなど、コンピュータによるデータ処理が必須になっています。  本書は、生物学分野において行われる、さまざまなデータ解析処理について、Pythonを用いて行う方法を解説し、理解することを目的としています。従来、簡単な処理はExcelを使ったり、RやSPSSなどの統計処理を主目的とする言語・ソフトウェアパッケージが用いられてきました。そのなかで本書は、比較的新しく、機械学習やデータ分析に優れたプログラミング言語であるPython を使って、初歩的なデータ処理をどのように行えばよいのかを紹介しています。 第 1 章 バイオデータ処理 第 2 章 プログラムを動作させるための知識 第 3 章 Pythonによる入力・出力データ加工のためのプログラミング 第 4 章 Pythonからバイオデータを扱うライブラリ 第 5 章 可視化のためのライブラリ 第 6 章 統計処理に便利な汎用の統計パッケージ 第 7 章 変異解析・発言解析の流れの例
  • PyTorchで作る!深層学習モデル・AI アプリ開発入門
    5.0
    大人気の機械学習フレームワーク「PyTorch」で 深層学習モデルとAIアプリを開発しよう! 【PyTorchについて】 PyTorch は、主に深層学習で利用されている機械学習フレームワークです。 世界中で幅広く利用されており、国内でもここ数年で多くの方が利用し始めています。 【本書の概要】 Udemyで公開中の大人気講座『【PyTorch+Colab】PyTorchで実装するディープラーニング -CNN、RNN、人工知能 Web アプリの構築』の書籍化企画です。 PyTorch を使い、CNN による画像認識、RNN による時系列データ処理、深層学習モデルを利用した AI アプリの構築方法を学ぶことができます。 本書で PyTorch を利用した深層学習のモデルの構築からアプリへの実装までできるようになります。 【本書で得られること】 ・機械学習フレームワーク「PyTorch」の基礎が身につきます。 ・PyTorchのコードの読み書きができるようになります。 ・CNN、RNN などを実装できるようになります。 ・自分で調べながら、ディープラーニングのコードを実装する力が身につきます。 ・最終的に人工知能アプリを構築し、公開できるようになります。 【目次】 Chapter0 イントロダクション Chapter1 PyTorchと深層学習 Chapter2 開発環境 Chapter3 PyTorchで実装する簡単な深層学習 Chapter4 自動微分とDataLoader Chapter5 CNN(畳み込みニューラルネットワーク) Chapter6 RNN(再帰型ニューラルネットワーク) CHapter7 AIアプリの構築と公開 APPENDIX さらに学びたい方のために 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab 株式会社を起業。「ヒトと AI の共生」がミッション。人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 理学博士(物理)。解決策のモデル化、数式化が得意で、プログラミング教育も行う。 近著に『Google Colaboratoryで学ぶ!あたらしい人工知能技術の教科書 機械学習・深層学習・強化学習で学ぶAIの基礎技術』、 『Pythonで動かして学ぶ!あたらしい数学の教科書』(いずれも翔泳社)がある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • パソコン[最強]時短仕事術 超速で仕事するテクニック
    4.0
    オフィスワークにパソコンが必須の現代、パソコンをどれだけ速く使えるからは、ビジネスの成果に直結します。本書は、パソコンで仕事を手際よく効率的に行うための考え方とテクニックをわかりやすく解説します。パソコンそのものの高速化、ショートカットキー、ファイル整理、ワード・エクセル・PDFの便利ワザ、入力高速化、メール&チャット、情報収集術がこれ一冊で身につきます。
  • パーフェクト Excel VBA
    -
    VBAに関して、世にある情報の多くは「使い方」にフォーカスしすぎており、「構造」や「体系」、「作法」に触れていない場合も多く、そのためか他の言語にくらべ、メンテナンス性や再利用性の低いコードや運用しづらいマクロがまん延している状況にあるともいえます。こうした状況を打破するためには、本質的には、最初から言語の体系や構造を理解し、作法が身につくように学ぶことが最善の策といえます。本書は、Excel VBAで本格的なアプリ開発などを目指す人のためのバイブル的1冊として、基礎から応用までを、体系的に詳しく学べる解説書です。
  • 光計算
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 第1巻『光計算』は光物理現象を演算系とする情報処理を考え、光を用いる計算ならではの独自計算方式やアイデアを取り上げ、その基本概念や手法を説明。応用例も紹介する。
  • ヒトの耳 機械の耳
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 聴覚系や脳が音を処理する理論をモデル化し、それをコンピュータや機械で活用する方法を解説した書。機械聴覚の土台となる基礎科学と、効率的なシステム構築法について詳解。補聴器や音楽情報検索、自動音声認識など、機械学習分野への応用についても解説。
