情報科学作品一覧
-
-暗号学の先駆者が情報セキュリティの理念と現実を語る! サイバーセキュリティ、本人確認、ブロック・チェーン、暗号資産(仮想通貨)、クラウド環境やテレワーク・リモートワーク…。これらの普及によって、軍事・外交の道具だった「暗号技術」は、いまやサイバー空間の基盤技術となりました。 その「暗号技術」の先駆者が、情報工学や暗号理論を専門としない方々にも理解できる分かりやすい言葉で、サイバー空間とフィジカル空間を融合させたソサエティ5.0社会、そして情報セキュリティの理念と現実の最適化について語ります。 【目次】 プロローグ――理念と現実 [加藤尚武編]辻井重男語録 第1章 太平洋戦争をはさんで ――暗号学者の小さな履歴書Ⅰ 第2章 戦時中の文化人の現実認識 対話篇1 天国からの恩師のご下問に応えて ――楕円曲線暗号から情報セキュリティ総合科学まで 第3章 サイバーセキュリティをめぐる活動 ――暗号学者の小さな履歴書Ⅱ 第4章 情報社会のセキュリティと倫理の課題 対話篇2 天国からの恩師のご下問に応えて ――デジタル社会基盤としての暗号について 第5章 サイバーセキュリティの未来 資料篇 【著者】 辻井重男 専門は情報通信システム、暗号理論。1958年、東京工業大学卒業。1979年、東京工業大学教授。1994年、中央大学教授。1996年、電子情報通信学会会⾧。1999年、中央大学研究開発機構機構⾧。2003年、日本学術会議会員。2004年、情報セキュリティ大学院大学初代学長。2004年、中央大学研究開発機構教授。主な著書に、『情報社会・セキュリティ・倫理』(コロナ社)、『暗号と情報社会』(文藝春秋)、『暗号理論と楕円曲線』(共著、森北出版)、『暗号――情報セキュリティの技術と歴史』(講談社)など。
-
3.7「政治、産業、文化芸術、教育、医療、防衛…… ここに挙げた全ての領域に、AIは破壊的変化をもたらすだろう。その結果、人間のアイデンティティーや経験する『現実』は、近代の幕開け以来最大の変化を遂げるだろう」 AIはどのようなイノベーションを起こすのか? AIは人間には認識できない現実を認識するようになるのか? 人間の評価にAIが使われるようになったら、人間はどう変わるのか? そして、これらの変化が起きたとき「人間である」とは最終的に何を示すのか? 元・米国国務長官、元・グーグルCEO、MIT学部長、それぞれの分野で頂点をきわめた三名が、人類史という大きなスケールから、AIのもたらす社会的変化と、私たちの未来について語る。
-
3.8※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習のしくみをイラストや図解でやさしく学ぼう! 本書は、機械学習に関するさまざまなトピックスを概説する書籍です。人工知能における機械学習の位置づけを説明したのち、機械学習内の分野をマップ化し、マップ内の街(=機械学習内の分野)を旅する形でやさしく解説していきます。 数式や複雑な処理手順は扱わずに、「どんなしくみで、どこで使われていて、どう役に立つのか」という要点をわかりやすく示します。大枠や要点を掴むことを主眼としているため、短時間・効率的に学ぶことができます。機械学習について関心をもっているものの、専門書はハードルが高いと感じている学生やビジネスパーソンにおすすめです。 構成は、はじめに人工知能における機械学習の位置づけや手法の分類を示したうえで、機械学習の個々のトピック……すなわち、k近傍法や決定木などによる分類、進化的計算や群知能による最適化、強化学習、ニューラルネット、深層学習などを説明していきます。 まえがき 目次 はじまり-機械学習の国へ行こう- 第一章 いりぐち-機械学習ってなんだろう?- 機械学習ってなんだろう? AIにできること いきものとコンピューター、それぞれの学びかた コンピューターの学習 機械学習はなにができるの? 「言葉」を認識する 「画像」を認識する COLUMN 強いAIと弱いAI 第二章 観光案内所-機械学習の種類と仕組み- 機械学習には種類がある 先生に正解を教えてもらおう-教師あり学習- 教師データとラベル 教師あり学習の仕組み 自力で学習を進めよう-教師なし学習- 試行錯誤の経験から学習しよう-強化学習- コラム いろんな機械学習 学習した知識を役立てよう-汎化・タスク・アルゴリズム- 学習のしすぎに注意!-過学習- COLUMN オッカムの剃刀とノーフリーランチ定理 第三章 分類の街-k近傍法と決定木- 並べかたで分類しよう-k近傍法- 一刀両断、スパッと分類!-サポートベクターマシン- ○と×で分類しよう-決定木- 決定木の作りかた たくさんの決定木の森-ランダムフォレスト- COLUMN みにくいアヒルの子定理 第四章 最適化の街-進化的計算と群知能- 最適化ってなんだろう? 進化を模倣してよりよい情報を残そう-進化的計算- いきものの進化の仕組み 進化的計算ってなんだろう? 進化的計算の代表選手、遺伝的アルゴリズム 遺伝的アルゴリズムの仕組み もっと複雑なことをするには-遺伝的プログラミング- 生物の群れの行動から学習しよう-群知能- 蟻みたいに近道を見つけよう -蟻コロニー最適化法- 大勢で答えを探そう-粒子群最適化法- 魚みたいに餌を探そう-AFSA- 第五章 試行錯誤の街-強化学習- 強化学習ってなんだろう? とにかく試行回数を重ねよう-モンテカルロ法- より効率的に試行するには?-Q学習- Q学習で迷路を脱出しよう 第六章 神経回路の街①-ニューラルネット- 神経細胞と神経ネットワーク 神経細胞の模倣-人工ニューロン- 神経ネットワークの模倣-人工ニューラルネットワーク- ニューラルネットの学びかた 視覚のシミュレーション-パーセプトロン- ハイスピードで学ぼう!-バックプロパゲーション- ニューラルネットワークの種類 ①階層型 ニューラルネットワークの種類 ②全結合型と再帰型 「何か」を見つける-認識- 「何か」を動かす-制御- 「何か」を考える-判断- 必ず「何か」を返してくる。……それでいいのかな? 第七章 神経回路の街②-ディープラーニング- ディープラーニングってなんだろう? 人間の「視覚」を真似したニューラルネット これはイヌ? それともネコ?-畳み込みニューラルネットの画像認識- CNNはどうして高性能なんだろう? 時間で変わるデータを分析しよう-リカレントニューラルネットとLSTM- 本物そっくりのニセモノをつくる-敵対的生成ネットワーク- ディープラーニングを自動翻訳に役立てよう 経験から学ぶ深層学習-深層強化学習- 第八章 でぐち-機械学習をはじめよう- 機械学習に使われる言葉-プログラミング言語Python- 機械学習に使われるソフトウェア①-TensorFlowとKeras- 機械学習に使われるソフトウェア②-Caffe、PyTorch、Chainer- おわりに-AIについて学べる参考図書たち- 索引
-
3.01巻2,420円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ●AI・データサイエンス時代に対応した、新しい一般情報教育の標準テキスト ●これからのカリキュラムに対応して、情報基礎からデータサイエンスまでを網羅 本書は、情報処理学会一般情報教育委員会で編纂した、これからの一般情報教育に対応した標準テキストです。情報ネットワークや情報機器の基礎知識から、プログラミングの考え方、情報倫理、データサイエンス等、社会生活で不可欠な教養ともいえる知識を幅広く網羅します。 半期2単位の授業で使用することを前提に、内容をコンパクトに、かつわかりやすく構成しています。各大学・高専で一般情報教育の見直しが行われている中で、まさに最適の教科書としてご利用いただけます。 第1部 情報リテラシー 第1章 情報とコミュニケーション 第2章 情報倫理 第3章 社会と情報システム 第4章 情報ネットワーク 第2部 コンピュータとネットワーク 第5章 情報セキュリティ 第6章 情報のデジタル化 第7章 コンピューティングの要素と構成 第8章 アルゴリズムとプログラミング 第3部 データサイエンスの基礎 第9章 データベースとデータモデリング 第10章 モデル化とシミュレーション 第11章 データ科学と人工知能(AI) 参考文献
-
3.0データ分析は意思決定のためにあり! 現場で役立つデータサイエンスの新・定番書! 本書は、主に統計学の視点からデータサイエンスについて解説しています。 PythonやRといったプログラミング言語を通じて データ分析の手法は一通り学んだという皆さん、そのスキル、 実際に活かせていますか? 具体的な課題解決につながっていますか? ・分析結果から何を読み取ればいいのかわからない ・数字からどんな価値を見いだせるのかがわからない ・そもそも、その分析方法が適切なのかどうか自信がない ・効率のいい分析ができているのかどうかわからない という方、多いのではないでしょうか? データを使って意思決定を行うには、統計学の知識は欠かせません。 そこで本書では、8つの具体的な社会事例を用い、 ・課題に「適した」分析手法やデータの収集方法 ・事例の分析結果の解釈 ・分析や解釈の際に注意すべきこと を数学の知識で補完しながら紹介しています。 著者は首都圏初のデータサイエンス学部として2018年4月に創設された、 横浜市立大学 データサイエンス学部 学部長の岩崎 学先生。 データサイエンティストやエンジニアが見失いがちな、 「何のために分析するのか」を意識しながら読み進めてみてください。 【こんな方にお勧めします】 ・統計学もプログラミングも一通り学んだけれど、 結果をどう判断すればいいのかわからないエンジニア ・分析結果の数字やグラフから、 業務でいかすためのヒントを得たいデータサイエンティスト ・データサイエンスに興味のある学生(専門課程を選ぶ際の 参考資料として) ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データベース入門の決定版! データベースを学びたい初学者に向けて、平易な言葉で基礎を解説した入門書です。 大規模な情報を効率よく処理するために、いまやデータベースは欠かせないコンピュータの基盤技術となっています。 本書は、データベース技術に関する、大学・高専の標準的な教科書として、また社会人の方の入門書として、データベース技術のポイントを選んで、それぞれの基本的な考え方,内容をていねいにわかりやすく説明しています。 1章 データベースとは 2章 関係表とは 3章 データベースの代数 4章 関係表の正規化 5章 基底表と視野表 6章 やわらかい内部スキーマ 7章 安全なデータベース
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 学ぶことの多い機械学習をマンガでさっと学習でき、何ができるかも理解できる!! 本書は今後ますますの発展が予想される人工知能分野のひとつである機械学習について、機械学習の基礎知識から機械学習の中のひとつである深層学習の基礎知識をマンガで学ぶものです。 市役所を舞台に展開し、回帰(イベントの実行)、識別1(検診)、評価(機械学習を学んだ結果の確認)、識別2(農産物のサイズ特定など)、教師なし学習(行政サービス)という流れで物語を楽しみながら、機械 学習を一通り学ぶことができます。 序章 機械学習を教えてください! 第1章 回帰ってどうやるの? 第2章 識別ってどうやるの? 第3章 結果の評価 第4章 ディープラーニング 第5章 アンサンブル学習 第6章 教師なし学習 エピローグ 参考文献
-
-話し相手になる機械、心を持った人工物。その登場を人類は古代から絶えることなく渇望してきました。 コンピュータと人工知能の技術が進むにつれ、それらはいよいよ現実になるかと人々を熱狂させています。 しかし、これまでのところ人工知能の研究は、心を持ち人間と交流できる存在を生み出せてはいません。 本書は、99年に「人工無脳は考える」という考察サイトを立ち上げ、以来17年に亘りユーザーと雑談するという複雑な精神活動を極めて単純なアルゴリズムで実現しようとする“人工無脳”の研究に取り組んできた著者による、科学・非科学の壁に囚われることなく想像力豊かに、人とコンピュータとの会話について考察する書籍です。 本書では、簡単なPerlプログラミングを習得した読者を対象に、人工無脳の歴史と日本語の人工無脳で代表的な辞書型人工無脳とログ型人工無脳のアルゴリズムを分かりやすく説明した後、どのようにして人工無脳の会話の質を高めるかを、実際に人工無能を改良しながら検証していきます。最終章では行動心理学を最初の足がかりとして、初期の仏教や潜在意識の世界に踏み込み、心のメカニズムについて述べた知見を紹介。それらを人工無脳的に解釈し、システムを考えた最初のステップも紹介します。
-
3.5
-
3.7
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 思考や記憶など,脳の活動を担うニューロンの状態変化を情報処理システムと捉える新しい計算方式「カオスニューラルネットワーク・モデル」を解説。この計算方式では「アルゴリズムによる計算」ではなく,ダイナミクス—多数素子による超並列処理—により計算を行う。従来のコンピュータが“苦手”としている最適化問題などを解かせることで,その有用性や可能性を論じる。先進的な計算機科学に興味を持つ学生,研究者が対象。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 可逆計算には、どの時点の状態をとっても直前の時刻の状態を唯一に決められるという性質がある。 ファインマンがその方向性を論じて以来、本格的な研究が始まった。量子コンピュータとも大変親和性があり、計算システムの全く新しい概念を提供する。 読者は、学生・研究者。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 本巻は、DNAナノエンジニアリングについて、基礎から最先端の研究までを解説。読者は、情報科学、材料科学、生命科学、システム工学等の学生・研究者である。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最先端研究者必携シリーズ!! ナチュラルコンピューティング・シリーズとは、自然界の様々な現象を研究し「情報処理」の全く新しい地平を切り開く未踏領域の知識を集めた本邦初のシリーズである。 第1巻『光計算』は光物理現象を演算系とする情報処理を考え、光を用いる計算ならではの独自計算方式やアイデアを取り上げ、その基本概念や手法を説明。応用例も紹介する。
-
-さまざまなAI技術を1冊に網羅 動かしながら学ぶ、本格入門書! 本書は、人工知能の技術をはじめて学ぶための本です。 近年は機械学習・深層学習が注目を集めていますが 人工知能は各技術が相互に進化を促したり いろいろな技術を組み合わせたりして発展しています。 そこで本書では、下記のような 幅広い技術の基礎知識を網羅しています。 【本書で解説している技術】 ・機械学習/深層学習(概論) ・ニューラルネットワーク ・遺伝的アルゴリズム ・エキスパートシステム ・知識表現 ・ゲーム戦略など 独特の技術が多く使われている分野ですが、 Excelのサンプルプログラムを体験することで、 その技術を実感できるようになっています。 操作を繰り返すことでプログラムが 賢くなっていく様子は、人工知能技術への 大きな期待も感じさせます。 特に、人工知能分野で活躍したい学生や、 将来仕事で人工知能にかかわるかもしれない 理系職種の方におすすめの本です。 【Excelサンプルプログラム(一部)】 ・正解がわからなくても人工知能が自力で認識してくれる ・宣教師が「人食い人」に食われずに川を渡れるか? ・簡単なカードゲームでコンピュータに挑戦! ・人工知能にことばの意味を教えよう ・病院に行く前に人工知能に聞いてみよう ・犯人を捕まえろ! ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0
-
3.5本書は,わずか11行のプログラム解説からはじまります。たったそれだけで深層学習を体験できるのが,いまの状況です。自らがハマってコードを書いて習得した著者が,Deel,Chainer,TensorFlowといった深層学習用フレームワークを使い,畳込みニューラルネットワークやリカレントニューラルネットワークのしくみをコードを読み解きながら解説します。ニューラルネットワークの学習には,画像と自然言語を対象に,GUIツール(CSLAIER)を使って行う方法を紹介。さらに後半では,AlphaGoにも使われた深層強化学習,ファインチューニングの手法,深層化の本命と目されているオートエンコーダについても知ることができます。
-
