情報科学作品一覧
-
-第一線の人工知能研究者が見通す、近未来の「人と人工知能」の協働シナリオとは? 人工知能が急速に能力を高めているなか、 近い将来、シンギュラリティは本当にやってくるのだろうか。 それはいつごろなのか。 人間の価値観を揺るがすような、パラダイムシフトは起こるのだろうか。 そのとき、労働はどう変わる? 教育は? 芸術はどうなる? 富の偏在はどうなる? 著者は、俳句を生成する人工知能「AI一茶くん」を開発した人工知能研究者。 研究者から見たGhatGPT出現の意味とは。 GhatGPTなどの大規模言語モデルの仕組みから、 近未来の社会変容までを平易に解説。 【目次】 序 章 六十七年の時を経て 第一章 人工知能は自ら学習する――脳の仕組みとディープラーニング 第二章 本能と知能と、生と死と――「知能」と「人工知能」の違い 第三章 ChatGPTで見えた次のフェーズ――人工知能研究の現在地と近未来 第四章 人工知能との「協働」シナリオ――「強い人工知能」と「弱い人工知能」 第五章 新たな価値の出現と富の再配分――人工知能時代のパラダイムシフト 第六章 人工知能が人工知能を開発する日――研究の最前線と課題 第七章 代替される「知能」、代替されない「芸術」――人間に残される仕事は何か 第八章 一変する「教育」の風景――人工知能時代に必要な自発的「学び」 終 章 人間とも人工知能とも「仲良く」する力 【著者】 川村秀憲 1973年、北海道に生まれる。小学生時代からプログラムを書きはじめ、人工知能に興味を抱くようになる。同研究院で調和系工学研究室を主宰し、2017年9月より「AI一茶くん」の開発をスタートさせる。ニューラルネットワーク、ディープラーニング、機械学習、ロボティクスなどの研究を続けながらベンチャー企業との連携も積極的に進めている。
-
-■その仕事、ChatGPTに任せて時短しませんか? 本書は便利さにハマって「ChatGPT」を500時間以上使い込んだ著者が、仕事に本当に役立ち、時短につながるChatGPTと画像生成AIの使いこなし術を基本から応用まで指南します。ChatGPTだけでなく、画像生成AIについてもとても簡単で、ビジネスにすぐ使えるテクニックを解説しています。 「AIは難しそうで……」と、躊躇してきた人にこそ、この本をお薦めします。リスクを避ける心得や使いこなしのコツ、セットアップなど初歩の初歩から丁寧に説明しています。 ■面倒な顧客への謝罪メール、商談相手に送る英文の催促メール、営業日報や出張報告、社内会議の資料作り……。面倒な仕事はぜんぶ、ChatGPTに任せましょう 目的別に整理して、使いこなし術を23の基本技と12の応用技に絞り込みました。課題のリストアップ、資料の要約、文章の添削、メールの代筆、日報や報告書の作成、エクセルの上手な使い方を探す方法などなど、すべてをChatGPTで自動化する方法を解説します。 無数のプロンプトを羅列するのではなく、なぜそのプロンプトになるのか、どう考えて作ったのか、作り方から丁寧に説明しました。真似してやってみて納得し、ご自分でその技を応用していくことができます。 使わない理由を探すことはやめて、まずは使ってみましょう。本書では、すぐにビジネスで使えるプロンプトをたくさん紹介しています。まずは、まねして入力するところからチャレンジしてください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 マイナンバー法が求める個人情報影響評価の手法が分かる 2013年に成立した行政手続番号法(通称マイナンバー法)は、2016年1月から運用が開始され、行政機関に提出する税や社会保険などに関する書類への番号記載が必要となる。同法は大変重要な個人情報を扱うため、違反者には厳罰が用意されている。 そのマイナンバー法が、個人情報を適正に運用するために義務づけたものが「個人情報影響評価」である。本書はプライバシーバイデザインと個人情報影響評価の考え方を示し、実践例や評価書のサンプルを提示して具体的なスキルが身につくよう工夫してある。 同法に直接携わる行政機関、ソフトウェア会社、または民間においても従業員の「個人番号」、個人支払先等の「個人番号」を取扱う担当部門には必携の書である。
-