  • 100%ムックシリーズ スマートフォン for ビギナーズ2017
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 初期設定から裏ワザまで! 知りたいコト全部入り!! 少しの工夫で劇的改善! スマホは初期設定では使えない 「バッテリーや通信量を節約したい」「ホーム画面を使いやすくカスタマイズしたい」「格安SIMやSIMフリー端末について知りたい」など、スマホユーザーの”知りたい”を基本から応用までしっかり解説。本誌をチェックして、ワンランク上のスマホライフを実現しよう! ●快適操作は初期設定で決まる ●鉄板ホーム画面作りの秘密技 ●お節介機能の取捨選択 ●ムダの断捨離 ●標準アプリ活用の極意  など ※この電子書籍は、原本をスキャンして作成しているため読みづらい箇所がある場合がございます。 何卒ご容赦ください。
  • ビジネスデザイン—未来をつくるビジョンとプロセスとITの話
    3.5
    ITが社会のすみずみまで浸透した結果、仕事の進め方も、ITを前提に考えるのが当然になっています。デジタルトランスフォーメーション(DX)やRPA、AIが必要とされるのも、そうした流れの結果と言えます。とはいうものの、ITを活用したビジネスの進め方に必要なものってなんでしょうか。ITを使って、仕事をよりよくするためには、どうしたらよいでしょうか。 そこで私たちに必要なのは、IT技術の知識そのものではなく、自分のビジネスや業務をどうしたいかという「ビジョン」、そしてそれを実現するためにどのように仕事を「設計」するか、さらに、設計した仕事をIT前提で行うための「要件定義」という3つです。本書では、「ビジョン」「仕事の設計」「要件定義」をどのように行えばよいのか、ITがわからない方でもしっかり理解して手を動かせるように、ていねいに解説します。
  • ビジネスパーソンのための人工知能入門
    4.0
    世の中で氾濫している「人工知能・AI」という言葉に惑わされないようにするため、人工知能についての正しい知識を身につけ、理解することが必要です。 人工知能分野の発展に貢献しているのが 機械学習・深層学習(ディープラーニング)と呼ばれる技術で「人工知能(AI)を使ってなにかプロジェクトをやってほしい」と言われたとき「ビジネス課題を機械学習・深層学習でどのように解決すればよいか」と置き換えて考えればよいケースがほとんどです。 本書では、あいまいな状態になっているビジネス上の課題を機械学習を試すことのできるような形に課題を書き換えたり、人工知能の代表的な手法である推論・探索、知識表現、機械学習、深層学習の各手法をフレームワークとして考え、実際のビジネスで活用できるといった“AI的思考力”を高める方法を解説していきます。 また人工知能は万能ではなく、ビジネス上における課題は千差万別です。本書の目指すところは「人工知能で解決できるものなのか」を自ら判断し、「人工知能のどの技術を使えばよいのか」が分かるようになることです。 人工知能技術の大部分は数学によって支えられていますが、本書はあくまでも「ビジネスで人工知能を活用するために知っておくべきこと」をまとめたものですので“難しい数式”は一切出てきません(もちろん、プログラミングも)。 『機械学習・深層学習という言葉は聞いたことはあるけれど、よく分からない』『ビジネス課題に適用できる自信がない』『どのように評価すればよいのか検討がつかない』といった方にとって、本書は役に立つはずです。
  • ビッグデータと人工知能 可能性と罠を見極める
    4.0
    ビッグデータ時代の到来、第三次AI(人工知能)ブームとディープラーニングの登場、さらに進化したAIが2045年に人間の知性を凌駕するというシンギュラリティ予測……。人間とAIはこれからどこへ向かっていくのか。本書は基礎情報学にもとづいて現在の動向と論点を明快に整理し分析。技術万能主義に警鐘を鳴らし、知識増幅と集合知を駆使することによって拓かれる未来の可能性を提示する。
  • Bメソッドによる形式仕様記述
    値引きあり
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 仕様の段階で誤りをなくす注目の手法「Bメソッド」を実践活用するための解説書。安心安全を含めてますます高度な機能や性能が要求されるソフトウェアシステムの開発において、厳密な仕様記述を基に開発を行う形式手法に対する関心と期待が高まっている。本書は、我が国初のBメソッドの書き下ろし入門書である。実際の開発への適用を意識した実用指向の内容が、平明でわかりやすく記述されている。
  • ファーストステップ AI・データサイエンスの基礎
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ファーストステップシリーズは、コンピュータを初めて本格的に学ぶ大学生・高専生を対象にしたものです。シリーズの中で、本書は、政府の「AI 戦略2019」によって、すべての大学・高専生が習得すべき「数理・データサイエンス・AI /リテラシーレベル」として策定されたモデルカリキュラム(2024年2月改訂)に準拠した内容のテキストです。特に、コンピュータに関する学習をこれから始める文系学部の学生の皆さんにとっても、分かりやすく学んでいただけるように配慮しました。 本書ではAI やデータサイエンスの知識や仕組みについて、事例や図解を使って具体的に説明しています。また、それらがどのように使われ、どんな有効性があるのか、反面、どんな問題があるのかについても示しました。AI・データサイエンスを1から学ぶためにこの上ない一冊です。