3.5自分で動かすから、よくわかる!専門知識を身につける第一歩! 本書は、今後ますますの発展が予想される人工知能の技術を、はじめて学ぶための本です。機械学習をはじめ、ニューラルネットワーク、遺伝的アルゴリズム、問題解決、ゲーム戦略、知識表現など、人工知能を支えるそれぞれの分野の基礎をつかむことができます。 独特の技術が多く使われている分野ですが、Excelのサンプルプログラムを体験することで、その技術を実感できるようになっています。Excelプログラムは簡単な入力とクリック操作で動くので、専門知識は不要です。操作を繰り返すことでプログラムが賢くなっていく様子は、人工知能技術への大きな期待も感じさせます。 また、本書で取り上げている各論は、高専5年生向けの授業がもとになっているので、学生・社会人問わず入門に最適です。特に、人工知能分野で活躍したい学生や、将来仕事で人工知能にかかわるかもしれない理系職種の方におすすめです。 【Excelサンプルプログラム】 ・多少ゆがんだ文字でも人工知能なら正しく認識できる ・「ちょっと高め/ちょっと低め」の感覚で空調を制御する ・遺産の適正な分配を要領よく行う ・宣教師が「人食い人」に食われずに川を渡れるか? ・最小コストで山の頂上まで登るときの経路を探せ ・簡単なカードゲームでコンピュータに挑戦! ・人工知能にことばの意味を教えよう ・病院に行く前に人工知能に聞いてみよう ・犯人を捕まえろ! 【本書で解説している技術】 機械学習/深層学習(概論)/ニューラルネットワーク/ファジィ/遺伝的アルゴリズム/問題解決/探索法/ゲーム戦略/知識表現/エキスパートシステム/エージェント/Lisp/Prolog など ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIに指示するだけで動画を作れる「動画生成AI」がこの1冊でわかる! 専門知識や高価な機材は不要で、誰もが動画クリエイターになれる時代が来ました。本書は「作りたい」をカタチにするための動画生成AIの活用ガイドです。基本操作はもちろん、クオリティを左右するプロンプト(指示文)のコツや、動画の素材にする画像の作り方、キャラクターを思い通りに動かす技術まで、動画生成AI利用のコツを解説しています。本書では高精度な動画生成AIサービス「Midjourney」を活用して動画を作ります。特典のプロンプトとサンプル画像をダウンロードして、すぐに実践可能です。ご自身のPCで手を動かしながら読み進めることで、動画制作のノウハウが自然と身につく、最初の一歩に最適な一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 理工系・文系を問わず非常にわかりやすい情報理論、符号理論の教科書 著者の長年の講義経験をもとに練り上げた情報理論・符号理論の教科書です。 大学1年生が読むことを念頭に、難解な内容となることを避け、高卒程度の数学を用いて、情報理論を解説しています。演習問題も数多く掲載しています。 改訂2版では、符号理論に関する解説をより追加、現行の大学・高専のカリキュラムにより即した内容とするほか、現在の視点からみて適切なアップデートをしています。 1章 2進数の基礎 2章 確率論の基礎知識 3章 情報量とエントロピー 4章 情報源と通信路 5章 符号化 6章 暗号による通信と情報セキュリティ
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習エンジニアが知らないでは済まされない知財と契約の基礎知識をコンパクトに、わかりやすく整理 本書は、エンジニア・研究者、学生を対象に、知らないでは済まされない機械学習にかかわる知財と契約の基礎知識をコンパクトに、わかりやすくまとめた書籍です。 GoogleやAppleの創業者がエンジニアであり、スタートアップ企業から始まっているように、いまや、そして特に機械学習に関連する分野では、エンジニア自身が知財活動や法務活動に積極的にかかわることが必要不可欠です。いいかえれば、何かことが起こればエンジニア自身が矢面に立たされたり、少なくとも責任の一端をとらされたりすることは避けられません。 本書は、このような背景を踏まえて、機械学習の研究開発に関連してエンジニアが知っておくべき法律的な考え方や知識を、主に実務的な観点を交えつつ、一から丁寧に解説しています。 第1章 AI・データと法的な保護 第2章 契約-当事者のインセンティブのデザイン 第3章 AI・データと特許 第4章 専門家とのコラボレーション 第5章 OSSと知的財産権
-
-
-
-
-
4.5
-
4.0【「怖い/むずかしい/わからない」ITを、あなたのビジネスの武器にする】 「技術の背景、価値、そのつながりまでも一望できる」累計7万部のロングセラーが大改訂! 知らないでは済まされない生成AIの基礎知識から、あらためて問うDXの本質まで、新規項目を大幅追加。もちろんクラウド、サイバーセキュリティ、IoTなど、変わらず重要であり続けるITトピックも、時流に合わせて見直しています。デジタル前提のビジネスに適応し、さらに一歩先んじるための知識がコレ1冊で身に付きます!【特典】図版はすべてPowerPointデータで提供、ロイヤリティフリーで利用可能! 研修教材や提案書などで、学んだ知識を活かす際にご活用ください。 ■こんな方におすすめ ・IT業界全体のトレンドを知りたい就活生/エンジニアの方 ・トレンドをビジネスに活用していきたい社会人の方 ■目次 第1章 デジタルの基礎知識~デジタルの本来の意味と役割を理解する 第2章 DX/デジタル・トランスフォーメーション~デジタル前提の社会に適応するために会社 第3章 ITインフラストラクチャー~変化に俊敏に対処できるITの実現 第4章 クラウド・コンピューティング~所有せずに使用するITのこれからの常識 第5章 サイバー・セキュリティ~デジタル化が進む事業基盤の安全対策は重要な経営課題 第6章 IoT/モノのインターネット~現実世界と仮想世界の狭間をつなぐゲートウェイ 第7章 AI/人工知能~人間の知的能力を拡張するコンパニオン 第8章 開発と運用~できるだけ作らずにITサービスを実現する 第9章 いま注目しておきたいテクノロジー~留まることのない進化、置き換わる常識に目を向ける 巻末 DXの実践~まずは「いま」を終わらせることから始める ■著者プロフィール ●斎藤昌義(さいとう まさのり):1982 年、日本IBM に入社、営業として一部上場の電気電子関連企業を担当。その後営業企画部門に在籍した後、同社を退職。1995年、ネットコマース株式会社を設立、代表取締役に就任。産学連携事業やベンチャー企業の立ち上げのプロデュース、大手IT ソリューションベンダーの事業戦略の策定、営業組織の改革支援、人材育成やビジネスコーチング、ユーザー企業の情報システムの企画・戦略の策定などに従事。IT 関係者による災害ボランティア団体「一般社団法人・情報支援レスキュー隊」代表理事。『未来を味方にする技術』『システムインテグレーション再生の戦略』『システムインテグレーション崩壊』(すべて技術評論社 刊)ほかの著書、雑誌寄稿や取材記事、講義・講演など多数。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 数式なしでデータ分析が理解できる!! いったいデータとは何か、データ分析から何がわかるのか、何のためにデータ分析を行うのか、ということからスタートし、「仮説構築」と「仮説検証」を中心に、プロセス全体をマンガで説明します。 これからデータ分析に取り組むたい人、現在取り組んでいるが完全に納得していない人、いまよりデータ分析を効率的に行い人に役立つ内容となっています。 プロローグ 登場人物紹介 第1章:何が問題か?(思考プロセスと因果関係 1.1 何が問題か掴めなければデータ分析は無意味 1.2 物事を因果関係で捉える 第2章:「問い」を探す(観察力と洞察力 2.1 「具体」と「抽象」をマスターせよ! 2.2 ルールに合致しない例外を探す 2.3 観察力と洞察力を磨く 第3章:「仮説」を立てる(演繹法と帰納法) 3.1 どんな意思決定を下すのか?が全て 3.2 仮説構築と仮説検証の違い 3.3 演繹法と帰納法 第4章:「仮説」を証明する 4.1 なぜ調査をするのか? 4.2 論証と実証、2つの証明 第5章:意思決定を下す 5.1 なぜ発表(プレゼン)は失敗したのか? 5.2 どうすればうまくいくか エピローグ
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【入門! コンピュータとプログラミングの基礎の基礎】<br/〉 コンピュータに関する教育が高校でも正規授業として必修化され、大学入試の共通テストでも受験生は情報科目に直面せざるを得なくなったような状況が生まれている現在、この「情報とプログラミング」に焦点を当てた入門書の決定版として本書をお贈りします。もちろん、内容的には高校生にとどまらず社会人のプログラミング入門にも十分に応え得るものです。何らかの言語の入門ではなくプログラミングの「考え方の入門」であることから、まったく何の知識もない方にも抵抗なく入っていただけます。これからの社会人が基礎知識を獲得するのにも役立つこと間違いなし。まずは本書を読んで、プログラミングとはどういうものか、どういう考え方をすればよいのかを理解したうえで、Pythonなど具体的な言語の入門書を手に取るなりして次のステップに進んでいただくのが、遠回りなようで実は最も効率的な学習方法なのです。前提知識は必要ありません。 今後社会で活躍する人に必ず求められるはずの教養(=プログラミング)を獲得するための第一歩として、本書をご活用ください。 ■こんな方におすすめ<br/〉 これからプログラミングを勉強する(または、しなければならない)方/情報科目でプログラミングに触れた高校生/社会人や大学生を含むプログラミング入門者 ■目次<br/〉 ●第1章 情報とコンピュータ 1 「情報を処理する」ってどういうこと? 2 情報×コンピュータ=快適な暮らし ●第2章 コンピュータのしくみ 1 コンピュータが情報を処理する方法 2 コンピュータってどんな機械? 3 プログラミングのすすめ ●第3章 プログラムを書こう! 1 コンピュータへの命令のしかた 2 日本語の指示書の役割 3 日本語の指示書を作ろう(その1)── ロボボのお使いプログラム 4 日本語の指示書を作ろう(その2)── 秘密の暗号プログラム 5 これからのこと 6 ところで「アルゴリズム」って何? ●第4章 データの入れ物 1 値を入れる箱──変数 2 箱の使い方 3 箱の大きさ──データ型 ●第5章 コンピュータの演算 1 変数に値を入れる──代入 2 コンピュータを使って計算する──算術演算 3 コンピュータを使った計算の宿命 4 2つの値を比較する──比較演算 5 TrueとFalseを使った演算──論理演算 6 演算子の優先順位 ●第6章 命令を実行する順番 1 プログラムの流れは3通り──制御構造 2 分かれ道を作る──条件判断構造 3 同じ道を何度も通る──繰り返し構造 4 改訂版:ロボボのお使いプログラム ●第7章 データをまとめて入れる箱 1 同じ種類のデータを並べて入れる──配列 2 縦横に並べた箱にデータをまとめて入れる──二次元配列 3 関連するデータをまとめて入れる──構造体 4 大事なデータを保存する──ファイル ●第8章 プログラムの部品を作る 1 プログラムを入れる箱──関数 2 関数を定義する 3 関数を利用する 4 プログラムで使う「箱」を整理しよう 5 改訂2版:ロボボのお使いプログラム ●第9章 日本語からプログラミング言語へ 1 プログラミング言語の選び方 2 これからの勉強のしかた ●第10章 情報を整理する力 1 間違いはどこにある? 2 AIが出した答えは本当に正しい? 3 コンピュータにできること、人間がすべきこと 4 おわりに ■著者プロフィール<br/〉 谷尻かおり:データベースから画像認識・画像処理、機械学習まで手掛ける現役のプログラマー。それぞれの分野に関する入門的解説書から数学やプログラミングの入門書まで数多くの書籍や雑誌記事の執筆も手掛けてきており、誰にとってもわかりやすい、その優しい語り口には定評がある。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 AI精度向上はトレーニングデータが鍵。 良質なトレーニングデータを手に入れるための必須知識。 アメリカをはじめ、ヨーロッパや中国などを中心にAI(機械学習)やディープラーニングを活用としたユースケースやビジネスモデルなどが大きく進化し、日本国内においても、自動車、製造、建築・土木、公的機関、eコマースなどさまざまな業種で機械学習やディープラーニングの適用が進んできています。 このようにAIに使われる機械学習を、高い精度・確率のものとするためには、高い品質、さまざまな条件の分布、バリエーションに富んだトレーニングデータを準備することが成功の鍵といえます。 本書では、トレーニングデータの性質に焦点をあて、解説を行います。 はじめに 第1章 機械学習とトレーニングデータ 1.1 ディープラーニングに進化する過程 1.2 ディープラーニングはブラックボックス 1.3 機械学習の種類 1.4 プログラミングから見た機械学習 1.5 トレーニングデータの位置付け 第2章 マネジメント層とエンジニアの機械学習 2.1 データ活用とは 2.2 DXからデジタルファーストへ 2.3 マネジメント層の大事な役割 2.4 エンジニアとトレーニングデータ 2.5 機械学習を取り巻く課題 2.6 実行すべきこと 第3章 AIとトレーニングデータ 3.1 音声認識とは 3.2 機械翻訳 3.3 画像認識 3.4 動画 3.5 チャットボット・ボイスボット 3.6 自然言語処理系AI 3.7 固有表現抽出 3.8 ポイントオブインタレスト(POI) 3.9 自動車関連系AI 3.10 AR/VR/MRとメタバース 3.11 その他 第4章 各種トレーニングデータ 4.1 音声データ 4.2 画像データ 4.3 動画データ 4.4 センシングデータ(3D点群データ) 4.5 シンセティックデータ 第5章 データアノテーション 5.1 データアノテーションとは? 5.2 プリラベリングデータ 5.3 音声データからのアノテーション 5.4 テキストデータのアノテーション 5.5 画像データのアノテーション 5.6 アノテーションフォーマット 第6章 アノテーションツール 6.1 アノテーションツールの種類 6.2 データ収集 6.3 プロジェクト定義 6.4 データ管理と割り当て 6.5 音声系へのアノテーション 6.6 テキスト系のアノテーション 6.7 画像・動画系データ 6.8 品質チェック工程 6.9 データ取りまとめ 第7章 データセキュリティ 7.1 関連する法律 7.2 データセキュリティについて 7.3 AI倫理 第8章 トレーニングデータの重要性 おわりに 参考文献
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Windows 11でのコンピュータ操作、Accessを含めたOffice 2021活用など基礎を学べる1冊。 本書は、パソコンやインターネットを使用するうえで身につけておくべき情報リテラシーの習得を目標としています。 好評の『情報リテラシー教科書』最新版となる本書は、機能・インターフェースが一新されたWindows 11とOffice 2021、Access 2021に対応しています。 キーボードでの入力やマウスの扱い方などの初歩的なPC操作から始めて、コンピューターやネットワークの基礎的な知識を学んだのち、Microsoft Officeのソフト(Word、Excel、PowerPoint、Access)の操作法を学んでいきます。 レポート作成、プレゼンテーション、データ処理、グラフ作成、データベース処理などを解説しつつ、私たちにとって不可欠な存在になりつつあるクラウドコンピューティングや人工知能(AI)の話題にもコラムなどで触れています。 イントロダクションにはマンガページを設けるなど、学生の学習意欲を沸かせるように工夫を凝らしています。苦手意識のある方でも、情報基礎がしっかり身につく一冊です。 第1章 パーソナルコンピュータの基礎 第2章 インターネット利用 第3章 Microsoft Word 第4章 Microsoft Excel 第5章 Microsoft PowerPoint 第6章 Microsoft Access
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Microsoft Officeを活用して情報リテラシーを身につけるテキスト。基本的な文書作成・表計算・プレゼン資料の作成から、データベース、HTMLまで、重要な項目を精選して解説。実践的な例題を手順に沿って丁寧に解説。スマホ中心利用でパソコンが苦手な方に向け、キーボード入力の基礎やPCメールの使い方も解説。オリジナルキャラクターが重要ポイントを視覚的に誘導。情報教育の教材や自学自習のテキストに。
-