3.2人工知能が俳句を詠む日はいつ訪れるのか。現在の人工知能はどこまでできて、できないのかを、俳句を詠むAIの開発を通して迫る! 突然ですが、 見送りのうしろや寂し秋の風 病む人のうしろ姿や秋の風 このふたつの俳句が松尾芭蕉と人工知能のどちらの作品かわかるでしょうか。 本書は、現在も精力的に研究の進む人工知能について、俳句の生成という視点から現在の研究・開発動向を解説するものです。コンピュータを用いた俳句の自動生成は1968年のCybernetic Serendipityというコンピュータアートの展覧会に端を発し、近年では小説を生成する「きまぐれ人工知能プロジェクト 作家ですのよ」などとともに、人工知能による文学生成研究のひとつとして進められています。俳句という身近でわかりやすいテーマであるため、TVや新聞などのメディアでも取り上げられるなど、人工知能による俳句生成は現在注目が集まっています。 本書では、実際に俳句を生成する人工知能である「AI一茶くん」を研究・開発している著者らが、現在の人工知能技術の動向から創作分野における人工知能の展開、俳句をどのように人工知能に解釈させ、生成するのかを具体的に解説します。そして「AI一茶くん」の活動の紹介を通して、現在の人工知能がどこまで達成し、なにができていないのかまで見ていきます。 人工知能がどんなことをできるのか気になる方、とくに人工知能の創造性について興味のある方にピッタリの1冊となっています。もちろん人工知能がどんな俳句を生成するのかが気になる俳句好きの方にもわかりやすく、ていねいに解説しています。 第1章 人工知能が俳句を詠む日 第2章 人工知能の歴史と未来 第3章 人工知能を実現する技術 第4章 人工知能と創作 第5章 俳句の人工知能的解釈 第6章 俳句を生成する人工知能、AI一茶くんの仕組み 第7章 AI一茶くんの活動 第8章 人工知能と俳句の未来 付録 AI俳句百句選
-
4.8※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 1979年に発行された『ソフトウェア・テストの技法』は、「作ったソフトウェアが意図した通りに動き、意図していないことはしないようにするにはどうしたらよいか」という、もっとも根本的な問題を扱っており、四半世紀にわたって読み継がれる、この分野の古典となっている。 第2版では、インターネット時代に合ったソフトウェアの品質を確保するため、第8章を全面的に書き換え、第9章と付録を新たに追加した。
-
-「野生の研究者」「弱いロボット開発者」「科学者を描く漫画家」― “リケイ”の仕事にかかわる専門家たちの発想法に迫るインタビュー集。 さまざまな分野から、研究者、技術者、プログラマー、小説家、漫画家、 メディアアーティストの12人が登場。 理系文系の壁、社会科学や人文科学といったジャンルの定義を 軽やかに乗り越えて活躍する彼らは、何をよりどころに その活動を行なっているのか?数理的な知のあり方を探ります。 【目次】 第1章 書く、描く、物語る ・〈物語〉から遠く離れて―高野文子 ・自己出版作家が抱く、〈ラボ〉への大志―藤井太洋 ・数学をめぐる〈対話〉を物語にする―結城浩 第2章 技術をデザインする ・〈野生の研究者〉を可視化する―江渡浩一郎 ・〈UI〉の新たなイディオムを探して―増井俊之 ・コミュニティが〈アーカイブ〉をアップデートする―渡邉英徳 第3章 本と、デジタル ・〈連想検索〉の世界へようこそ―高野明彦 ・図書館を〈オープンソース〉で開発するー河村奨/地藏真作 第4章 科学者たち ・〈弱いロボット〉が切り開くあたらしい人間関係―岡田美智男 ・セミとモンシロチョウが教えてくれた〈進化〉の真実―吉村仁 ・〈目に見えないもの〉から銀河の地図を作る―本間稀樹 あとがき ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 LinkedDataは、構造をもったデータを適切に公開・共有するための新しいWeb技術である。 本書は、このLinked Dataを包括的に解説する日本初の書籍である。内容は、最先端の技術情報をまことに分かりやすく簡潔に述べており、NII(国立情報学研究所)を中心とした我が国の精鋭研究者が翻訳に当たった。
-
-