  • ファーストステップ マルチメディア
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 直感的に理解できる!マルチメディアの初学者を対象とした教科書である。マルチメディアの範囲は,音,映像(静・動)および文字情報の符号化の仕組みと,それらの符号をマルチメディアへ統合する仕組みである。偏らずにマルチメディア全体を学ぶことができる。 図を多用して,初学者が直感的に理解できるよう工夫する。また,事前・事後学習に対応できるよう演習課題を数多く配置する。側注でキーワードの解説も行い、初出用語でとかく混乱しがちな初学者の理解を確かなものとする。 (224文字)
  • フィンテック革命の衝撃
    3.7
    フィンテック(金融とテクノロジーの融合)とは何か。フィンテックが日本の産業界にもたらす影響とは。もっとも変化が現れるであろう資産運用を中心に分析を進め、株式市場に与えるインパクトについても探る。
  • フェイクニュースを科学する: 拡散するデマ、陰謀論、プロパガンダのしくみ (DOJIN文庫)
    3.8
    進化し続ける情報生態系 求められるメディアリテラシー 2016年、フェイクニュース元年から、 2020年、インフォデミックの時代へ――。 フェイクニュース現象の全体像を「計算社会科学」を武器に描き出す。 新型コロナ・パンデミックに端を発したインフォデミック、 米大統領選挙をめぐる陰謀論など、フェイクニュースの猛威が止まらない。 本書では、偽情報を信じる認知特性、その情報を拡散させる情報環境、 情報過多と注意力の限界などを解説し、 ファクトチェックをはじめとする対抗手段の有効性を検討する。 文庫版では、2018年以降のフェイクニュースをめぐる重要な動向をまとめた 「追補 インフォデミックの時代へ」を追加収録。 ※本書は、2018年12月に刊行された『フェイクニュースを科学する』(DOJIN選書)を加筆・修正し文庫化したものです。
  • 深掘り! IT時事ニュース ──読み方・基本が面白いほどよくわかる本
    3.3
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆IT時事ニュースをわかりやすく深掘り!◆ ワイドショーにもすっかり常連となったIT時事ニュース。 しかし、日々のニュースに関連するITは技術の発達が目まぐるしく、なんだかよくわからない、ついていけないと感じていませんか? 「SNSで炎上が頻繁に起こるのはなぜ?」 「ネット犯罪はどんなしくみで起こるの?」 「生成AIってなにが問題なの?」 しくみや背景を含めて、ていねいに読み解いていけば、理解が深まります。ITジャーナリストとして、テレビ・ラジオなど様々なメディアでニュースを解説してきた著者が、深掘りします。 ■目次 ●第1章 IT時事ニュースがますます世の中を騒がせる?   01 テレビ番組におけるIT時事ニュースの扱い   02 「バイトテロ」事件が繰り返し起きる原因は?   03 バイトテロ大炎上で閲覧数を稼ぐサイト・動画   04 ネット炎上参加は少数・事後対応が重要 ●第2章 個人を狙い撃ちするネット詐欺・サイバー犯罪   05 宅配便やアマゾン偽装のSMS=スミッシングの特徴   06 不正アプリでSMS再送信・情報盗み取り   07 偽サイト巧妙化・ネット広告まで利用   08 高額通話料の国際ワン切り詐欺とは   09 クレジットカード不正利用が巧妙化   10 ウェブスキミングとクレジットマスター   11 クレジットカード利用の安全対策   12 SNSで「捨て駒」を集める闇バイト ●第3章 社会・経済に影響を与えるITトラブル・インフラ障害   13 「やらせレビュー」が氾濫する理由   14 ランサムウェアが企業・病院で被害拡大   15 バックアップも暗号化? ランサム被害傾向   16 VPNなどの脆弱性が攻撃されて侵入被害   17 続発する内部不正事件の手口と背景   18 内部不正の動機は「給与待遇の不満」   19 スマホ決済で障害が多発する理由   20 スマホデータを捜査・裁判に使う時代   21 巨大災害におけるスマホ・携帯電話の障害   22 続発する携帯電話障害の理由   23 続発するクラウド・IT基盤の大規模障害 ●第4章 ビッグテックと国家が描く巨大なIT展望   24 世界はビッグテック=GAFAMが支配   25 GAFAMの売上構成比でわかるITニュース   26 グローバルIT企業と国家の衝突   27 日本は本当にデジタル後進国なのか   28 コロナ対策で見えたデジタル後進国・日本の課題   29 デジタル庁の要・ガバメントクラウド   30 カード自体の安全性は高いマイナンバーカード   31 頻発したマイナカード関連トラブルの原因   32 企業のあり方を変えるDXとは   33 IT技術による新しい文明「Society 5.0」   34 野心的目標に挑戦「ムーンショット」 ●第5章 私たちの生活を大きく変えるITサービス・最新技術   35 スマホ料金の多様化とパターン別お勧め   36 スマホ動画の勝者は? ショート動画の戦い   37 Web3(ウェブスリー)が夢見る新しいネット   38 生成AIの急速進化と基本技術   39 主要3社のマルチモーダルAIの特徴比較   40 生成AIの問題点と「使わないリスク」 ■著者プロフィール 三上洋(みかみ よう):東京都世田谷区出身、1965年生まれ。都立戸山高校、東洋大学社会学部卒業。テレビ番組制作会社を経て、1995年からフリーライター・ITジャーナリストとして活動。文教大学情報学部非常勤講師。専門ジャンルは、セキュリティ、ネット事件、スマートフォン、ネット動画、携帯料金・クレジットカードポイント。