4.5※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 パーソナルデータを「正しく」活用するための教科書 パーソナルデータとは、個人を識別したうえで収集されたデータのことです。たとえば、ECサイトで買い物をしていると、自分がカートに入れたものに関連するおすすめ商品が出てきたり、検索エンジンでの検索結果が自分と友人とで違ったりするのは、パーソナルデータとして「自分や友人が識別されたうえで集められたデータ」の活用によってサービスが作られているからです。 パーソナルデータは世界中のさまざまなサービスで活用されていて、企業は利益を効率的に改善できるようになり、ユーザーは個々人にとって適切なサービスを受けられるようになりました。 その一方で、パーソナルデータの利用目的や手段によっては、法的あるいは倫理的な課題にぶつかり、議論となることが多々あります。場合によっては大きなニュースとなり、企業イメージを低下させ、ユーザーの生活に悪影響を与え権利を侵害する恐れすらあります。これらは個人が識別されることによっておきる弊害です。 本書は、以上の背景のもと、パーソナルデータの適正な利活用に必要な基本事項を提示するものです。 リスクを回避し、「有用性」と「ユーザーのプライバシーや第三者の権利の保護」とを両立しながらデータを活かすにはどうしたらよいのか、法律・倫理・技術などの複数分野を横断しながら、多角的に解説します。 本書のおもな読者対象は、パーソナルデータを活用するサービスのプロデューサー、マネージャー、ディレクター、そして実際にパーソナルデータを処理する、いわゆるデータサイエンティストや機械学習エンジニアなどです。 ほかにも、パーソナルデータを使ったサービスを提供する企業の社会人であれば、それ以外の職種の方(企画、広報、営業など)にも有用な内容です。 また、自分のパーソナルデータがどのように活用されているのか気になる一般のユーザーの方にもおすすめです。 ■本書の特徴 ・法的な側面だけでなく、倫理やセキュリティや技術に関するものや、意図せずして社会に与える影響など、周辺知識を幅広く解説します。 ・Web業界を例として、職種問わず共通認識として把握しておきたいことを網羅的に解説します。 ・実際にサービスをつくるときに考慮すべき事項を、表とフローチャートを用いて解説します。 はじめに/目次 第1章 パーソナルデータってなんだろう? 1.1 パーソナルデータの定義 1.2 パーソナルデータでできること 1.3 本書の構成 第2章 パーソナルデータの事件簿 2.1 知られたくないことを知られる・利用される 2.2 公的機関から監視される 2.3 自分のデータが利用されることへの同意の有無と実態 2.4 誰でも手に入るデータによる問題 2.5 過剰なデータ取得に対する拒否感 2.6 パーソナルデータの「値段」 第3章 パーソナルデータ活用の分類 3.1 個人情報? 個人データ? 3.2 個人情報 3.3 ところで「パーソナルデータ」とは? 3.4 「誰が」「なにから」「なにを」「なにに」? 3.5 《処理結果》を深掘りする 3.6 「誰と」「どこまで」? 第4章 パーソナルデータまわりの権利や決まり 4.1 著作権 4.2 限定提供データ 4.3 通信の秘密 4.4 複合的に考えるべき事例 4.5 顔画像による個人認証や本人確認 第5章 データ収集と処理に使われる技術 5.1 通信技術と個人情報の関係 5.2 個人の特定と個人の識別のしくみ 5.3 個人を特定せずにデータ活用するための技術 5.4 情報科学的な理論に基づく技術 第6章 「信頼できるサービス」の構造 6.1 「信頼」の難しさ 6.2 信頼概念の整理 6.3 企業に対する「安心」のもと 6.4 「使われるサービス」と「受け入れられるサービス」 第7章 プライバシー・リスク・倫理 7.1 プライバシーの懸念と消費者の行動 7.2 パーソナルデータのリスク 7.3 パーソナルデータと倫理 第8章 パーソナルデータの「正しい」活用のフロー 8.1 データ分析の目的と手順 8.2 データの利用基準はいつ考えるべきか 8.3 データ利用基準の実例 8.4 データ利用基準実施手順 第9章 パーソナルデータ活用の応用事例 9.1 【自社データの自社利用】自社で収集したデータを情報推薦に活用する 9.2 【グループ会社データの自社利用】ユーザーの行動ログなどを用いて論文を書く 9.3 【自社データの外部利用】コミュニケーションデータから違反行為の予兆を発見する 9.4 【外部サービスによる自社データ取得】アンケートと行動ログを合わせて活用する 9.5 【自社データの外部利用】アンケート調査結果と行動ログを 用いて共同研究を行う 9.6 【自社データの外部利用】ハッカソンの課題としてパーソナルデータを利用する 9.7 【外部データの自社利用】投稿コンテンツから特定商品への言及を抽出してレポートする 第10章 パーソナルデータがもたらす副作用 10.1 社会の偏りの増大 10.2 統計的差別 10.3 情報接触の偏り 10.4 社会関係の偏り 10.5 ヘイトスピーチ対策システムが生み出してしまう差別 10.6 ステレオタイプの強化 10.7 マイクロターゲティングの弊害 10.8 おわりに 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 不正アクセスやランサムウエアなどサーバー攻撃による企業の被害が急激に増えています。国内でも過半数の企業が1年以内に被害に遭ったという調査もあり、企業活動において大きなリスクとなっています。 本書では、「すべてのアクセスを信用しない」という原則で作る「ゼロトラストネットワーク」の構築や基本となる認証や暗号化など、企業のセキュリティーを向上させる方法を様々な角度から紹介しています。図解を中心としており、これまでセキュリティー分野について詳しくなかった人でも理解しやすいようになっています。用語解説も豊富に盛り込んでいます。 第1部 ゼロトラストネットワークで守る 第2部 セキュリティー機器やツールの使い方を学ぶ 第3部 セキュリティー事故に対処する 第4部 セキュリティー技術を学ぶ 第5部 暗号や認証を学ぶ 第6部 セキュリティー用語を理解する
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「社会と情報」「情報の科学」の指導法に対応!教職課程・情報教育指導のための座右の書! 高校の情報科の教員免許取得には欠かせない、大学教職課程の講義「情報科教育法」の教科書です。前版(改訂2版)は平成20(2008)年度に告示され、平成25(2013)年度から実施されている学習指導要領の内容をふまえて実施に先がけて発行したものでしたが、発行後に一部教科名が変更される(『普通教科「情報」→共通教科「情報」』)、文科省が推奨する教科「情報」の学習の目的区分が変更されるなど、現在の高校の教科「情報」の教育実態に合わせた記述となるよう全体的に見直して、改訂3版として発行するものです。 序章 情報科教育法とは 1. 教育はなぜ必要か 2. 情報教育はなぜ必要か 3. 情報科教育法とその必要性 第1部 情報科とは 1章 情報科の成立 1・1 情報科設立経緯の概観 1・2 情報科の目標 1・3 情報科の学習内容 1・4 他の教科などとの関連 1・5 その他の特記事項 2章 現行学習指導要領における情報教育 2・1 小学校における情報教育 2・2 中学校における情報教育 2・3 高学における情報教育 2・4 現行学習指導要領とPISA 第2部 情報活用の実践力の指導法 第2部の概説 3章 情報活用の実践力の指導法 3・1 「情報活用の実践力」 3・2 「情報活用の実践力」の指導項目 3・3 小中学校における「情報活用の実践力」育成 3・4 高等学校における「情報活用の実践力」育成 3・5 情報フルーエンシーへの昇華 第3部 情報の科学的な理解の指導法 第3部の概説 4章 情報の科学的な理解の指導法 4・1 情報の科学的な理解の指導法 4・2 コンピュータを使わない指導法 4・3 コンピュータを使う指導法 5章 問題解決とモデル化・シミュレーションの指導法 5・1 問題を選定する 5・2 モデル化とシミュレーションを授業で取り上げる 5・3 まとめ 6章 アルゴリズムとプログラミングの指導法 6・1 アルゴリズムとプログラミング学習の必要性 6・2 アルゴリズムとプログラミング指導のポイント 6・3 プログラミングの指導法 7章 情報検索とデータベースの指導法 7・1 情報の整理と検索の必要性 7・2 情報検索と検索エンジン 7・3 データの重要性 7・4 データベースとDBMS 7・5 関係モデルと関係データベース 7・6 データウェアハウスとデータマイニング 第4部 情報社会に参画する態度の指導 第4部の概説 8章 情報モラル・情報倫理の指導法 8・1 情報モラル・情報倫理とは 8・2 指導方法 9章 メディアリテラシーの指導法 9・1 メディアリテラシーの概念 9・2 構成されるメディア 9・3 メディアの変化 9・4 メディアリテラシーの教育 9・5 授業の進め方 9・6 まとめ 10章 情報通信ネットワークとコミュニケーションの指導法 10・1 コミュニケーションとその構造 10・2 コミュニティと情報社会 10・3 情報通信ネットワークの仕組み 10・4 情報通信ネットワークとセキュリティ 11章 情報システムと社会の指導法 11・1 社会における情報システムの役割 11・2 生活の中の情報システム 11・3 情報システムの具体例 11・4 情報システムの社会的な重要性 11・5 授業への展開 第5部 情報科の教員として 12章 「総合的な学習の時間」との協調 12・1 指導要領における「総合学習」の位置づけ 12・2 どのような授業形態が考えられるか 12・3 「総合学習」に臨む教員の姿勢 13章 コラボレーションとプレゼンテーション,および授業システム改善の動き 13・1 コラボレーションプログラムの必要性 13・2 プレゼンテーションプログラムの必要性 13・3 プログラム展開において留意すべき点 13・4 授業システム改善の動き 14章 評価の工夫 14・1 観点別評価と評価の工夫 14・2 評価の計画と学習指導案 14・3 観点別評価の実際 14・4 生徒による自己評価,相互評価 15章 学習指導案の作成 15・1 学習指導案の内容 15・2 作成上の注意点 15・3 学習指導案の例 16章 情報科とプレゼンテーション 16・1 プレゼンテーションとは 16・2 プレゼンテーションの方法 16・3 スライドを用いたプレゼンテーション 16・4 実習としてのプレゼンテーション 16・5 授業におけるプレゼンテーション 16・6 プレゼンテーションのツール 17章 授業形式の実習 17・1 マイクロティーチングと教壇実習 17・2 実習の概要 17・3 ふりかえりの必要性 18章 これからの情報教育 18・1 ドラッカーが主張する21世紀の教育 18・2 知識のストックとフロー 18・3 ブートストラッピング 18・4 身体軸としてのキーボード練習 18・5 入門教育の重要性と熟練の獲得 18・6 プログラミング教育(論理軸) 第6部 情報教育に必要な知識 19章 情報の表現と発信 19・1 情報とデータ,情報量とデータ量 19・2 情報とデザイン 19・3 ユーザーインターフェイスのデザイン 19・4 コンテンツ構成の設計 19・5 Webページの論理構造と物理表現 19・6 情報システムとしてのWWWの設計 20章 ソフトウェア制作から見た情報教育 20・1 専門教科「情報」から見た情報技術教育 20・2 プロジェクトとして見たソフトウェア開発 20・3 見たこともないものを作る難しさ 20・4 お絵かきプログラム開発演習 20・5 ソフトウェア開発の実際 20・6 指導設計(ID) 索 引
-
3.3技術の無駄遣い!? 日常の些細な出来事を データサイエンスを駆使して 「まじめに」分析 【本書の概要】 ITmedia NEWS で大人気の連載記事 『データサイエンスな日常』をもとにした書籍です。 「飲み会での孤立」「LINEの既読スルー」「満員電車での立ち振る舞い」。 日常生活で気になるテーマを著者の持つ独特の視点で分析。 読み物としてもデータ分析の学習本としても楽しめます。 【本書の対象読者】 ・データやテクノロジー、デバイスを用いたテック系の読み物に興味のある方 ・データ分析、アプリケーション開発に興味のある方 【本書の目次】 PROLOGUE それはコミュニケーションの問題ではなくデータサイエンスの問題 PART 1 家の孤独に立ち向かう CHAPTER1 LINEの既読スルーにランダムフォレストで立ち向かう CHAPTER2 多面的な自分と向き合うためのチャットボット CHAPTER3 電子デバイスを駆使して強制的に感情移入できる漫画を作る CHAPTER4 在宅ワークの孤独に対抗してプロジェクションマッピングで“バーチャル職場”を作り出す PARTT 2 街の孤独に立ち向かう CHAPTER5 「休日に会社の同僚と遭遇しないための動き方」を物理シミュレーションとゲーマーの英知で解き明かす CHAPTER6 飲み会で孤立しないためのセル・オートマトン CHAPTER7 飲み会の帰り道での孤立に、ARシミュレーションで立ち向かう CHAPTER8 「満員電車で快適に過ごすための動き方」を物理シミュレーションで解き明かす CHAPTER9 すべての孤独に悟りとデータサイエンスで立ち向かう ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習による異常検知と系列データ解析を実例をもとに学ぶ 本書は、現在産業界で注目されている、機械学習による ・機器の振動データに対する異常検知 ・系列データ(例として睡眠系列データ)に対する解析 を解説したものです。 業務や研究開発に必要だが機械学習については素人という方でも実践できるように、本書前半では、基本的な識別器・予測器のPythonによる実装例・使い方を解説しています。後半では、実問題への適用例を著者の研究経験をもとに解説しています。 第1章 機械学習とは何か 第2章 基本的な識別器・予測器 第3章 機器の振動データに対する異常検知 第4章 系列データの解析
-
3.7ベストセラー『プログラムはなぜ動くのか』『コンピュータはなぜ動くのか』著者 矢沢久雄 3年ぶりの待望の最新作! ふだん何気なく使っているのに、改めてその意味を問われると、ひと言では答えにくい言葉の一つが、「情報」です。そのとらえどころのない「情報」を処理しているのが、ほかならぬ「コンピュータ」です。では、現実世界のあいまいな情報を、あいまいなことを受け入れられないコンピュータに、どうやって処理させているのでしょう? 本書は、情報をどう表現して、処理手順をどう明確にするか、身近なテーマをひきながら一つひとつ解説していきます。 特徴1:情報を処理することの「知識」と「センス」が身につきます! 「情報を処理する」とは、与えられた情報を計算、変換、検索などして、目的の結果を得ることです。本書では、コンピュータが情報を扱う過程をわかりやすく説明します。「知識」はもちろん、情報を考える「センス」を感じとってもらえるはずです。「情報」をキーワードに、あいまいな現実とコンピュータをつなぐ不思議な世界を一緒にのぞいてみませんか。 特徴2:たくさんの「クイズ」で腕だめし! 途中には、たくさんのクイズが登場します。パズルのように楽しい問題ばかりです。ぜひ挑戦してください。 特徴3:世界初のコンピュータや、偉大な開発者たちを写真とともに紹介! コンピュータの原型となった考え方やコンピュータの開発に貢献した人たちの話なども写真とともに多数紹介します。どのような発明と発見があって現在のコンピュータになったのか、ぜひ知ってください。
-
-
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 1.はじめてのLinuxでもつまずかずに学習できます はじめて学習する方が疑問に思ったり理解しづらい、つまずきやすいポイントを丁寧に解説してあります。 本書を読み進めていくことで、Linuxに関わる基礎知識が得られるだけでなく、LPI Linux Essentialsに合格に必要となる知識が得られます。 2.LPIC-1、LinuC-レベル1にも対応 LPI Linux Essentialsの試験範囲だけでなく、LPIC-1、LinuC-レベル1の試験範囲もできるだけカバーしました。 101試験範囲はすべてカバーしてあります。 LPI Linux Essentials合格後にLPIC-1、LinuC-レベル1を受験する予定のある方はこの1冊で続けて学習できます。 3.ハンズオンでさわって学べる 本書は学習環境の構築(CentOS)もやさしく解説しております。はじめてのLinuxだからこそ、実際にコマンドを叩きながら学習ことをオススメします。 入力コマンドや実行結果がひと目でわかるように構成してあります。 ■対象試験: LPI Linux Essentials、LPIC-1(101、102は途中まで)、LinuC-レベル1(101、102は途中まで)
-
4.0DTMアプリ(DAW)で使用する音源「ソフトシンセ」。今やソフトシンセは,音楽の音源としてだけでなく,ゲームやムービーの効果音にも利用されており,すべてのメディア制作の現場でなくてはならない存在になっています。本書は,すべてのクリエーターに向けたソフトシンセの使いこなしガイドブックです。前半でソフトシンセの基本概念と使用方法を解説し,後半ではプリセットでは飽き足らない上級者に向けて,必要なサウンドを手にするための音色エディットのテクニックを目的別に解説しています。この1冊を読めば,多種多様なソフトシンセを自在に操れるようになります!