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 情報利活用」は、15コマ20時間でアプリケーションの利活用スキルをマスターするシリーズです。本書は、Office 2019の基本的な機能と操作方法を解説しています(Office 2016でもほぼ問題なく本書で学習できます)。 作成する機会の多い文書の作成方法、プレゼンテーションに必要なテクニック、集計表やグラフの作成方法などをひととおりマスターできます。また、Windowsの基本的な操作方法も解説しています。 各レッスンの最後および巻末に、習熟度がわかる練習問題があります。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆数学が苦手な文系学生でもデータサイエンスが無理なく学べる!◆ 政府による「AI戦略2019」では,文理を問わず,すべての大学・高専生(約50万人卒/年)が正規課程でリテラシーレベルの数理・データサイエンス・AIを修得することを目標としました。そして各大学・高専で参照可能な「数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム」が策定されました(2020年4月版)。このモデルカリキュラムが2024年2月に改訂されました。 本書は「数理・データサイエンス・AI(リテラシーレベル)」通称MDASHに準拠した教科書です。2024年2月改訂のMDASHに対応しています。章構成は,モデルカリキュラムの「導入」「基礎」「心得」に沿った内容となっています。 一部の私立文系の大学では,中学数学すら修めていない学生が多く,コンピュータリテラシーも低い傾向にあります。本書は,そういった私立文系学生でも無理なく学べるよう,やさしく解説しています。Excelの基本的な操作を学習したあと,与えられたデータをもとに「データを読み,データを説明し,データを扱う」ことを,実際に動かしながら理解します。このデータ分析の演習を通して,データサイエンスを体験できます。 本書で「リテラシーレベルのモデルカリキュラムを網羅できる」ため,教科書として採用しやすい内容となっています。講義とExcel実習をバランスよくおりまぜた半期1コマ15回の授業計画のモデルケースを紹介しており,コンピュータリテラシー担当教員がすぐに数理・データサイエンス・AIのリテラシー授業を始めることができます。 ■こんな方におすすめ ・基礎的な「数理・データサイエンス・AI リテラシーモデルカリキュラム」の授業を考えている先生。履修する学生。モデルカリキュラムで学びたい社会人 ■目次 第1章[導入] 社会におけるデータ・AI利活用 1-1 社会で起きている変化 1-2 社会で活用されているデータ 1-3 データ・AI の活用領域 1-4 データ・AI利活用のための技術 1-5 データ・AI利活用の現場 1-6 データ・AI利活用の最新動向 第2章[基礎] データリテラシー 2-1 Excelの基本的な操作方法 2-2 時系列データの可視化 2-3 平均の算出とその可視化 2-4 標準偏差の算出とその可視化 2-5 大量のデータを扱う方法 2-6 基本統計量の算出と箱ひげ図 2-7 度数分布表とヒストグラムの作成 2-8 散布図の作成と相関係数の算出 2-9 定性データの扱い方とクロス集計 第3章[心得] データ・AI利活用における留意事項 3-1 データ・AIを扱う上での留意事項 3-2 データを守る上での留意事項 ■著者プロフィール 吉岡剛志(よしおかつよし):早稲田大学大学院 先進理工学研究科 博士後期課程修了(ナノ理工学専攻),博士(工学)。早稲田大学助手,早稲田大学助教,高輝度光科学研究センター博士研究員等を経て,現在,帝京平成大学 人文社会学部 経営学科 経営情報コース 准教授。 森倉悠介(もりくらゆうすけ):早稲田大学大学院 基幹理工学研究科 博士後期課程修了(数学応用数理専攻),博士(工学)。早稲田大学助教等を経て,現在,帝京平成大学 人文社会学部 経営学科 経営情報コース 講師。 小林領(こばやしりょう):早稲田大学大学院 基幹理工学研究科 博士後期課程修了(数学応用数理専攻),博士(工学)。早稲田大学講師等を経て,現在,帝京平成大学 人文社会学部 経営学科 経営情報コース 講師。 照屋健作(てるやけんさく):東京大学大学院 経済学研究科 博士課程単位取得退学(経済理論専攻)。帝京平成大学講師等を経て,現在,帝京平成大学 人文社会学部 経営学科 経営情報コース 准教授。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆モデルカリキュラムに対応。MDASH認定制度に準拠◆ AIリテラシー教育に対応した文系の方にもおすすめできる教科書です。 本書は「数理・データサイエンス・AI(リテラシーレベル)」(MDASH)の2024年2月改訂に対応しています。MDASHの「導入」「基礎」「心得」「選択(オプション)」モデルカリキュラムに準拠し、14章構成で半期15回の講義で進められるよう工夫されています。