  • 複雑ネットワークにおける最適化 超AI的な統計物理学アプローチ
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 電力網や物流、サプライチェーン、インターネットやSNSの流行など、現代社会は複雑に絡み合ったネットワークによって支えられていると言っても過言ではありません。このようなつながり構造を、物理学やコンピュータ科学あるいは社会学を基礎として解析していくのがネットワーク科学です。本書は複雑ネットワークの最適化に費やしてきたこれまで研究成果をできるだけ包括的に紹介しつつ、創世記からの進展も分かるように編集された貴重な1冊です。
  • VDM++による形式仕様記述
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 明確な仕様の記述と検証を行わずして、抵当な開発を行うことは出来ない! ソフトウェア開発では、上流工程を自然言語で表現する。このため論理的不一致などがおき、手戻りが発生する。これを解決する方法として考えられたのが、数学を用いた形式手法である。本書は、この手法の一つであるVDMとオブジェクト指向記述言語VDM++について実践的に解説する。
  • 文科系のための情報発信リテラシー
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ウェブの情報発信に必要なリテラシーを学ぶための書。
  • プログラミング知識ゼロでもわかる プロンプトエンジニアリング入門
    3.7
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 生成AIへの指示を理論的アプローチで解説。プロンプトエンジニアリングの基礎からChatGPTパラメータ、Azure OpenAI活用まで詳解。多様な応用への命令方法の工夫も。
  • プログラミングなしではじめる人工知能
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 プログラミングなしで人工知能をはじめよう!  本書は,何か人工知能を活用してみたいが,プログラミングを学ぶのはハードルが高い,どんなことができるのかまずは試してみたい,という方をおもな対象として,Azure Machine Learning Studio (classic)を用いたノンプログラミングでの人工知能手法を紹介するものです.  Azure Machine Learning Studio (classic)はMicrosoft社の提供するクラウドサービスで,一般的なブラウザ上でドラッグ&ドロップによるビジュアル操作を用いて,人工知能(機械学習)を実践することができます.機能単位のアイコンとアイコンとを配線することで,さまざまな分析をおこなうことができます.  基本的な人工知能手法の解説に留まらず,「カップの振動」に対する教師あり学習,「扇風機の異常」を教師あり学習で分類する,水位の推定などの数値予測,「地目別平均地価」に対する教師あり学習,「ICTサービスの利用動向」に対するクラスタリング,「扇風機の異常動作」に対するSVMを用いた異常検知などの具体的な例を取り上げて解説することで,実践的な人工知能の手法をお試しできるようになっています. 1. AIとは? 2. Azure Machine Learning Studio (classic)の利用準備 3. データ形式の理解と準備 4. Azure Machine Learning Studio (classic)における処理の全体構造 5. Azure Machine Learning Studio (classic)へのデータ入出力 6. Azure Machine Learning Studio (classic)内における前処理 7. 教師あり学習 8. 数値予測 9. グルーピングと異常検知 10. 学習と推定についての評価 11. 独自処理 12. Webサービス化とAndroidアプリ作成
  • ProcessingによるCGとメディアアート
    値引きあり
    3.0
    フリーのCG作成環境、Processingの設定、操作手順から、アート作品づくりまでを1冊で。数理、サウンド、3DCGなど各分野の専門家が応用事例も広く紹介。収録コードを改良することから、プログラミングをはじめよう。※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。

    試し読み

    フォロー

最近チェックした作品からのおすすめ