-
4.1
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ネットワーク管理者にとってセキュリティーへの対応は終わることがありません。ある時点で安全なシステムであっても、新たな攻撃手法が出てきたり、脆弱性が見つかったりすることで、危険にさらされる恐れがあります。 本書は、日経NETWORKに掲載したセキュリティーに関連する最近の主要な記事をまとめたたものです。最新の攻撃手法や、セキュリティーの事例などを詳しく紹介しており、最近のセキュリティー関連で知っておかなければいけないことを1冊で理解できるようになっています。 「Gmail届かない問題」や「CrowdStrikeによる大規模障害」といった知っておきたい事件についても解説しています。また「コスパで考えるセキュリティー対策」といった、現実的な対策法についても紹介しています。 ≪目次≫ ●第1部 インシデント対応 第1章 解剖!日本警察のサイバー捜査 第2章 被害を抑える初動対応 第3章 「史上最大規模」の障害起こしたCrowdStrike 第4章 神奈川県教育委員会「Gmail届かない問題」の全貌 第5章 「内部不正」との闘い方 ほか ●第2部 攻撃を知る 第1章 脆弱性対応「必勝」のポイント 第2章 ランサムウエア解体新書 第3章 防止不可能「ソフトウェアサプライチェーン攻撃」の脅威 第4章 改めて備えるDDoS攻撃 第5章 生成AI時代のサイバー防衛最前線 ほか ●第3部 守りを固める 第1章 コスパで考えるセキュリティー対策 第2章 ファイアウオール徹底解説 第3章 セキュリティー製品 利用実態調査 第4章 プラットフォーム型セキュリティーサービスの真実 第5章 動き出すIoTセキュリティーの評価制度 ほか
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 個人データ活用ビジネスの指南書! ユーザーの行動や購買のデータをもとに、サービスが最適化されることが当然の時代となりました。ネットで買いものをするときは閲覧や購買の履歴に基づいて商品の推薦が行われますし、動画を閲覧するときは過去の視聴履歴に基づいてホーム画面に表示される動画が変わります。データに基づいた調整によって、ユーザーはより適切なサービスを受けられるようになりました。 しかしユーザーに紐づくデータ(≒個人データ)は、うまく活用すればビジネス強化につながる反面、使いかたを間違えれば社会的に大きな非難を受ける可能性があります。近年ではプライバシー保護に対する社会の目が厳しくなっており、グローバルプラットフォーマーがGDPRで高額な罰金を課せられたり、これまで明確な法規制のなかった国に日本の個人情報保護法に相当する法律が次々と制定されるなど、国際社会は法規制を強める方向に動いています。日本国内でも、データの不適切な取扱いにより問題となった事例は枚挙に暇がありません。いままさに個人データを活用するサービスを開発・運用している実務担当者であっても、以下のような不安を抱えている人は多いのではないでしょうか。 ・いま行っている個人データ活用の施策が、プライバシー法規制に抵触するリスクはないか? ・ユーザーの同意はどんなときに必要で、必要となる場合はどうやって合意を取得するべきか? ・事業者間でのコラボレーションや第三者機関での分析を考えるとき、適法性やセキュリティをどのように担保すればよいか? ・データ処理過程で個人が特定されるリスクはないか? ・レピュテーションリスクを想定したとき、どんな情報を公表しユーザーへ提供するべきか? 本書では、こういった疑問への解答を示し、顧客の個人データを扱う当事者が実務レベルで適切な対応をとれるよう導きます。まずはビジネスでの個人データ活用の利点と懸念点を概説し、関連する法律や技術を説明したのち、どう対応していけばよいか具体例を示していきます。 <本企画のポイント> ・国内外のプライバシー規制の動向を理解できる ・企業におけるプライバシー保護体制(プライバシーガバナンス)の具体的な確立方法がわかる ・ビジネスにおける個人データ活用のリスクを適切に評価し、必要な対策がとれるようになる はじめに/目次 1章 なぜ個人データの活用が注目を集めているのか? 2章 プライバシー保護と炎上 3章 個人データと法規制 4章 プライバシーガバナンスを構築する 5章 個人データの定義と活用における注意点 6章 個人データを守るプライバシーテック 7章 プライバシーテックを活かした個人データ活用のフレームワーク おわりに/索引
-
4.0データの海から本質をつかみ、洞察を得る データ可視化は膨大なデータから意思決定に役立つ洞察を導き出すための必要不可欠なスキルです。 同時に、専門外の方へ知識を伝えたり説得するためのコミュニケーション術としても活用できます。 本書は、情報デザイン、コンピュータサイエンス、データサイエンス、統計学、記号学、インタラクションデザイン、ストーリーテリングなどさまざまな分野に分散しているデータ可視化の知見を統合し、ビジネスの最前線で役立つ内容に整理しています。 データ可視化の実践と普及に10年以上携わってきた著者が、本当に必要な基礎的な知識から実務でのワークフローや可視化の実践法、最適なチャートの選び方までをやさしく解説します。 ツール不要でプログラミング言語に依存しない記述なので、本質的な理解につながる内容です。 とくに次のような方にはおすすめの一冊です。 ・データ分析の実務者 ・UI・UXデザイナーやエンジニア ・プロダクトマネージャー、プロジェクトマネージャー ・マーケティングや事業戦略の担当者 ・企業の広報・コミュニケーションの担当者 【読者特典】手軽に使えるデータ可視化・データ処理ツール47選付き! 【目次概要】 〈基礎編〉 第1章 なぜデータを可視化するのか 第2章 データ可視化とは何か 第3章 どんな分野で用いられているか 第4章 チャートの文法とは何か 第5章 可視化表現の三層モデルとは何か 第6章 色はどのように選ぶか 第7章 コミュニケーションとしての可視化 〈実務編〉 第8章 ワークフローを理解する 第9章 ゴールを設定する 第10章 タスクを抽象化する 第11章 データの実務知識をおさえる 第12章 データを収集し処理する 第13章 チャートの選び方を知る 第14章 数値(How Many)を可視化する 第15章 言葉(What)を可視化する 第16章 時間(When)を可視化する 第17章 場所(Where)を可視化する 第18章 関係(To Whom)を可視化する 第19章 インタラクティブに操作する 第20章 レイアウトする 第21章 制作ガイドラインとしての価値観と原理原則 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 企業にとってシステムを守ることは大きな課題です。不正アクセスやランサムウエアなどサーバー攻撃による企業の被害は増える一方であり、ひとたび被害に遭えばその影響も業績に直接響いてきます。 本書では、企業のセキュリティーを向上させる方法を様々な角度から紹介しています。万が一、被害に遭ったときにどう対処するかといったインシデント対応についても詳しく説明しています。図解を中心としており、これまでセキュリティー分野について詳しくなかった人でも理解しやすいようになっています。用語解説も豊富に盛り込んでいます。 ≪目次≫ ●第1部 製品とサービス 第1章 セキュリティー製品 利用実態調査 第2章 法人向けパソコンのセキュリティー機能 第3章 2024年こそ「脱パスワード」 第4章 「SASE」を読み解く 第5章 知っておくべき「ID」の基礎 ●第2部 攻撃を知る 第1章 詐欺メール撲滅大作戦 第2章 メールは危ない 第3章 ランサムウエア解体新書 第4章 ランサムウエア攻撃対策の勘所 第5章 多要素認証を破る「プロンプト爆撃」の罠 第6章 「USBメモリー」の罠に気をつけろ ●第3部 インシデント対応 第1章 インシデント対応「虎の巻」 第2章 「内部不正」との闘い方 第3章 CSIRT体験記 第4章 ドメイン管理トラブル撲滅術 イラストで学ぶ ネットワークキーワード SIEM 第5章 クラウドセキュリティー総点検 ●第4部 キーワード 第1章 セキュリティーキーワード 第2章 セキュリティー基準「NIST SP800-171」の正体 第3章 身に付けるべきネットワーク技術
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 メタバースを形造る技術を徹底的に解説した、いまだかつてない書! 「メタバース」は、VR・AR・MRなどの技術を駆使して、仮想空間上に設けられた環境上でさまざまな形のエンターテインメント、コミュニケーション、ビジネス(例えば、アパレル/不動産/建設/小売業/観光/広告/医療/製造業/金融など)を展開する概念で、ここ数年でバズワード化しています。 本書は、メタバースの概念が生まれてきた背景・経緯やその目指すところをはじめ、メタバースを実現するための種々の要素技術・仮想化技術やその原理・応用と魅力を取り上げて、具体的に解説した書籍です。 1章 メタバース/VRとは 1.1 VRの歴史 1.2 VR/AR/MRとは 1.3 メタバースの歴史 1.4 メタバースロードマップ 1.5 メタバースとは 1.6 ソーシャルVRとメタバース 1.7 デジタルツインとメタバース 1.8 NFTとメタバース 1.9 アバタとメタバース 参考文献 2章 メタバース/VRを構成する基礎技術 ~感覚・提示~ 2.1 視覚ディスプレイ 2.2 聴覚ディスプレイ 2.3 体性感覚ディスプレイ 2.4 嗅覚・味覚ディスプレイ 2.5 前庭感覚・移動感覚ディスプレイ 2.6 感覚間相互作用 2.7 内受容感覚・内臓感覚 2.8 錯覚を応用した情報提示技術 2.9 物理量と感覚量の関係 参考文献 3章 メタバース/VRを構成する基礎技術 ~計測・表現~ 3.1 物理世界のセンシング 3.2 情報世界のモデリングとレンダリング 3.3ネットワーク・サーバ技術 参考文献 4章 メタバース/VRと身体 4.1 アバタと身体 4.2 サイバーシックネス・VR酔い 4.3 身体と環境の相互作用 4.4 体験する姿勢と状態の効果 参考文献 5章 メタバース/VRを使った産業応用 5.1 メタバースの産業応用 5.2 教育訓練 5.3 デジタルツイン 5.4 エンターテインメント 5.5 イベント・パブリックビューイング 5.6 バーチャルマーケット 5.7 広告・マーケティング 5.8 メタバースで生まれるビジネス 5.9 その他 参考文献 6章 メタバース/VRの今後の展望 6.1 時空間を超えるメタバース 6.2 意識を超えるメタバース 6.3 橋渡しするメタバース 6.4 基盤化するメタバース 6.5 メタバースのUI 6.6 メタバースの課題 参考文献
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 エヌアイデイ流スクラムのトリセツ&スクラムの品質管理 【雛型】プロジェクト計画書兼報告書解説付き 本書は、筆者が実施してきたスクラム開発の経験を基に、「これからスクラム開発プロジェクトに参画しようとしているが、どのように進めてよいかよくわからない方」や、「すでにスクラム開発に従事しているが、あまりうまくいっていない方」のために開発の進め方やアプローチの方法を具体的にガイドしているものです。プロジェクト計画書の雛形も掲載しており、共通認識としてスクラムチームで活用参照してほしい書籍です。 発刊にあたって はじめに 第1部 アジャイル開発の基礎 第1章 アジャイル開発とは 1.1 なぜアジャイル開発が求められるのか 1.2 アジャイルソフトウェア開発宣言とその意図 1.3 アジャイル宣言の背後にある原則 1.4 ウォータフォール開発とアジャイル開発との違い 第2章 アジャイル開発の手法 2.1 アジャイル開発の手法と特徴 2.2 開発手法の適用状況 第3章 スクラム開発 3.1 スクラム開発とは 3.2 スクラム開発の理論 3.3 スクラム開発の価値基準 3.4 スクラム開発の流れとフレームワーク 3.5 スクラム開発の進め方 第4章 スクラム開発での契約 4.1 契約の前に 4.2 契約形態について(請負契約と準委任契約) 4.3 顧客と当社の役割分担 4.4 契約前チェックリスト 第2部 開発の現場 第5章 受 注 5.1 契約前の合意および確認事項 5.2 見積りおよび契約 第6章 計画・立ち上げ 6.1 スクラムチームの編成と立ち上げ計画策定 6.2 インセプションデッキ作成 6.3 プロダクトバックログ作成 6.4 プロダクトバックログ見積り 6.5 初期リリース計画 6.6 スプリント準備 6.7 プロジェクト計画書の作成 第7章 スクラム開発のフレームワーク 7.1 スプリントプランニング 7.2 開発(技術プラクティス) 7.3 デイリースクラム 7.4 問題・障害・リスクの共有 7.5 進捗管理 7.6 スプリントレビュー 7.7 スプリント・レトロスペクティブ 7.8 リリース 7.9 プロダクトバックログ・リファインメント 第8章 品質管理 8.1 スクラム開発での品質の考え方 8.2 品質管理活動 8.3 品質データの収集および分析について 第9章 終 結 9.1 プロジェクトの実績評価とふりかえり 9.2 プロジェクト完了報告 9.3 プロジェクト実績の保管 第3部 各種資料 資料1 インセプションデッキの作り方・注意点 項目1:我われはなぜここにいるのか 項目2:エレベーターピッチを作る 項目3:パッケージデザインを作る 項目4:やらないことリストを作る 項目5:「ご近所さん」を探せ 項目6:解決案を描く 項目7:夜も眠れなくなるような問題は何だろう 項目8:期間を見極める 項目9:優先順位は? 項目10:何がどれだけ必要なのか 資料2 プロジェクト計画書の解説 1 管理表 2 体制 3 リスク管理 4 予算・要員計画 5 マスタスケジュール 6 進捗管理 7 品質管理 8 完了報告書 資料3 【雛型】プロジェクト計画書兼報告書 資料4 見積リスク評価表 資料5 スクラム開発プロセス俯瞰図 資料6 スクラムの実例紹介 1 プロジェクトの背景 2 プロジェクトの概要 3 インセプションデッキ 4 プロダクトバックログ 5 スプリントバックログ 6 デイリースクラム 7 スプリントレビュー 8 レトロスペクティブ 資料7 用語集 参考文献 あとがき
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 世界を変える技術は絶えることなく誕生している。SNS(交流サイト)やチャットアプリはコミュニケーションの世界を、EC(電子商取引)はビジネスの世界を一変させた。ほかにも、2010年代のスマートフォンやAI(人工知能)、さかのぼれば1990年代のインターネット、さらに1970年代のPCなど、枚挙にいとまがない。本書では、現在にとどまらずこれからの世界の変化をリードするであろう注目の技術を選び解説する。 主なものを挙げれば、Web3、メタバース、ブロックチェーン、デジタルツイン、量子コンピューター、クラウド、5Gを含むネットワーク技術、セキュリティーとなる。これらは独立して存在するのではなく、互いに関連しながら社会への影響度を高めていく。 今まさに、Web1.0、Web2.0に続く、10年、あるいは20年に一度のインターネットの変革が起ころうとしている。この変化にあらがうことはできない。どんな技術が存在し、どういった変化を起こしていくのかを知ることが最良の対応であり、本書はそのガイドとなるものである。 ≪目次≫ 第1章 Web3/メタバース最新動向 第2章 量子コンピューター最新動向 第3章 クラウド/ネットワーク最新動向 第4章 セキュリティー最新動向 第5章 挑戦者たち 第6章 シリコンバレー最新動向 第7章 GAFA深読み最新動向 第8章 サイバー攻撃最新動向
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ポストコロナ時代、企業はどうあるべきか?生き残りにはDXによる変革が一段と重要に――。 ポストコロナ時代、企業の在り方が問われる時代になった。本書では、単なる概論にとどまらず、金融、公共、流通といった業界を中心にDXの最新動向を追いかける。さらにデジタル庁のトップ、日本を代表する大手金融機関トップのインタビューを含め、ほかでは読めない独自コンテンツを満載した1冊。 ■総合解説 ポストコロナ、DXはこう進む ■金融DX最新動向 地銀の反転攻勢 東京海上、正攻法のDX インタビュー 東京海上ホールディングス社長 小宮暁氏 勘定系の新常態 インタビュー SBIホールディングス社長 北尾吉孝氏 「eKYC」急拡大/岐路の全銀システム/CAFISの葛藤 求められる競争原理 迷走、給与デジタル払い 賛否拮抗で解禁見えず ほか ■公共DX最新動向 激変する行政システム/デジタル庁 その理想と課題 役所・銀行・薬局 マイナカード利用に挑む/デジタル庁の試金石 ワクチン接種DX 政府テレワークの今 拒むのは技術にあらず ほか ■流通DX最新動向 クルマも化粧品も 「ノールック商売」台頭 デジタル直販「D2C」 最新EC誰でも手軽に 物流、再発明 ほか ■DXコラム システムの保守運用体制が瓦解 他人事ではない、みずほの惨事 量子コンピューターとメタバース IT産業と社会を変える技術はこれ 2022年に日本のDXの真価を問う 「地獄の沙汰」が意味するもの 日本のDXを阻む規制を見直す デジタル臨調への期待と不安 公取委がIT業界の暗部を調査 ESGで「見ぬふり」は許されず 岸田新政権