AIのしくみやデータ分析、プログラミングやデータ活用など、AIリテラシーを幅広く学べます。 ■目次 ●第1講 AIリテラシーとは ・1-1 AIの定義 ・1-2 なぜAIが必要とされているのか ・1-3 生成AI ・1-4 この本ではどこまで学ぶか ●第2講 社会でどのような変化が起きているか ・2-1 ビッグデータ、IoT、5Gなどの登場 ・2-2 第4次産業革命、Society5.0 ・2-3 データ駆動型社会 ●第3講 社会でどのようなデータが活用されているか ・3-1 人の動線をめぐるデータ ・3-2 多くの機器のログとオープンデータ ・3-3 1次データ、2次データ、メタデータ ・3-4 非構造化データの増大 ●第4講 データ・AIを何に使えるか ・4-1 データ・AIの活用領域の広がり ・4-2 具体的にどう使えばいいのか ・4-3 シェアリングエコノミー、エビデンスベース社会、ナッジ ●第5講 データ・AIの技術 ・5-1 データ解析とは何をしているのか ・5-2 可視化の手法にはどういったものがあるのか ・5-3 非構造化データの処理とは ・5-4 AIの技術とは ●第6講 データを読み、説明し、扱う ・6-1データの種類を知る ・6-2 基本統計量でデータの特徴をつかむ ・6-3 もととなるデータを集める ・6-4 集めたデータを集計する ・6-5 誤読しないデータの読み方、データの比較方法 ●第7講 データ・AIを扱うときに注意すること ・7-1 データ活用の負の側面 ・7-2 GDPR、忘れられる権利、ELSI、オプトイン・オプトアウト ・7-3 データの正義について ●第8講 データ・AIにまつわるセキュリティ ・8-1 情報セキュリティの基礎 ・8-2 情報のCIA ・8-3 暗号化と匿名加工情報 ・8-4 生成AIが生み出す新たなリスク ●第9講 統計と数学のきほん ・9-1 AIに必要な数学 ・9-2 AIに必要な集合・場合の数 ・9-3 AIに必要な確率・統計 ●第10講 アルゴリズムとは何か ・10-1 AIとアルゴリズム ・10-2 組み合せ爆発を攻略するAIのアルゴリズム ・10-3 探索問題 ・10-4 二部マッチング問題 ●第11講 データの構造とプログラミング ・11-1 ソフトウェアのプログラミング ・11-2 プログラミングの歴史 ・11-3 データの構造 ・11-4 プログラミング環境の構築 ・11-5 変数 ・11-6 条件分岐 ・11-7 繰り返し ●第12講 データを上手に扱うには ・12-1 ビッグデータの収集 ・12-2 データベース ・12-3 データ加工 ・12-4 データクレンジング ●第13講 時系列データと文章データの分析 ・13-1 時系列データ分析 ・13-2 時系列データの変動要因 ・13-3 時系列データ分析演習(二酸化炭素排出量の予測) ・13-4 文章データ分析 ・13-5 文章データ分析演習(スパムメールフィルタの作成) ●第14講 データ活用実践(教師あり学習と教師なし学習) ・14-1 AIの学習方式 ・14-2 教師あり学習の出力 ・14-3 教示なし学習の出力 ・14-4 過学習と汎化 ・14-5 データ活用実践1-教師あり学習、分類 ・14-6 データ活用実践2-教師あり学習、回帰 ・14-7 データ活用実践3-教師なし学習、連関分析 ■著者略歴 岡嶋裕史:中央大学大学院総合政策研究科博士後期課程修了。博士(総合政策)。中央大学国際情報学部教授。NHKスマホ講座講師。著書多数。 吉田雅裕:東京大学大学院博士課程修了。博士(学際情報学)。中央大学国際情報学部准教授。コンピュータネットワークとAIに関する研究教育活動に従事。中央大学AI・データサイエンスセンター所員,東京大学客員研究員,電子情報通信学会幹事。
-
3.9分析手法からAIの基本まで、 知っておきたい知識を全部図解 【本書のポイント】 ・解説とイラストがセットで理解しやすい! ・グラフや値の種類、データ構造など、基礎知識から解説! ・技術関連の項目も図解。初心者にもわかりやすい! ・統計学やAIの基本などの周辺知識もしっかりカバー! ・情報社会におけるデータ活用の問題点や課題まで網羅! 【こんな方におすすめ】 ・データサイエンスの基本を知りたい人 ・業務でデータ分析に関わる人 ・AIの基礎や今後の課題など周辺知識まで知りたい人 ・現場の実態や出来事など、最新動向についても知りたい人 【内容紹介】 データを活用して、自社のビジネスやサービスに 生かそうという動きが活発化しています。 