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」準拠テキスト データ活用社会を生きる学生・社会人に必須の【データ分析・解析の基本的な考え方と手法】をわかりやすく解説! データサイエンスは、さまざまなデータを分析・解析し、そこから新しい知見や価値を生み出していく技術・手法です。統計学などの数学を基礎とし、必要に応じコンピュータを活用して、さまざまな分野の専門知識と融合しながら、データから新しい価値を生み出していくデータサイエンスは、いまや大学生・社会人にとって必須の教養といえます。 本書は、政府の「AI戦略2019」での議論を経て策定・公表された「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に準拠した内容です。具体的な事例と分析手法を扱いながら、社会のさまざまな場面で必要とされるデータサイエンスの考え方を、関連する数学とともに丁寧に解説します。また、大学におけるリテラシーレベルの授業に続く、半期の授業に対応した構成としました。 【著者一覧】 第1章 小澤誠一 神戸大学数理・データサイエンスセンター 第2章 大川剛直 神戸大学大学院システム情報学研究科情報科学専攻 第3章 藤井信忠 神戸大学大学院システム情報学研究科システム科学専攻 第4章 青木 敏 神戸大学大学院理学研究科数学専攻 第5章 光明 新 神戸大学数理・データサイエンスセンター 第6章 為井智也 神戸大学数理・データサイエンスセンター 第7章 大森敏明 神戸大学大学院工学研究科電気電子工学専攻 第8章 為井智也 神戸大学数理・データサイエンスセンター 第9章 寺田 努 神戸大学大学院工学研究科電気電子工学専攻 第10章 熊本悦子 神戸大学情報基盤センター 第11章 高島遼一 神戸大学都市安全研究センター 第12章 村尾 元 神戸大学大学院国際文化学研究科 第13章 白石善明 神戸大学大学院工学研究科電気電子工学専攻 第14章 小澤誠一 神戸大学数理・データサイエンスセンター 第15章 羽森茂之 神戸大学大学院経済学研究科 第1章 データサイエンスの考え方 1.1 データサイエンスとは 1.2 データサイエンスを学ぶ理由 1.3 データから価値を生み出すプロセス 第2章 アルゴリズムとデータ構造 2.1 はじめに 2.2 データサイエンスにおけるアルゴリズムとデータ構造 2.3 アルゴリズムの基礎 2.4 基本的なデータ構造 2.5 探索 2.6 ソーティング 第3章 システム最適化 3.1 最適化問題とは 3.2 線形計画問題 3.3 非線形計画問題 3.4 整数計画問題 第4章 統計的データ解析の考え方 4.1 標本調査 4.2 信頼区間と仮説検定 4.3 分布の近似と標準誤差 4.4 線形回帰モデル 4.5 非線形回帰モデル 第5章 教師なし学習 5.1 クラスタリング 5.2 高次元データの次元削減と可視化 第6章 教師あり学習 6.1 教師あり学習とは 6.2 学習モデルとトレーニング(パラメータ最適化) 6.3 データのセットの分割とテスト(モデルの評価) 6.4 実データへの適用例(回帰) 第7章 確率モデル・確率推論 7.1 はじめに 7.2 確率モデルとベイズの定理 7.3 確率推論 7.4 確率推論の応用 第8章 強化学習 8.1 強化学習とは 8.2 強化学習の理論 8.3 強化学習アルゴリズム 8.4 探索と利用のトレードオフと意思決定モデル 第9章 情報センシング 9.1 情報センシングとは 9.2 センサデータ処理 9.3 センシング応用 第10章 画像解析・深層学習 10.1 画像解析 10.2 デジタル画像の特徴とフィルタ処理 10.3 深層学習 第11章 時系列データ解析・音声解析 11.1 時系列データ解析 11.2 音声解析 第12章 テキスト解析 12.1 はじめに 12.2 テキストデータの収集 12.3 テキストクレンジング 12.4 トークン化 12.5 ベクトル化 12.6 探索的データ分析 12.7 テキスト分析 第13章 情報セキュリティ 13.1 情報資産と情報セキュリティ 13.2 情報セキュリティの基本:アクセス制御 13.3 情報セキュリティのCIA 第14章 プライバシー保護技術 14.1 データが価値を生む仕組みと提供リスク 14.2 匿名化によるプライバシー保護 14.3 差分プライバシーによるプライバシー保護 14.4 準同型暗号によるプライバシー保護 14.5 協調学習によるプライバシー保護 第15章 意思決定論 15.1 意思決定の基本的枠組み 15.2 相関関係と因果関係 参考文献 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 基本事項をコンパクトにまとめ,親切・丁寧に解説したコンピュータの基礎の教科書!現場のニーズに応じて,さらに内容をブラッシュアップしました. 基本事項をコンパクトにまとめ,親切・丁寧に解説したコンピュータの基礎の教科書です。今回の改訂で現場のニーズに応じて,さらに内容をブラッシュアップしました. 大学1,2年生向けの教科書として適切な内容として,ハードウェア,ソフトウェアの両面からコンピュータやネットワークの内部構成や動作原理について,基礎的かつ重要な事項に的をしぼって解説しています. 1章 コンピュータシステム 1 コンピュータの歴史 2 コンピュータの基本構成と動作原理 3 現代社会におけるさまざまなコンピュータ 練習問題 2章 情報の表現 1 2進符号 2 2進数による数の表記法 3 数値データの表現 4 文字データの表現 5 音声・画像データの表現 練習問題 3章 論理回路とCPU 1 ブール代数と論理回路 2 論理回路と中央演算処理装置(CPU) 3 CPUの動作 練習問題 4章 記憶装置と周辺機器 1 記憶装置 2 インタフェースとバス 3 入出力装置 練習問題 5章 プログラムとアルゴリズム 1 プログラムとプログラミング言語 2 アルゴリズム 3 プログラミング言語と言語処理プログラム 練習問題 6章 OSとアプリケーション 1 OS 2 制御プログラムの役割 3 アプリケーションとミドルウェア 4 仮想化ソフトウェア 練習問題 7章 ネットワーク 1 コンピュータネットワーク 2 インターネットとTCP/IP 3 インターネットサービス 4 コンピュータシステムの構成と信頼性 練習問題 8章 セキュリティ 1 セキュリティ技術 2 暗号化技術 練習問題 練習問題解説・解答 索 引
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 来る量子コンピュータ時代の暗号を徹底解説! 暗号技術は、われわれの生活のさまざまな場面で利用されており、情報化社会の安全基盤として重要性を増しています。たとえば、暗号技術がなければネットショッピングも安心してできませんし、ブロックチェーンを用いた仮想通貨も生まれることはありませんでした。 ですが、現在これらのサービスに用いられている暗号技術は従来型のコンピュータによる計算を前提として開発されています。そのため、近年注目されている量子コンピュータによる異なったアルゴリズムで計算を行うと、現在の暗号は高速に解かれてしまうのではないか、という懸念があります。具体的には、素因数分解を前提としたRSA暗号などは危殆化する状況にあります。 本書は、量子コンピュータが暗号技術に与える影響について多角的な切り口から考察し、読者に、来る量子コンピュータ時代における暗号技術の基礎知識を提供します。読者は、量子コンピュータが与える情報化社会へのインパクトを知るとともに、自身のかかわる情報セキュリティにおいて、今後知っておくべき、対策する必要がある必須の情報を得ることができます。 情報セキュリティに携わる技術者・エキスパートのみならず、暗号や量子コンピュータに興味をもつ一般の方にも向けて、やさしくていねいに解説しています。 1章 社会で利用される暗号技術 2章 暗号の危殆(きたい)化リスク 3章 量子コンピュータについて 4章 量子コンピュータによる暗号解読 5章 ブロックチェーンなど暗号応用技術に対する量子コンピュータの影響 6章 暗号のディレンマ - 設計者と攻撃者の攻防 7章 耐量子計算機暗号とは 8章 耐量子計算機暗号の標準化活動 9章 今後の課題 参考図書 索引
-
4.0企業のデジタルトランスフォーメーション(DX)への取り組みが加速する中、システムやサービスにおけるUX(ユーザーエクスペリエンス)の重要性は高まっています。システム開発において、質の高いUXデザインが強く求められるようになっているのです。 しかしシステム開発を手掛けるITエンジニアの中には、UXデザインを見栄えを良くすることだと限定的に捉えている人が少なからずいます。ユーザーにとって価値のある使いやすいシステムをつくるには、見栄え以外にも改善すべき項目がたくさんあります。 またUXデザインに取り組みたくても、その方法がわからないという声も少なくありません。本書は、ITエンジニアがシステム開発の中でより良いUXデザインを実現するための知識やノウハウを、基本と実践の2部構成で解説した一冊です。 基本編となる第1章では、UXデザインのプロセスをシステム開発と同様に上流から「戦略」「要件」「構造」「骨格」「表層」の5 つのフェーズに分け、各フェーズで取り組むことや進め方、よく利用されるメソッドやつまずきポイントなどをわかりやすく解説します。 実践編となる第2章では、基本編で紹介した5つのフェーズの実践に必要な体制や仕組み、実際に取り組んだ事例などを、具体的な勘どころも交えて解説しています。UXデザインに取り組んでいくうえで組織的に準備しておきたいことや、UXデザインの活用方法など、実践を支えるヒントや心構えなどにも触れています。 著者が実際のシステム開発現場で積み重ねた豊富な経験を基に、UXデザインの実践的なノウハウをITエンジニアの目線で整理し、解説しています。ぜひご活用ください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネットが普及し、待ったなしで求められている教育が「情報モラル」です。炎上、なりすまし、拡散、誹謗中傷など、さまざまな問題があります。この情報モラルは、一般的なモラル(倫理や道徳)を基盤として、PCやインターネットに関する「技術」と、社会のルールである「法律」を両輪として、合わせて学んでいくことがポイントです。本書は、児童生徒の身近な題材を用い、モラル、技術、法律、情報、健康をテーマとして取り上げ、「情報モラル」をわかりやすく解説し、理解できるようになっています。動画・ゲーム・ショッピング編では、YouTubeやヤフーオークション、メルカリなど、人気サービスを具体的に取り上げながら、しくみや気をつけたいこと、便利に上手に使う方法を解説します。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネットが普及し、待ったなしで求められている教育が「情報モラル」です。炎上、なりすまし、拡散、誹謗中傷など、さまざまな問題があります。この情報モラルは、一般的なモラル(倫理や道徳)を基盤として、PCやインターネットに関する「技術」と、社会のルールである「法律」を両輪として、合わせて学んでいくことがポイントです。本書は、児童生徒の身近な題材を用い、モラル、技術、法律、情報、健康をテーマとして取り上げ、「情報モラル」をわかりやすく解説し、理解できるようになっています。SNS編では、LINEやTwitterなどの人気サービスを具体的に取り上げながら、便利に上手に使う方法を解説します。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネットが普及し、待ったなしで求められている教育が「情報モラル」です。炎上、なりすまし、拡散、誹謗中傷など、さまざまな問題があります。この情報モラルは、一般的なモラル(倫理や道徳)を基盤として、PCやインターネットに関する「技術」と、社会のルールである「法律」を両輪として、合わせて学んでいくことがポイントです。本書は、児童生徒の身近な題材を用い、モラル、技術、法律、情報、健康をテーマとして取り上げ、「情報モラル」をわかりやすく解説し、理解できるようになっています。インターネット・メール・セキュリティ編では、インターネットやメールのしくみや特徴、便利なサービスや危険、セキュリティなどについて触れています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネットが普及し、待ったなしで求められている教育が「情報モラル」です。炎上、なりすまし、拡散、誹謗中傷など、さまざまな問題があります。この情報モラルは、一般的なモラル(倫理や道徳)を基盤として、PCやインターネットに関する「技術」と、社会のルールである「法律」を両輪として、合わせて学んでいくことがポイントです。本書は、児童生徒の身近な題材を用い、モラル、技術、法律、情報、健康をテーマとして取り上げ、「情報モラル」をわかりやすく解説し、理解できるようになっています。スマホ編では、初めて手にしたときの設定や、使い方の注意点、無くしたときや、上手な使い方、しくみなどについてわかるようになります。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネットが普及し、待ったなしで求められている教育が「情報モラル」です。炎上、なりすまし、拡散、誹謗中傷など、さまざまな問題があります。この情報モラルは、一般的なモラル(倫理や道徳)を基盤として、PCやインターネットに関する「技術」と、社会のルールである「法律」を両輪として、合わせて学んでいくことがポイントです。本書は、児童生徒の身近な題材を用い、モラル、技術、法律、情報、健康をテーマとして取り上げ、「情報モラル」をわかりやすく解説し、理解できるようになっています。基本編では、モラル、技術、法律についてバランスよく解説し、情報モラルの基本な考え方がわかるようになります。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能に向けて、人間知能のメカニズム解明 現在は、人工知能ブームであり、機械学習・進化学習が花盛りです。本書は、生物は進化のなかでどのように知能を発展させてきたか、そして人工知能はどういうものであるかについて、著者の長年の研究にもとづいた最新の成果をまとめたものです。 コンピュータですぐに実践できるといった派手さのない書籍ですが、人工知能と言われるものが増えていくと考えられる現在、自分たち人間の知能がいったいなんであるかを認識しておくことは大切なことです。 まえがき 第1章 知能とは何か 1.1 知能の構造 1.2 知能構造の進化 1.3 知能への期待 1.4 外界との関わり 1.5 知能化メカニズムの諸様相 1.6 知能をつくる細胞組織 第2章 生命の時代[知能化メカニズムの基盤=生命構造] 2.1 生命構造の各部機能 2.2 教師あり学習─制御学習 第3章 記号化の時代[知能化メカニズムの基盤=原生言語] 3.1 記号化の始まり 3.2 形態素表現への進化 3.3 生命構造の機能拡大─複文の生成 3.4 文化継承としての知能深化 第4章 論理の時代[知能化メカニズムの基盤=意味言語] 4.1 意味言語への進化 4.2 意味言語の基本形式 4.3 ニューラルネットワークによる遷移知および推論の実現 4.4 遷移知の源 4.5 知能活動の原型─規格型の問題解決 4.6 物語生成と表現能力 4.7 意味言語ベースの知能化メカニズム 第5章 知能進化の新たな段階[問題の多様な現れ方] 5.1 知能活動の高度化の例 5.2 高度化問題へのアプローチ 5.3 統合知能論 むすび 参考文献 索 引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習を理解し実践するために必要な要素を選抜して解説した、実践的ガイドブック! 本書は、機械学習の入門者から中級者までをおもな対象として、機械学習を理解し実践するために必要なさまざまな要素を選抜して解説した、機械学習のガイドブックです。 機械学習の概要から解説をはじめ、機械学習の歴史と主要なアルゴリズム、機械学習を実践するためのプログラミング言語であるRとPythonそれぞれの説明と連携、機械学習を正しく使いこなすためのさまざまな注意点、Kerasを活用したディープラーニングの実践、そして強化学習の例としてアルファゼロを取り上げています。付録には機械学習の理論的裏付けとなる数学の概要も取り上げています。 入門者の方はまず本書の第1章「機械学習とは何か、どんな働きをするのか」を読み、第5章「さあ機械学習の本質を体験してみよう」の実践を繰り返してみてください。だんだんと機械学習に関する多くのことが見えるようになってきて、中級者への道が開けるでしょう。 中級者の方には前半はやや簡単かもしれませんが、第8章「Kerasを使ったディープラーニングの実践」、第9章「さまざまなゲームの攻略法をゼロから学習するアルファゼロ」の内容が十分に理解できたのであれば、かなりのレベルに達したのだと思います。簡単かもしれない前半部分にも、参考になるさまざまな要素を仕込みました。 機械学習の入門から中級者への道をガイドする1冊となっています。 はじめに 第1章 機械学習とは何か、どんな働きをするのか 第2章 機械学習小史:機械学習ブームの基盤を作った主人公たち 第3章 ぜひ使ってみたい役に立つアルゴリズム 第4章 RとPython 第5章 さあ機械学習の本質を体験してみよう 第6章 機械学習を上手に使いこなすコツ 第7章 RとPythonの連携 第8章 Kerasを使ったディープラーニングの実践 第9章 さまざまなゲームの攻略法をゼロから学習するアルファゼロ 付録A 機械学習の基盤となる数学の概要 A.1 機械学習の数学的基盤となるベクトル空間 A.2 ベクトル空間、ノルム空間、内積空間、ユークリッド空間とその関係 A.3 ドット積、行列、行列積 A.4 さまざまな行列の性質とその演算 A.5 行列と線形写像、固有値、テンソル、カーネル関数と射影 A.6 確率空間、確率変数、確率分布 A.7 統計的推定 A.8 最適化の手法 付録B RとPythonのデータ分析に関連する基本的コマンドの比較 B.1 基本的機能 B.2 ベクトル、行列などの作成と操作および数値計算(NumPy機能の対応) B.3 データフレームの作成・操作など(Pandas機能の対応) おわりに 参考文献とそのガイド
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 テキストマイニングの手法がよくわかる!! 本書はテキストマイニングの基礎と事例について、フリーの計量テキスト分析ソフトKH Coderを利用したテキストの解析と、Excelによるその分析手法を通して解説する入門書です。 テキストマイニングをいかに業務に活かしていくか、つまづきがちなポイントをマンガやイラスト、図解を用いてわかりやすく解説します。 はじめに 登場人物 プロローグ 第1部 テキストマイニング 基礎編 第1章 テキストマイニングとは 第2章 テキストマイニングで実現できること 第3章 気軽に始めるテキストマイニング 第4章 テキストデータを準備する 第5章 KH Coderで伝える!分析アウトプット5選 第6章 分析の精度を高める!データクレンジング 第2部 テキストマイニング 実践編 第7章 アンケートのテキストマイニング 付録 A.1 Jaccard係数の計算方法 A.2 先輩おすすめの参考書籍 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 強化学習の基礎からロボットへの実装までがわかる!! 本書は、強化学習の基礎からロボットへの実装までを解説した実務書です。プログラミングは、C言語でロボットへの実装までが解説された、実践的な内容となっております。ロボットへの実装は、誰でも購入できるライントレースロボットを使った例と、ソフトロボット(柔らかい素材を使ったロボット)を使った例で、具体的な方法を解説しています。 はじめに 第1章 人工知能とロボット 第2章 強化学習 第3章 C 言語による強化学習のプログラム 第4章 実ロボットへの適用 付録 Excel VBA による実装 参考文献 索引
-
-AWSのサービスはこう組み合わせる! 大事な業務システムの作り方 “定番”ともいえる14パターンの業務システムについて、Amazon Web Servicesのサービスの選び方、組み合わせ方を解説します。業務システムのように複雑な仕組みを構築するには、AWSの特性を十分理解してインフラを設計する必要があります。そうしたAWSを使った業務システム設計の勘所を、パターン別に分かりやすく説明します。 本書はWebシステム、ストレージシステム、データ分析システムといったテーマごとに、AWSのサービスを組み合わせて、特定の要求を満たすシステムを作るための「設計パターン」を解説します。2016年6月発行の「Amazon Web Services 定番業務システム12 パターン設計ガイド」を基に、「マイクロサービスの運用基盤」「AIとIoT」の2パターンを追加し、全体を通して加筆・修正・再構成しました。AWSの最新サービスに対応しています。 基本的なパターンから入り、徐々に応用的なパターンへと深く説明していきます。例えばWebシステムでは、仮想サーバー1台の単純な構成のWebサイトの設計方法から、性能や可用性の要件が厳しい場合の設計パターンまで紹介します。 後半では、仮想サーバーを使わない“クラウドネイティブ”なシステム、AWSをフル活用してアプリケーションの高速開発、オンプレミス環境と連携動作させる“ハイブリッドクラウド”など応用的な設計パターンも解説します。 クラウド初心者からベテランまで、AWSを使ったインフラ設計のあらゆる局面に役立つ一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 主要なデータマイニング手法の理論の基礎を学べる!! データマイニングとは,玉石混淆であるたくさんのデータから必要な情報を読み出す作業です。データマイニングの手法として理解しておく必要があるものには,比較的基本的な知識である回帰分析、主成分分析、判別分析等からクラスタリング、サポートベクターマシン(SVM)、ベイズ推定、ニューラルネットワークなどがあります。最近ではこれらの応用として、深層学習等についても解説します。 第I部 多変量解析 第1章 データマイニング 第2章 回帰分析 第3章 主成分分析 第4章 判別分析 第5章 クラスタリング 第II部 機械学習 第6章 機械学習 第7章 サポートベクターマシン 第8章 ベイジアンネットワーク 第9章 ニューラルネットワーク 第10章 自己組織化マップ 第11章 深層学習 参考文献