しかし、データの分析には幅広い知識が求められます。 本書では、データやグラフの種類、統計学の基本など、 基礎から周辺知識まで、データサイエンスを学ぶ際に 知っておきたいことを一通り解説しています。 見開きで1つのテーマを取り上げているので、 最初から順に読んで体系的な知識を得るのはもちろん、 気になるテーマやキーワードに注目しながら読むなど、 状況に合わせて活用してください。 【目次】 第1章 データサイエンスを支える技術~需要が高まる未来の必修科目~ 第2章 データの基本~データの表現方法と読み方~ 第3章 データの処理と活用~データを分類し、予測する~ 第4章 知っておきたい統計学の知識~データから答えを導き出す~ 第5章 知っておきたいAIの知識~よく使われる手法とそのしくみ~ 第6章 セキュリティとプライバシーの問題点~データ社会はどこに向かうのか?~ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.6AIの技術から歴史、 活用方法まですべて図解 確かな知識がつく「使える教科書」 【本書のポイント】 ・解説とイラストがセットで理解しやすい! ・AIの基礎から最新のトレンドまでカバー! ・機械学習やディープラーニングもすべて図解! ・キーワードから知りたい項目を調べやすい! ・初心者からエンジニアまで知っておきたい知識を収録! 【こんな方におすすめ】 ・複雑なしくみからAIの歴史、最新動向まで広く理解したい人 ・AIシステムを発注・管理している人 【内容紹介】 現代においてAI(人工知能)は世の中に広く知れ渡っていますが、 技術の発展とともにますます活用される範囲は広がり、 私達の生活にとって欠かせないものになっていくでしょう。 しかし、AIの全体像をつかむには 複雑で難しい技術を知る必要があり、 初めて学ぶときには難易度の高さを 感じる人も多いのではないでしょうか。 そこで、本書では見開きで 1つのテーマを取り上げ、 図解を交えて解説しています。 最初から順に読んで 体系的な知識を得るのはもちろん、 気になるテーマやキーワードに 注目しながら読むなど、 状況に合わせて活用してください。 【目次】 第1章 AIを取り囲む全体図 第2章 AIの基本的なしくみ 第3章 AIにおけるデータの取扱い 第4章 機械学習のしくみ 第5章 ディープラーニングに関わる技術 第6章 様々なAIと実用化 第7章 他分野と交わり進化するAI 第8章 AIにまつわる様々な議論 第9章 未来のAI ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
5.0政府は「AI戦略2019」の中で,リテラシー教育として文理を問わず,全ての大学・高専生約50万人を対象に,初級レベルの数理・データサイエンス・AIを課程にて習得する方針を打ち出しました。これを踏まえ,各大学・高専で参照可能な「モデルカリキュラム」の検討と策定が進められています。本書はこのモデルカリキュラムのうち,基礎的な範囲に対応した教科書です。AIリテラシーの基礎を薄く広く扱います。文科省の認定制度に準拠し,半期15回の講義で進められるよう工夫されています。これから導入を考えているすべての大学・高専が対象です。
-
4.5最も身近な仕事のツールであるExcel。ついつい,こんな使い方をしていないでしょうか?「取引先とExcelファイルをメールでやりとり」「データを月別にファイルやシートに分けている」「Excel方眼紙を愛用」「Excelで紙の資料や伝票を再現してしまうことがある」「プリントアウトのことを考えて,どう罫線を引けばよいか迷ってしまう」「クイックアクセスツールバーをクリックして操作している」「消費税の計算でROUNDDOWN関数を使っている」……。「これはやったほうがいいよ」「こうすると速いよ」と教えてもらうことはあっても,「Excelでこれをやるのはダメ」とは,なかなか指導してもらえないものです。本書は,まわりは教えてくれないけれど,ついついやってしまいがちで,仕事のパフォーマンスにブレーキをかけているExcelの“やってはいけない”を幅広く集めました。心得から始まって,ファイル,見た目,データ入力,操作,数式・関数,集計と,幅広く網羅。“やってはいけない”をキレイに一掃すれば,明日からのExcel仕事がぐっとよくなります。
-
4.1