-
3.0要求仕様ゼロから価値を生み出す! IT現場の上流工程が変わる! ITを使って新しいサービスやビジネスを生み出したり、既存のビジネスの仕組みを変えたりする、いわゆる「デジタルシフト」のニーズが急速に高まっています。そしてデジタルシフトの実践に当たって、「デザイン思考」を情報システムの開発に活用する動きが広がりつつあります。 デザイン思考は、課題を発見し、それを解決する新しいサービスやビジネスを創り出すための考え方のこと。ユーザー自身がどのようなシステムを開発すべきか分からない、要求仕様が何もないところから開発を始めなければならないようなときに、デザイン思考が役立ちます。 本書は、ITエンジニアがデザイン思考をシステム開発で活用するときに必携の一冊です。デザイン思考を全く知らないというITエンジニアはもちろん、デザイン思考の勉強を始めたが難解で今ひとつピンとこないというITエンジニアにも、理解しやすく説明しています。デザイン思考は何となく理解したが、システム開発でどのように活用すればよいか分からないというITエンジニアにも、現場で役立つ実践的な情報が満載です。 第1章「デザイン思考の基本を学ぶ」では、デザイン思考における一般的なプロセスについて、その基本を解説します。実践的なイメージを想像しやすいように、架空のデザイン思考活用プロジェクトのストーリーを挿入しました。 第2章「現場で使える実践ノウハウ」では、デザイン思考を活用したプロジェクトでつまずきやすいポイントとそれを乗り越えるための処方箋をまとめました。 ITで新たな価値を生み出すために、ぜひ本書をご活用ください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『機械学習と深層学習 C言語によるシミュレーション』のPython版登場!! 本書は人工知能研究における機械学習の諸分野をわかりやすく解説し、それらの知識を前提として深層学習とは何かを示します。具体的な処理手続きやプログラム例(Python)を適宜示すことで、これらの技術がどのようなものなのかを理解できるように紹介していきます。 まえがき 第1章 機械学習とは 1.1 機械学習とは 1.1.1 深層学習の成果 1.1.2 学習と機械学習・深層学習 1.1.3 機械学習の分類 1.1.4 深層学習に至る機械学習の歴史 1.2 本書例題プログラムの実行環境について 1.2.1 プログラム実行までの流れ 1.2.2 プログラム実行の実際 第2章 機械学習の基礎 2.1 帰納学習. 2.1.1 演繹的学習と帰納的学習 2.1.2 帰納的学習の例題 ―株価の予想― 2.1.3 帰納学習による株価予想プログラム 2.2 強化学習 2.2.1 強化学習とは 2.2.2 Q学習 強化学習の具体的方法 2.2.3 強化学習の例題設定 迷路抜け知識の学習 2.2.4 強化学習のプログラムによる実現 第3章 群知能と進化的手法 3.1 群知能 3.1.1 粒子群最適化法 3.1.2 蟻コロニー最適化法 3.1.3 蟻コロニー最適化法の実際 3.2 進化的手法 3.2.1 進化的手法とは 3.2.2 遺伝的アルゴリズムによる知識獲得 第4章 ニューラルネット 4.1 ニューラルネットワークの基礎 4.1.1 人工ニューロンのモデル 4.1.2 ニューラルネットと学習 4.1.3 ニューラルネットの種類 4.1.4 人工ニューロンの計算方法 4.1.5 ニューラルネットの計算方法 4.2 .バックプロパゲーションによるニューラルネットの学習 4.2.1 パーセプトロンの学習手続き 4.2.2 バックプロパゲーションの処理手続き 4.2.3 バックプロパゲーションの実際 第5章 深層学習 5.1 深層学習とは 5.1.1 従来のニューラルネットの限界と深層学習のアイデア 5.1.2 畳み込みニューラルネット 5.1.3 自己符号化器を用いる学習手法 5.2 深層学習の実際 5.2.1 畳み込み演算の実現 5.2.2 畳み込みニューラルネットの実現 5.2.3 自己符号化器の実現 付 録 A 荷物の重量と価値を生成するプログラム kpdatagen.py B ナップサック問題を全数探索で解くプログラム direct.py 参考文献 索 引
-
3.0ITアーキテクトを目指すエンジニア必携の一冊 マイクロサービスやDevOpsにも対応! エンタープライズの情報システム開発において、ITアーキテクトの重要性がますます高まっています。スマートフォンやタブレットを生かした新たなシステムの構築や、クラウドサービスを利用したスモールスタートのシステム開発など、システムアーキテクチャーをゼロから考えなければならない場面が増えているからです。 しかしITアーキテクトを名乗るエンジニアの数はまだまだ少なく、またITアーキテクトのタスクや役割についても曖昧なのが実情です。本書では、そんなITアーキテクトがすべきことや求められるスキルを、システム開発の工程に沿って体系的にまとめました。ITアーキテクトが各工程で実施するタスクを、その成果物とともに解説しています。この一冊で、ITアーキテクトがシステム開発プロジェクトの中で何を考え、何をしているのかが見えてきます。 改訂版では、掲載内容を最新の情報にアップデートするとともに、注目の最新技術である「マイクロサービス」や「DevOps」に対応するパートを追加しました。 企業システムのデジタルシフトに伴って、システム開発では想定外の機能要件の追加や変更にも柔軟に対応し、その変更の影響範囲を極小化できるアーキテクチャーが求められます。改訂版で追加した第7章には、こうしたニーズに対応する際に取り得るアーキテクチャー戦略をまとめています。 ITアーキテクトは、アーキテクチャー設計というタスクを通じて、企業のビジネスおける様々な課題をITの力で解決します。本書はその問題解決力を磨くために必携の一冊です。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『C による数値計算とシミュレーション』のPython版登場!! 本書は、シミュレーションプログラミングの基礎と、それを支える数値計算の技術について解説します。数値計算の技術から、先端的なマルチエージェントシミュレーションの基礎までをPythonのプログラムを示しながら具体的に解説します。 アルゴリズムの原理を丁寧に説明するとともに、Pythonの便利な機能を応用する方法も随所で示すものです。 まえがき 第1章 Pythonにおける数値計算 1.1 Pythonによる数値計算プログラムの構成 1.1.1 Pythonによる数値計算プログラム 1.1.2 Pythonモジュールの活用 1.2 数値計算と誤差 1.2.1 数値計算における誤差 1.2.2 数値計算における誤差の実際 1.2.3 Pythonモジュールの活用 章末問題 第2章 常微分方程式に基づく物理シミュレーション 2.1 質点の1次元運動シミュレーション 2.1.1 自由落下のシミュレーション 2.1.2 着陸船のシミュレーション 2.2 ポテンシャルに基づく2次元運動シミュレーション 2.2.1 ポテンシャルに基づく2次元運動 2.2.2 2次元運動シミュレーション 2.3 Pythonモジュールの活用 章末問題 第3章 偏微分方程式に基づく物理シミュレーション 3.1 偏微分方程式の境界値問題 3.1.1 ラプラスの方程式 3.1.2 ラプラスの方程式の境界値問題 3.1.3 境界値問題の数値解法 3.1.4 ガウスの消去法による境界値問題の計算 3.1.5 逐次近似による境界値問題の計算 3.1.6 その他の二階偏微分方程式 3.2 ラプラスの方程式による場のシミュレーション 3.2.1 ラプラスの方程式の反復解法プログラム 3.2.2 より複雑な形状の領域の場合 3.3 Pythonモジュールの活用 章末問題 第4章 セルオートマトンを使ったシミュレーション 4.1 セルオートマトンの原理 4.1.1 セルオートマトンとは 4.1.2 セルオートマトンの計算プログラム 4.2 ライフゲーム 4.2.1 ライフゲームとは 4.2.2 ライフゲームのプログラム 4.3 交通流シミュレーション 4.3.1 1次元セルオートマトンによる交通流のシミュレーション 4.3.2 交通流シミュレーションのプログラム 章末問題 第5章 乱数を使った確率的シミュレーション 5.1 擬似乱数 5.1.1 乱数と擬似乱数 5.1.2 乱数生成アルゴリズム 5.1.3 Pythonの乱数生成モジュール 5.2 乱数と数値計算 5.2.1 数値積分と乱数 5.2.2 乱数と最適化 5.3 乱数を使ったシミュレーション 5.3.1 ランダムウォーク 5.3.2 ランダムウォークシミュレーション 5.4 Pythonモジュールの活用 章末問題 第6章 エージェントベースのシミュレーション 6.1 エージェントとは 6.1.1 エージェントの考え方 6.1.2 Pythonによるエージェントシミュレーションの実現 6.1.3 マルチエージェントへの拡張 6.1.4 相互作用するマルチエージェント 6.2 マルチエージェントによる相互作用のシミュレーション 6.2.1 マルチエージェントによるシミュレーション 6.2.2 マルチエージェントシミュレーションプログラム 章末問題 付録 A.1 4次のルンゲ=クッタ法の公式 A.2 ラプラスの方程式が周囲4点の差分で近似できることの説明 A.3 ナップサック問題の解法プログラムrkp30.py A.4 シンプソンの公式 章末問題略解 参考文献 索 引
-
3.5※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Python 3を使ったテキストマイニングの入門書! 本書は、Pythonを使ったテキストマイニングの入門書です。Pythonのインストールから基本文法、ライブラリパッケージの使用方法などについてもていねいに解説していますので、Pythonに触れたことがない方でも問題なく使用できます。また、テキストマイニングも、概要から実例に至るまで一から解説していますので、Python・テキストマイニング両方の知識が全くない方にとって最適な入門書となっています。 目次 第1章 テキストマイニングの概要 1.1 テキストマイニングとは 1.2 応用の例 第2章 テキストデータの構造 2.1 テキストの構成要素 2.2 統計分析・データマイニングの基本的な手法 2.3 テキストマイニング固有の考え方 第3章 Pythonの概要と実験の準備 3.1 Pythonとは 3.2 プログラムを作って動かす環境 3.3 Pyrhonの書き方ルール 3.4 テキストマイニングに役立つライブラリパッケージ 3.5 データの準備 第4章 出現頻度の統計の実際 4.1 文字単位の出現頻度の分析 4.2 単語の出現頻度の分析 第5章 テキストマイニングの様々な処理例 5.1 連なり・N-gramの分析と利用 5.2 共起(コロケーション)の分析と利用 5.3 語の重要性とTF-IDF分析 5.4 KWICによる検索 5.5 単語のプロパティを使ったネガポジ分析 5.6 WordNetによる類語検索 5.7 構文解析と係り受け解析の実際 5.8 潜在的意味論に基づく意味の分析とword2vec 付録 Python, Jupyter notebook のインストール
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Chainerのバージョン2でディープラーニングのプログラムを作る 本書はChainer を使ってディープラーニングのプログラムの作り方を示すものです。ディープラーニングは複雑なネットワークで表現された関数の回帰の問題と見なせます。そしてこのような問題は勾配法で解きます。この観点から Chainer によるプログラムの作成法を示しました。Chainerが2にバージョンアップしたため、2に対応し発行するものです。畳み込みニューラルネットワークについても解説しています。 主要目次 はじめに 第0章 Chainer とは 第1章 NumPy で最低限知っておくこと 第2章 ニューラルネットのおさらい 第3章 Chainer の使い方 第4章 Chainer の利用例 第5章 Trainer 第6章 Denoising AutoEncoder 第7章 Convolution Neural Network 第8章 word2vec 第9 章Recurrent Neural Network 第10章 翻訳モデル 第11章 Caffe のモデルの利用 第12章 GPU の利用 参考文献 ソースプログラム
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最新アップデートに対応!! 話題の『GPTs』を解説!!! オリジナルのChatGPTが作れる!!! 今話題のGPTs(ジー・ピー・ティーズ)はこんな事が可能です。 ・ノーコードでオリジナルのChatGPTを手軽に作成できる ・開発したChatGPTを共有できる ・外部サービスとAPI連携できる 本書では、GPTsの概要やCreateモードとConfigureモードによる作成方法だけでなく、チャットボット・文章生成・画像生成・データ分析・外部API利用などの開発事例を上げながら、GPTsの利用方法を、ビジネスマンなどを対象に徹底解説!
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 機械学習が話題に上ることも増えてきましたが,実際には手っ取り早くできるものではなく,ライブラリを使うだけではやりたいことをうまく実現できません。もとになる考えかたや基礎的なモデルを知っていなければ,パラメータの意味がわからなかったり,目の前の問題に対してまったく向いていないモデルを使ってしまうからです。こういった状況に対し本書では,機械学習の理論を知ることで,機械学習を実際に活用していくための基礎をきっちりと固めることを目的とします。
-
4.3
-
-◆実務で活躍できる、ワンランク上のデータサイエンティストへ!◆ データサイエンティストに求められるスキルは、いまや分析技術だけではありません。実務で活躍できるデータサイエンティストになるためには、チームでの働き方も身に付けなければいけないでしょう。本書では、分析環境の準備・分析データのチェックから、機械学習モデルの運用やプロトタイプ開発まで、データサイエンティストが抑えるべき「分析前後」の知識を身に付けられます。ワンランク上のデータサイエンティストになるための、強力なガイドとなる本です。 ■こんな方におすすめ ・新人データサイエンティスト ・分析技術は学んできて、これからチームで働く人 ■目次 第1章 実務で生き抜くためのエンジニアリングスキル ・1.1 データサイエンティストを取り巻く環境の変遷 ・1.2 プロジェクトで求められるエンジニアリングスキル ・1.3 まとめ 第2章 環境構築 ・2.1 分析の土台としての環境構築 ・2.2 リポジトリの構造を整える ・2.3 VS Codeでの開発環境の整備 ・2.4 Dev Container による仮想環境構築 ・2.5 uv によるパッケージ管理 ・2.6 まとめ 第3章 コードの品質管理 ・3.1 Notebookだけのデータサイエンティストからの卒業 ・3.2 コード品質とは ・3.3 品質の高いコードとその実現方法 ・3.4 コードレビューによる品質管理 ・3.5 まとめ 第4章 データの品質確認 ・4.1 データの品質確認の重要性 ・4.2 分析開始前のデータ確認 ・4.3 Panderaによるデータフレームのバリデーション ・4.4 データ品質管理の継続的な取り組み ・4.5 まとめ 第5章 機械学習モデルの実験管理 ・5.1 実験管理の意義 ・5.2 Hydraによるパラメータ管理 ・5.3 MLflowによる実験の比較 ・5.4 まとめ 第6章 プロトタイプ開発 ・6.1 プロトタイプ開発の意義 ・6.2 Streamlitによるプロトタイプ開発 ・6.3 まとめ ■著者プロフィール ●浅野 純季(あさの じゅんき):株式会社ブレインパッド リードデータサイエンティスト。プロジェクトマネージャーとしてECサイトのマーケティング分析、レコメンド、効果検証、ゲームのチート検知などのプロジェクトをリード。 また、データサイエンスpodcast「白金鉱業.FM」の配信、Meetupイベント「白金鉱業Meetup」の主催、大学での寄付講義などでも活動。 1章と3章の執筆を担当。 ●田中 冬馬(たなか とうま):株式会社ブレインパッド データサイエンティスト。デジタルマーケティングの領域での分析集計・機械学習モデルの構築や、LLMを活用したプロダクト開発などを担当。LLMに関する研究活動にも取り組み、論文の執筆や学会での発表を行なっている。社外では、AutoResというAIを活用した研究を自動化するプロジェクトに参画している。 2章の執筆を担当。 ●武藤 克大(むとう かつひろ):株式会社Citadel AI ソリューションエンジニア兼ソフトウェアエンジニア。新卒で株式会社ブレインパッドに入社し、機械学習エンジニアとして、製造業・小売・金融業を中心に、MLOpsの推進や生成AIを活用したシステムの検証・開発に携わる。現職では、AIセーフティーやAIガバナンスに関するプロダクトの導入支援や開発を行う。 3章と6章の執筆を担当。 ●木村 真也(きむら まさや):株式会社ブレインパッド データサイエンティスト。金融・食品業界におけるDX推進組織の立ち上げに携わる。DX推進組織のビジョンやアクションプランの策定といった上流の支援に加え、課題整理、分析、運用化までのデータ活用支援も担当。顧客のデータ活用人財の育成や社内コンペの主催など、データ・AI活用の民主化に向けた取り組みも実施。 4章の執筆を担当。 ●栁 泉穂(やなぎ みずほ):株式会社タイミー データサイエンティスト。新卒で株式会社ブレインパッドに入社し、通信や小売の領域を中心に、予測モデル開発やLLMアプリケーション開発、データ基盤整備などのプロジェクトに携わる。統計学を専攻していた知見を活かし、新卒研修の資料作成や講師も担当。 4章と5章の執筆を担当。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆生成AIを基本からしっかり理解し、次の段階へステップアップ!◆ 近年続々と発表される実用レベルの生成モデル論文を深く理解するため、本書は変分オートエンコーダ(VAE)、LSTMといった基礎モデルから、VQ-VAE、拡散モデル、Transformerといった最先端モデルの先駆けとなったモデルの仕組みを、数学的な詳細に偏らず、シンプルなサンプルコードと演習を通して解説します。Kerasを用いた実装を通して、各モデルの主要機能と生成モデルとしての動作原理を、実際に手を動かしながら理解することを目的としています。 ■こんな方におすすめ ・機械学習の基礎から生成AIを学びたい方、生成AIのしくみをしっかりと基本から学びたい方。 ■目次 ●第1章 ディープラーニングの基礎知識 ・1.1 環境準備 ・1.2 分類モデルの仕組みと実装 ・1.3畳み込みニューラルネットワークによる画像分類 ●第2章 変分オートエンコーダによる画像生成 ・2.1 変分オートエンコーダの仕組み ・2.2 ラベルデータを活用した拡張 ●第3章 LSTMによる自然言語処理 ・3.1 LSTMによるテキスト分類 ・3.2 LSTMによるテキスト生成 ●第4章 トランスフォーマーによる自然言語処理 ・4.1 トランスフォーマーによる自然言語処理 ・4.2 トランスフォーマーによるテキスト分類 ・4.3 トランスフォーマーによるテキスト生成 ●第5章 拡散モデルの仕組み ・5.1 DCGANの仕組み ・5.2 拡散モデルの仕組み ・5.3 VQ-VAEの仕組み ●第6章 マルチモーダルモデルの実現 ・6.1 自然言語テキストによる画像生成 ・6.2 マルチモーダルモデルの実現 ■著者プロフィール 中井悦司(なかいえつじ): 1971年4月大阪生まれ。ノーベル物理学賞を本気で夢見て、理論物理学の研究に没頭する学生時代、大学受験教育に情熱を傾ける予備校講師の頃、そして、華麗なる(?)転身を果たして、外資系ベンダーでLinuxエンジニアを生業にするに至るまで、妙な縁が続いて、常にUnix/Linuxサーバーと人生を共にする。その後、Linuxディストリビューターのエバンジェリストを経て、現在は、米系IT企業のAI Solutions Architectとして活動。主な著書は、『[改訂新版]ITエンジニアのための機械学習理論入門』『Google Cloudで学ぶ生成AIアプリ開発入門――フロントエンドからバックエンドまでフルスタック開発を実践ハンズオン』(いずれも技術評論社)、『TensorFlowとKerasで動かしながら学ぶディープラーニングの仕組み』『JAX/Flaxで学ぶディープラーニングの仕組み』(いずれもマイナビ出版)など。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 POSデータでマーケティング・リサーチの基本を学ぼう! この本は、POSデータ(販売状況の管理データ)の分析を通じて、マーケティング・リサーチにおけるデータの集計・分析・可視化の基礎を身につける入門書です。以下4つのコンセプトに沿って構成しました。 ① POSデータのダミーデータを用い ② 現実に近い分析のストーリーをもたせ ③ なるべく簡単なExcel 操作で ④ 分析の手順やコツを自然に学べる 各章の冒頭で「スーパーのマーケティング部の新人が、部長から集計や分析を依頼される」というストーリーが示され、そこで提示された課題に沿って学習を進めていきます。高度な理論の説明は控えて、実際にPOSデータの分析で求められる内容を中心に扱っています。本書を通読することで、単純集計やクロス集計、集計結果のグラフ化や検定、データ間の相関や回帰、同時に購買されやすい商品の分析方法やPOSデータから得られる指標(店頭カバー率、PI値など)の解釈などを身につけることができます。 数学が苦手な方、Excelの複雑な操作が苦手な方にもおすすめです。 <おすすめの用途> ・インターンや就職前の独習教材として ・大学のデータリテラシーの授業の教科書として ・ゼミ活動の準備段階の参考書として ・企業の新人、若手研修の補助教材として <本書のポイント> ・ダミーデータを使って、実際にPOSデータの分析でよくぶつかる課題の解決方法を学ぶため、小売り業の現場に近いかたちでデータ分析の基礎を身につけられます。 ・数式をほとんど使わないため、数学や統計学が苦手でも読み進めることができます。 ・Excelの高度な操作は行わず、初出の操作は都度説明するため、Excelが苦手でも読み進めることができます。 第0章 この本の読みかた 第1章 「売り上げをまとめた資料を作っといて!」-データを集計してみよう- 第2章 「売り上げ、顧客層で違うよね?」-属性ごとに集計して検定してみよう- 第3章 「季節ごとの売上傾向ってわかる?」-時系列データを集計してみよう- 第4章 「なにが売り上げに影響したんだろう?」-データ間の関係性を調べよう- 第5章 「どの商品を同じ棚に置いたら売れやすい?」-併売の分析をしてみよう- 第6章 「売れる商品を狙って入荷しよう!」-店頭カバー率とPI値から売れ筋商品を見つけよう- 第7章 「新店舗、うまくいくかな?」-回帰分析で新店舗の売り上げを予測しよう-
-
5.0【普遍的な知識・技術を解説する自然言語処理の「教科書」】 深層学習の登場により、人工知能分野の技術が広く注目されています。特に自然言語処理は、我々の生活の中に深く浸透してきました。例えば検索システム、SiriやAlexaなどの音声対話システム、DeepLといった機械翻訳が挙げられます。いまや多くの企業や研究機関が、自然言語処理を用いた様々なプロジェクトを進めています。 本書はどの時代の自然言語処理にも必要となる技術について解説します。新しい技術が次々と生み出されていく中で、自然言語処理の実装に関する知識は古びてしまう可能性を孕んでいますが、本書では自然言語処理システムの開発で必要となる普遍的な知識を中心に掲載します。 解説の特色として、はじめに開発方法やデータ、評価基準など自然言語処理システムの開発全体に関する内容を載せます。続いて自然言語処理のタスク別に各システムの開発について取り上げ、どのような方針で設計するか、必要となってくる技術は何かを伝えます。最後に、類書でほとんど取り上げられていないにもかかわらず自然言語処理システムの構築には欠かせない知識となる辞書やコーパスの構築方法についても解説します。 ■目次 ●第1章 自然言語処理システムのデザイン 1-1 入力と出力を決定する 1-2 アプローチ:どのように解くか決定する 1-3 データ:辞書やコーパス 1-4 評価:評価尺度とエラー分析 1-5 フロー:自然言語処理システムの開発サイクル 1-6 まとめ ●第2章 分類・回帰問題の解き方 2-1 評価極性分析:ポジネガを判定する 2-2 文書分類:記事の自動分類 2-3 文章の品質推定:人手で書いた文章の品質を推定する 2-4 演習:品質推定 2-5 まとめ ●第3章 系列ラベリング問題の解き方 3-1 固有表現認識:固有表現を見つける 3-2 形態素解析:単語分割・品詞推定・見出し語化 3-3 誤り検出:誤り箇所の検出と訂正 3-4 演習:文法誤り検出・訂正 3-5 まとめ ●第4章 言語生成問題の解き方 4-1 文書要約:長い文章の要点をまとめる 4-2 機械翻訳:同じ意味の別の言語で表現する 4-3 対話:チャットのやり取りをする 4-4 演習:機械翻訳 4-5 まとめ ●第5章 言語資源のつくり方 5-1 言語資源の入手方法 5-2 言語資源構築のデザイン:継続的な品質管理 5-3 辞書作成 5-4 コーパス作成 5-5 ツールキット作成 5-6 演習:フレーズ分類ラベルアノテーション 5-7 まとめ ■著者プロフィール 小町守:2005年東京大学教養学部基礎科学科科学史科学哲学分科卒業。2010年奈良先端科学技術大学院大学情報科学研究科博士後期課程修了。博士(工学)。在学中、Microsoft ResearchやAppleなどで研究開発に携わる。同年奈良先端大助教、2013年首都大学東京(現東京都立大学)システムデザイン学部准教授および教授を経て、2023年より一橋大学大学院ソーシャル・データサイエンス研究科教授。2023~2024年ケンブリッジ大学客員研究員。最近は深層学習を用いた自然言語処理の研究に取り組んでいる。『自然言語処理の基本と技術』(翔泳社,2016)監修。
-
3.51巻2,860円 (税込)【読めば読むだけ力になる、新スキルチェックリスト対応の公式リファレンスブック!】 集めたデータから価値を創出し、ビジネス課題に答えを出すデータサイエンティストは、ますます必要とされてきています。そんなデータサイエンティストには、様々なスキルが求められています。 ・情報処理、人工知能、統計学などの情報科学系の知恵を理解し使う、データサイエンス力 ・データサイエンスを意味のある形に使えるようにし実装・運用できるようにする、データエンジニアリング力 ・課題背景を理解した上でビジネス課題を整理し解決する、ビジネス力 さらに、これらのスキルを日常生活や仕事等の場で活かすための学修目標を示した「数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム」も公表されています。データサイエンティスト検定(リテラシーレベル)では、これらの基礎的な部分を総合的に問われます。 本書では、問われる項目をひとつひとつピックアップし、現場の第一線でで活躍する著者が詳しく解説しています。読み込めば読み込むほど力になる、試験対策のための一冊です。 ■目次 第1章 DS検定とは 第2章 データサイエンス力 第3章 データエンジニアリング力 第4章 ビジネス力 第5章 数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム データサイエンティスト検定TMリテラシーレベル模擬試験 問題 データサイエンティスト検定TMリテラシーレベル模擬試験 解答例 ■著者プロフィール ●菅 由紀子(かん ゆきこ):株式会社Rejoui(リジョウイ) 代表取締役、一般社団法人データサイエンティスト協会 スキル定義委員、広島大学 客員教授。 ●佐伯 諭(さえき さとし):一般社団法人データサイエンティスト協会 スキル定義委員会副委員長、事務局長、ビーアイシーピー・データ株式会社 取締役COO。 ●高橋 範光(たかはし のりみつ):株式会社ディジタルグロースアカデミア 代表取締役会長、株式会社チェンジホールディングス 執行役員、一般社団法人データサイエンティスト協会 スキル定義委員。 ●田中 貴博(たなか たかひろ):株式会社日立製作所 人財統括本部 デジタルシステム&サービス人事総務本部 直轄人事部 シニアHRビジネスパートナー、一般社団法人データサイエンティスト協会 スキル定義委員。 ●大川 遥平(おおかわ ようへい):株式会社AVILEN 取締役、一般社団法人データサイエンティスト協会 スキル定義委員。 ●大黒 健一(だいこく けんいち):株式会社日立アカデミー 事業戦略本部戦略企画部部長、一般社団法人データサイエンティスト協会 学生部会副部会長、博士(農学)。 ●森谷 和弘(もりや かずひろ):データ解析設計事務所 代表、データアナリティクスラボ株式会社 取締役CTO、一般社団法人データサイエンティスト協会 スキル定義委員。 ●參木 裕之(みつぎ ひろゆき):株式会社大和総研 フロンティア研究開発センター データドリブンサイエンス部、チーフグレード/主任データサイエンティスト、一般社団法人データサイエンティスト協会 スキル定義委員。 ●北川 淳一郎(きたがわ じゅんいちろう):LINEヤフー株式会社、一般社団法人データサイエンティスト協会 スキル定義委員。 ●守谷 昌久(もりや まさひさ):日本アイ・ビー・エム株式会社 シニアアーキテクト、一般社団法人データサイエンティスト協会 スキル定義委員。 ●山之下 拓仁(やまのした たくひと):一般社団法人データサイエンティスト協会 スキル定義委員。 ●苅部 直知(かりべ なおと):一般社団法人データサイエンティスト協会 スキル定義委員、LINEヤフー株式会社。 ●孝忠 大輔(こうちゅう だいすけ):日本電気株式会社 アナリティクスコンサルティング統括部長、一般社団法人データサイエンティスト協会 スキル定義委員。 ●福本 信吾(ふくもと しんご):一般社団法人データサイエンティスト協会 スキル定義委員。
-
5.0データ×AI領域のキャリア設計を徹底解説! 自分に合った道筋と戦略がわかる ビッグデータや人工知能の活用が本格化されつつある現代、 データ×AIの領域で活躍できる人材が、様々な業界で求められています。 本書は、そんなデータ×AI人材への就職・転職を目指す方に向けて、 職種やプロジェクトごとの具体的な仕事内容、 求められるスキルなどを、網羅的に解説した書籍です。 【本書で扱う職種】 ・データサイエンティスト ・データエンジニア ・機械学習エンジニア ・データアナリスト ・BIエンジニア 【本書で扱うプロジェクト】 ・機械学習システム構築プロジェクト ・データ分析プロジェクト ・データ可視化・BI構築プロジェクト 本書を読めば、ファーストキャリアを獲得するために取るべきアクション、 自分の市場価値を高めてキャリアアップするための戦略がわかります。 これからデータ×AI領域で活躍したい方、 どのようなキャリアを描いていけばいいのか知りたい方にお薦めの一冊です。 【目次】 ■第1部 データ×AI業界の全体像 第1章 データ×AIによる社会の変革 第2章 データ×AI活用に関する基礎知識 ■第2部 データ×AIプロジェクトの全体像と各職種の果たす役割 第3章 データ×AIプロジェクトの種類と概要 第4章 機械学習システム構築プロジェクト 第5章 データ分析プロジェクト 第6章 データ可視化・BI構築プロジェクト ■第3部 データ×AI人材になるために必要なこと 第7章 データ×AI人材になるためのロードマップ 第8章 データ×AI人材としての転職を決めるポートフォリオ(概要編) 第9章 データ×AI人材としての転職を決めるポートフォリオ(作成編) 第10章 10年後を見据えたキャリア設計 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データサイエンス・AIを学ぶ前に読んでおきたい教科書 前版発行後のソフトウェア周りの進展にあわせて内容を見直すとともに今後重要度が増していくであろうデータサイエンス、AI寄りのテクニカルな内容を増強して改訂するものです。情報科学を扱ううえでの基本的なリテラシーやコンピュータサイエンスの基礎、Word、PowerPoint、Excelの操作の基本、Excelによる統計処理の基礎などを文理問わず学部学部生にわかりやすく解説する教科書です。 1章 情報社会とビジネス 1.1 情報社会とは 1.2 プライバシーと個人情報 1.3 ユビキタス社会 1.4 IoT 1.5 Web2.0 1.6 人工知能 1.7 人工知能の応用 2章 コンピュータネットワーク 2.1 コンピュータネットワークとは 2.2 ネットワークの形態 2.3 ネットワークの構成 2.4 インターネット 2.5 有線接続手段 2.6 無線接続手段 2.7 プロトコル 2.8 ネットワークセキュリティ 2.9 パーソナルセキュリティ 2.10 暗号化 3章 コンピュータシステム(ハードウェア) 3.1 コンピュータの歴史 3.2 コンピュータの種類 3.3 コンピュータの機能 3.4 コンピュータの構成要素 3.5 パソコンの内部構成 3.6 記憶装置 3.7 演算装置 4章 コンピュータの動作原理 4.1 演算処理の原理 4.2 論理素子の歴史 4.3 論理素子の動作原理 4.4 論理回路 4.5 基 数 4.6 2進数と10進数の変換 4.7 桁数の多い足し算 4.8 引き算 4.9 掛け算・割り算 4.10 数学関数 5章 情報量 5.1 ディジタルとアナログ 5.2 情報量 5.3 情報量の単位 5.4 英文字の情報量 5.5 日本語の情報量 5.6 文字コード 5.7 音声の情報量 5.8 静止画像の情報量 5.9 動画像の情報量 5.10 通信の情報量 5.11 情報圧縮 5.12 誤り検出・訂正 6章 ソフトウェア 6.1 オペレーティングシステム(OS) 6.1.1 オペレーティングシステムとは 6.1.2 OSの種類 6.1.3 OSの機能 6.2 プログラム 6.2.1 プログラミング言語とは 6.2.2 プログラムの内部動作 6.2.3 高級言語の基本処理 6.3 データベース 6.3.1 データベース理論 6.3.2 データベースの表現法 6.3.3 関係的表現のデータ操作 7章 人工知能のアルゴリズム 7.1 学 習 7.2 教師あり学習の代表的な手法 7.3 教師なし学習の代表的な手法 7.4 深層学習 7.5 手法の評価 8章 メディアリテラシー 8.1 メディアの定義 8.2 メディアリテラシーの必要性 8.3 メール 8.4 Twitter 8.5 Facebook 8.6 LINE 8.7 Instagram 9章 ビジネス文書の基礎(Word) 9.1 画面構成 9.2 文書全体の設定 9.3 文章の編集と保存/印刷 9.4 表の作成 9.5 オブジェクトの配置 10章 ビジネスプレゼンの基礎(Power Point) 10.1 画面構成 10.2 スライドのデザイン 10.3 画面切り替え効果 10.4 アニメーション 10.5 リハーサル 10.6 スライドショーの実行 11章 データ処理の実践 11.1 Excel操作の基本 11.2 グラフ作成 11.2.1 折れ線グラフ 11.2.2 複合グラフ 11.3 数式の計算 11.3.1 複利計算 11.3.2 損益分岐点 11.3.3 共有地の悲劇 11.4 帳票の作成 11.4.1 見積書 11.4.2 確定申告書 11.5 データ集計 11.5.1 データの分類 11.5.2 フィルター 11.5.3 検索表 11.5.4 データベース関数 11.5.5 クロス集計 11.6 統計処理 11.6.1 ヒストグラム 11.6.2 偏差値 11.6.3 相関分析 11.6.4 t検定 11.6.5 カイ2乗検定 索 引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 マーケティングプロジェクトを成功に導く分析プロセスがサクッと学べる! ビジネスの現場では多くのデータやAIの活用に関する取り組みが行われています。このようなプロジェクトが増える一方で、思うような結果が得られずにプロジェクトを中止せざるを得なかったとの声も聞こえてきます。 そこで本書では、正しく的確にAIを活用したデータ分析を導入できるよう、具体的な活用シーンに示しながら、「要件定義」「分析マスターデータ作成」「基礎集計・可視化」「モデリング」「評価・実装」の分析プロセスにおける知識やテクニックを丁寧に解説します。 Part 1 プロセスの一般論 Part 2 顧客データ × クラスタリング分析モデル Part 3 広告効果データ × 重回帰分析モデル Part 4 キャンペーンデータ × ロジスティック回帰分析モデル Part 5 調査データ × コレスポンデンス分析モデル Part 6 Eコマースデータ × 協調フィルタリング分析モデル Appendix AI開発の成功パターン(EDA)と失敗パターン(LISA)
-
3.7AI活用がもたらす医療技術の変革! AI技術は病理学や医用工学、解剖学、神経科学、細胞生物学、 脳神経外科や内科学、眼科学、放射線医学、手術医学など、 基礎医学から臨床医学まで幅広い領域に浸透し始めています。 しかし、データの量や用途に応じて技術のラインナップの中から 適切な武器を選ぶ必要があるため、正しく活用するのは一苦労です。 さらにAIを医療機器としてリリースするためには、 資金調達、人材戦略、知財戦略などに抜かりがあってはいけません。 本書では、最新の事例、技術、法律と行政の取組みについて解説しており、 国内において医療AIをより活用できる1冊となっています。 【本書の概要】 ・AIと医療に関わる昨今の社会状況やAIの医療応用に関する法律を解説 ・AIが医療にどのように貢献しているかを、実際に事業化されている事例を中心に紹介 ・医療関連の画像を扱う技術や、電子カルテなど医療関連の自然言語や数値などの系列データを扱う技術など、 開発に必要な技術を紹介 ・医療AIの開発に使われる有名な公開データと提供元をリストアップし、データを扱う心構え、 標準的な開発の流れまで踏み込む ・医師かつ起業家の視点から、医療AIの事業化において役立つ情報が満載 ・韓国の医療AIベンチャーであるVUNO社とのインタビューと、日本が学ぶべき事柄を考察 【本書の読者層】 ・医療AIの開発に携わるエンジニア ・基礎知識として医療AIの基本事項を押さえておきたいエンジニア ・医療AIハード・ソフトウエアメーカやベンダーの企画、営業担当 ・医師 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.8世界最大のデータ分析コンペサイト Kaggle(カグル)に挑戦して データ分析の基礎知識を身に付けよう! 【本書の概要】 本書はこれからデータ分析をはじめたいと思っている方や、 Kaggleに興味のあるデータ分析の初心者に向けて、 Pythonの実際のコードとともに丁寧に解説した書籍です。 データ分析で必要な一般的な知識とともに、 Kaggleへチャレンジするフローや、 Kaggleの初心者向けコンペへの取り組み方を紹介します。 データ分析や機械学習の一端に触れ、 実際に課題を解決するプロセスを体感できます。 【本書の対象読者】 ・データサイエンティストを目指す学生 ・データ分析に興味はあるが、あまり経験や知見がないデータ分析の初学者の方 【本書のポイント】 Kaggleの初心者向けチュートリアル「Titanicコンペ」「House Pricesコンペ」について、 分析の準備から結果の考察、そして精度を上げるプロセスを ステップバイステップでコードとともに、わかりやすく解説しています。 【本書より扱うコンペの特徴:本書より抜粋】 ・Titanicコンペの特徴 乗客ごとに性別や年齢、乗船チケットクラスなどのデータが、 生存したか死亡したかのフラグとともに与えられています。 生死に影響する属性の傾向をデータから分析して、 生死がわからない(予測用に隠されている)乗客について、 生死結果を予測することが目的です。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 現代的な「情報リテラシー」と「情報技術」の基本が身に付く。 これまでの「理工系情報学科の入門書」としての基礎知識は踏まえた上で、「Python」の紹介、「人工知能(AI)」「ビッグデータの解析」等の基礎概念を加え、高度情報化社会に求められる人材育成に向けた「コンピュータ概論」の入門書。 コンピュータの原理から、基礎となる理論、「n進数」等の情報数理、ネットワーク技術、AI、ビッグデータ処理の基本までをコンパクトにまとめ、わかりやすく解説(各章末に練習問題掲載)。 1章 コンピュータの原理 2章 情報の基礎理論 3章 ハードウェア構成 4章 ソフトウェア構成 5章 コンピュータシステムと情報セキュリティ 6章 知識情報処理 7章 人工知能 8章 ビッグデータ 9章 マネジメント 練習問題/付録/参考文献/練習問題略解/索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 習熟者の勘とデータにより正確な見積り計算を行う。 ソフトウェア開発現場の熟練者は、これまでの経験からソフトウェア規模を推定し必要な工数を「勘」を働かせて調整します。例えば、今回のプロジェクトは「開発 期間の制約が厳しい」、「信頼性要求のレベルが高い」、「要件がかなりあいまいだ」、といった状況を念頭において工数を予測します。ただし、勘も完璧ではありません。過去の実績データを使って「勘」の確からしさを評価する必要があります。 CoBRA法は、このベテランの勘と過去の実績データとを相互補完させること で、信頼できる工数見積りモデルを構築する手法です。容易に取り組め、精度が高い特徴があります。ソフトウェア工数見積りの世界のKKDのDを「データ」に置き換え、「勘(K)」、「経験(K)」に科学的アプローチを導入するものです。 また、 ・国立情報学研究所の教育プログラム「トップエスイー」 ・情報処理推進機構SECセミナー にもCoBRA法は取り上げられており、実用的・合理的な見積り手法です。 第1章 本書の読み方 第2章 やってみよう工数見積り -30分で工数見積り- 第3章 CoBRA見積りモデルでできること 第4章 CoBRA法とは 第5章 CoBRA見積りモデルの構築手順詳細 第6章 CoBRA見積りモデルの保守 第7章 構築・活用ベストプラクティス
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 人工知能研究における諸分野を、C 言語による具体的な処理手続きやプログラム例によりやさしく解説する!! 強化学習は、一連の行動の結果だけから行動知識を学習する手法です。 本書では、この強化学習と深層学習の基礎を紹介した上で、深層強化学習のしくみを具体的に説明します。単に概念を説明するだけでなく、アルゴリズムを実際にC言語のプログラムとして実装することで、実際にプログラムを動かすことで具体的な処理方法の理解を深めます。 主要目次 第1章 強化学習と深層学習 第2章 強化学習の実装 第3章 深層学習の技術 第4章 深層強化学習
-
3.0「神の一手」の謎にせまる! 【概要】 2017年5月にAlphaGoと柯潔(カ・ケツ)九段の最終決戦が行われ、 AlphaGoの3連勝となりました。AlphaGoは今回の対戦で さらに進化をとげました。 このようにAIの技術進化は日進月歩で進んでおり、国内でも 企業で研究開発が進んでいます。中でも目されているのは、 機械学習・深層学習・強化学習です。 本書はネイチャーで提供されているAlphaGoに関する 難解な学術論文を著者のほうで読み解き、「AlphaGo」で 利用されている深層学習や強化学習、モンテカルロ木探索の 仕組みについて、実際の囲碁の画面も参照しながら、 わかりやすく解説した書籍です。 本書を読むことで、最新のAIに深層学習、強化学習、 モンテカルロ木探索がどのように利用されているかを 知ることができ、実際の研究開発の参考にすることができます。 【読者対象】 ・人工知能関連の開発に携わる開発者、研究者 ・ゲームAI開発者 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。検索やハイライト等の機能が使用できません。 初心者でもPythonを用いて機械学習が実装できる! 本書は、今後ますますの発展が予想される人工知能の技術のうち機械学習について、入門的知識から実践まで、できるだけ平易に解説する書籍です。「解説だけ読んでもいまひとつピンとこない」人に向け、プログラミングが容易なPythonにより実際に自分でシステムを作成することで、そのエッセンスを実践的に身につけていきます。 また、読者が段階的に理解できるよう、「導入編」「基礎編」「実践編」の三部構成となっており、特に「実践編」ではシステム計画研究所が展示会「Deep Learning実践」で実際に展示した「手形状判別」を実装します。 詳細目次 第1部 導入編 第1章 はじめに 1.1 機械学習とは 1.2 Python と機械学習 1.3 インストール&セットアップ 1.4 Python 早分かり ― NumPy とmatplotlib 1.5 クイックツアー 小話 深層学習って何だ? 第2 章 機械学習の様々な側面 33 2.1 機械学習をとりまく環境.. 33 2.2 関連分野. 34 2.3 学習法による分類. 35 2.4 手法や課題設定による分類. 36 2.5 応用例. 37 第2部 基礎編 第3章 分類問題 3.1 分類問題とは 3.2 最初の分類器 3.3 学習データとテストデータ ミニ知識 色々な用語 ―学習・訓練・教師 vs テスト・評価・バリデート・検証 ミニ知識 k- 分割交差検証 3.4 分類器の性能を評価しよう ミニ知識 正答率(Accuracy)と適合率(Precision) ミニ知識 色々な平均.調和平均・算術平均・幾何平均 3.5 色々な分類器 3.6 まとめ 第4章 回帰問題 4.1 回帰問題とその分類 4.2 最初の回帰 ― 最小二乗法と評価方法 4.3 機械学習における鬼門 ― 過学習 4.4 過学習への対応 ― 罰則付き回帰 4.5 様々な回帰モデル 4.6 まとめ 第5章 クラスタリング 5.1 iris データセット ミニ知識 フィッシャーのあやめ 5.2 代表的なクラスタリング手法 ― k-means 5.3 その他のクラスタリング手法 5.4 まとめ 第3部 実戦編 第6章 画像による手形状分類 6.1 課題の設定 6.2 最初の学習 6.3 汎化性能を求めて ― 人を増やしてみる 6.4 さらに人数を増やしてみる ミニ知識 学習データに含める人数について 6.5 データの精査と洗浄 ― データクレンジング 6.6 特徴量の導入 6.7 パラメータチューニング 6.8 まとめ 第7章 センサデータによる回帰問題 7.1 はじめに 7.2 準備 7.3 センサデータの概要 7.4 データの読み込み 7.5 高松の気温データと四国電力の消費量 7.6 もっと色々、そしてまとめ 7.7 終わりに 第4部 付録 付録A Python で作る機械学習 A.1 この付録の目的 A.2 最小二乗法 A.3 行列計算による解析解の導出 A.4 反復法 A.5 コードを書く前に A.6 実装例 付録B 線形代数のおさらいと代表的な非線形モデル B.1 この付録の目的 B.2 そもそも「線形」とは B.3 線形変換とアフィン変換 B.4 ノルムと罰則項 B.5 線形回帰の最小二乗解を考える B.6 機械学習における「非線形」
-
-
-
-AI開発に必要な数学の基礎知識がこれ1冊でわかる! 【本書の目的】 本書は以下のような対象読者に向けて、 線形代数、確率、統計/微分 といった数学の基礎知識をわかりやすく解説した書籍です。 【対象読者】 • 数学がAIや機械学習を勉強する際の障壁になっている方 • AIをビジネスで扱う必要に迫られた方 • 数学を改めて学び直したい方 • 文系の方、非エンジニアの方で数学の知識に自信のない方 • コードを書きながら数学を学びたい方 【目次】 序章 イントロダクション 第1章 学習の準備をしよう 第2章 Pythonの基礎 第3章 数学の基礎 第4章 線形代数 第5章 微分 第6章 確率・統計 第7章 数学を機械学習で実践 Appendix さらに学びたい方のために ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-数学の基礎知識とPythonコードを紐づけて機械学習の基本を学べる! 【本書の目的】 現在、人工知能関連のプロダクト・サービスが数多く見受けられるようになりました。 人工知能関連の開発に機械学習の基礎知識は必須です。 本書はそうした機械学習の基礎知識を学びたいエンジニアに向けた書籍です。 【本書の特徴】 本書は機械学習の基本について、数学の知識をもとに、 実際にPythonでプログラムしながら学ぶことができる書籍です。 ・最新のPython 3.7に対応 ・学習内容を「要点整理」で復習 ・数式とコードをつなげたわかりやすい解説 【読者が得られること】 本書を読み終えた後には、機械学習のしくみとプログラミング手法を理解できます。 【対象読者】 機械学習の基礎を学びたい理工学生・エンジニア 【目次】 第1章 機械学習の準備 第2章 Pythonの基本 第3章 グラフの描画 第4章 機械学習に必要な数学の基本 第5章 教師あり学習:回帰 第6章 教師あり学習:分類 第7章 ニューラルネットワーク・ディープラーニング 第8章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 第9章 教師なし学習 第10章 要点のまとめ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「ディープラーニングをライブラリで実装できるけれど、よく意味が分かっていない」 「ディープラーニングの背景にある数式を理解して、何が行われているか知っておきたい」 本書はそんな人のための本です。 勉強中のプログラマ「アヤノ」と、友達の「ミオ」の会話を通じて、ディープラーニングでどんなふうに入力値から出力値までの計算がされているのか、楽しく学んでいきます。 ※本書は『やさしく学ぶ 機械学習を理解するための数学のきほん』の続刊となりますが、前作を読んでいない人でも問題なく読むことができます。 本書では、 ・ニューラルネットワークでは何ができるのか ・単層のパーセプトロンではどのような計算が行われているのか ・パーセプトロンではどうやって問題を解いているのか ・パーセプトロンにはどんな欠点があるのか などの基本的な部分から解説を始めます。 パーセプトロンが理解できたら、続いて多層のニューラルネットワークについて学んでいきます。 ・ニューラルネットワークではどうやって問題を解いているのか ・問題を正しく解くためのパラメーターはどうやって学習しているのか といったことについて、1つずつ数式を理解して、時には具体的な数値を当てはめて実際に計算しながら理解していきます。 ニューラルネットワークが理解できたら、いよいよ画像の分類などに向いている「畳み込みニューラルネットワーク」について学習を進めます。 何をやっているのか、図解と数式で確認しつつ学習し、どのようにして「畳み込みニューラルネットワーク」が分類のタスクを行っているのか丁寧に解説します。
-
-【本書について】 本書は、 杜世橋氏がKindle Direct Publishingを利用してKindleストアで販売している 『PyTorchで学ぶニューラルネットワークと深層学習』(ASIN: B078WK5CPK)を書籍化したものです。 書籍化にあたり、最新(2018年7月時点)のPyTorch v0.4に対応するなど大幅に加筆しています。 また、付録に無料で利用できるGPU環境である「Colaboratory」の利用方法の追加などを行っており、 GPU環境が利用できない読者でも様々なニューラルネットワークのモデル学習が体験できるようになっています。 【PyTorch(パイトーチ)とは】 PyTorchは主にFacebook社のメンバーが開発しているOSSの深層学習フレームワークです。 特徴としては動的ネットワーク方式を採用していてPythonの関数と同じ感覚でニューラルネットワークを構築できる点が挙げられます。 【本書の概要】 本書はPyTorchの基本から深層学習モデルの作成、そしてアプリケーション作成まで網羅した書籍です。 具体的には、PyTorchの基本から始まり、最尤推定と線形モデル、多層パーセプトロンについて解説します。 その後、画像処理と畳み込みニューラルネット、自然言語処理と再帰型ニューラルネットを扱います。 また、推薦システムやWebAPIの作成、アプリケーションのデプロイについても解説します。 さらに付録では、TensorBoardによる可視化、Colaboratoryの利用方法などを解説しています。 【対象読者】 深層学習エンジニア、機械学習エンジニア ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.5【本書の特徴】 2015年11月にGoogleがオープンソース化したソフトウェアライブラリ「TensorFlow(テンソルフロー)」は、 多くの開発者に支持され、多企業で採用されています。 本書は、TensorFlowの導入から、高レベルAPIであるKerasを利用した実践的な深層学習モデルまで解説した、 エンジニア向けの入門書です。第1部の基本編では、深層学習とTensorFlow、Kerasの基礎について解説し、 第2部の応用編では画像処理における応用的なモデルのKerasを使った実装方法を解説します。 特に、第2部では、「ノイズ除去」「自動着色」「超解像」「画風変換」「画像生成」を取り上げています。 TensorFlowやKerasの機能面を押さえつつ、現場で使用できるような実践的な深層学習モデルまでフォローしています。 【対象読者】 深層学習に入門したいエンジニア 【目次】 第1部 基本編 第1章 機械学習ライブラリTensorFlowとKeras 第2章 開発環境を構築する 第3章 簡単なサンプルで学ぶTensorFlowの基本 第4章 ニューラルネットワークとKeras 第5章 KerasによるCNNの実装 第6章 学習済みモデルの活用 第7章 よく使うKerasの機能 第2部 応用編 第8章 CAEを使ったノイズ除去 第9章 自動着色 第10章 超解像 第11章 画風変換 第12章 画像生成 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、ディープラーニングの代表とも言える「畳み込みニューラルネットワーク(CNN)」を例として、その仕組みを根本から理解すること、そして、TensorFlowを用いて実際に動作するコードを動かしながら学べる書籍です。 ディープラーニングについて解説する書籍は多数発行されていますが、本書では、「きちんとニューラルネットワークの原理から理解すること」と、「その原理をどのようにコードとして書くか」の両方がバランスよく学べます。 表面的にコードを覚えるだけでは、応用力は身に付きません。本書で根本から理解しておくことで、現場に出てからも長く使える基礎力を身に付けましょう! ※本書では、プログラムの実行環境としてGoogle Colaboratoryを利用するため、面倒な環境構築は不要です。 ※本書は、2016/9発行の『TensorFlowで学ぶディープラーニング入門』をもとに、Python3系、TensorFlow 2.0ベースに書き換えたほか、全体的に解説を見直し、修正しています。そのほか、実行環境をGoogle Colaboratoryに変更、オートエンコーダーによるアノマリー検知やDCGAN による画像生成などのトピックを追加しています。
-
-
-
-進化の速いAIはここを押さえる 製造業の業務活用のための人工知能講義 業務改革、DX推進部門、IT部門、生産技術部門、経営層の悩みに応える 製造業が人工知能(AI)を業務で活用するために、押さえておくべき「本質」を講義形式(読み物)でまとめました。AIは業務の生産性や付加価値の向上に非常に役立つ技術です。ところが、技術の進化が極めて速いため、多くのビジネスパーソンにとって理解が追い付かず、「どうやって使いこなせばよいのか、よく分からない」という現実があります。こうしたビジネスパーソン、中でも企業の業務改革やDX、AI、IT推進部、生産技術部の社員や管理者、経営者の悩みに応えるために、業務活用を進める上で押さえるべきAIのポイントを伝授し、変化に対応してAIを学ぶ際の「見取り図」を描くためのガイドを提供します。 筆者は、名だたる日本の大手企業からAI活用に関する研修のオファーを受け続けている速水悟教授。AIをどのように学べば実務において活用できるかについて、AIの専門知識を持たない人でも理解できます。
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Wolfram|Alpha,Python,R,Mathematicaをフル活用して,大学教養レベルの統計,微分積分,線形代数の全体像を把握する.学び直しにも最適な一冊. コンピュータ(Wolfram|Alpha,Python,R,Mathematica)を活用して,数学の学びの質を高めましょう. 本書の具体的な目標は,線形回帰分析を理解することです.そのために必要な微分積分と線形代数も学びます.微分積分は多変数の微分積分まで,線形代数は特異値分解までです.これで,大学教養レベルの数学はほぼ網羅できます. すべてが線形回帰分析につながるので,何の役に立つのかと疑うことはありません.面倒な計算はコンピュータにまかせるので,計算に迷い込んでしまうこともありません. 線形回帰分析はデータサイエンス(人工知能・機械学習)の出発点です.本書を読んで,データサイエンスにおいて必要とされる数学力とプログラミング力を身に付けましょう. 大学教養レベルの数学の全体像の把握,学び直しにも最適な一冊です. コードは全てウェブで公開されます. 第I部 入門 第1章 実行環境 第2章 数と変数 第3章 データ構造 第4章 可視化と方程式 第5章 論理式 第II部 統計 第6章 1次元のデータ 第7章 2次元のデータ 第8章 確率変数と確率分布 第9章 多次元の確率分布 第10章 推測統計 第11章 線形回帰分析 第III部 微分積分 第12章 関数の極限と連続性 第13章 微分 第14章 積分 第15章 多変数関数の微分積分 第IV部 線形代数 第16章 ベクトル 第17章 行列 第18章 ベクトル空間 第19章 固有値と固有ベクトル 第20章 特異値分解と擬似逆行列