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「やりたい!ができる」シリーズは、生成AIを使って「やりたいことを叶える」ための指南書です。 生成AIを仕事や生活にもっと活用したい、生成AIでアプリ開発やイラスト制作にチャレンジしたい、そんな「やりたい」を実現するための方法を、その道の第一人者に教えてもらいます。 Officeツールの使い方をわかりやすく解説するYouTubeチャンネル(登録者数45.6万人)やオンライン講座で人気の「ユースフル(長内 孝平氏)」を著者に迎え、Copilotの基本から実践までを、初心者の視点に立って丁寧に解説します。 無料で使えるCopilot(MicrosoftのAIチャット)を中心に、Copilotを業務に取り入れて“やりたいことができる”状態に変えていくための会話術と活用ノウハウを紹介。 メール作成や情報整理、資料の要約、アイデア出しの壁打ちなど、日々の業務をスムーズにする具体的な使い方を、対話形式で楽しく学べます。 セキュリティ設定や情報漏えいリスクへの対処法といった、業務で安心して使うためのAIリテラシーも、専門知識がなくても理解できるよう丁寧に解説。 無料版と有料版の違いにも触れながら、Copilotを正しく、安全に使いこなすための知識が身につきます。 Copilotの導入を検討している方はもちろん、生成AIをこれから活用したいビジネスパーソンにも最適な一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「やりたい!ができる」シリーズは、生成AIを使って「やりたいことを叶える」ための指南書です。生成AIを仕事や生活にもっと活用したい、生成AIでアプリ開発やイラスト制作にチャレンジしたい、そんな「やりたい」を実現するための方法を、その道の第一人者に教えてもらいます。 本書では、『新たなAI活用を作る』AIディレクターであり大人気YouTuberでもあるKEITOさんと一緒に、生成AIに指示を出しながらアプリを作っていく様子を紙上で再現。ちょっとしたコツや難しいポイントもじっくり掘り下げながら丁寧に解説しているので、プログラミングなどの専門知識がなくても楽しくアプリづくりを実現できます。 【本書で作るアプリ】自分専用のAIチャットボット、SNS画像生成アプリ、音声日記アプリ、リスキリングに役立つ英単語クイズアプリなど 【使用AIツール】カスタムGPT、Claudeアーティファクト、Dify、boltなど
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Windows 11に標準搭載のAI「Copilot」の基本から便利な使い方まで紹介。著作権侵害や情報漏洩のリスクといった注意点や、プロンプトを設定するコツも紹介しているため、生成AIの進化に合わせて長く利用できます。また、調べものや資料作成、アイデア出しなど、仕事や日常における様々な作業にCopilotを役立てる方法を満載しています。さらに「Microsoft 365」と組み合わせて使う方法も解説。Word、Excel、PowerPointなどのアプリで作業を効率化する方法も紹介しています。
-
3.3※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆IT時事ニュースをわかりやすく深掘り!◆ ワイドショーにもすっかり常連となったIT時事ニュース。 しかし、日々のニュースに関連するITは技術の発達が目まぐるしく、なんだかよくわからない、ついていけないと感じていませんか? 「SNSで炎上が頻繁に起こるのはなぜ?」 「ネット犯罪はどんなしくみで起こるの?」 「生成AIってなにが問題なの?」 しくみや背景を含めて、ていねいに読み解いていけば、理解が深まります。ITジャーナリストとして、テレビ・ラジオなど様々なメディアでニュースを解説してきた著者が、深掘りします。 ■目次 ●第1章 IT時事ニュースがますます世の中を騒がせる? 01 テレビ番組におけるIT時事ニュースの扱い 02 「バイトテロ」事件が繰り返し起きる原因は? 03 バイトテロ大炎上で閲覧数を稼ぐサイト・動画 04 ネット炎上参加は少数・事後対応が重要 ●第2章 個人を狙い撃ちするネット詐欺・サイバー犯罪 05 宅配便やアマゾン偽装のSMS=スミッシングの特徴 06 不正アプリでSMS再送信・情報盗み取り 07 偽サイト巧妙化・ネット広告まで利用 08 高額通話料の国際ワン切り詐欺とは 09 クレジットカード不正利用が巧妙化 10 ウェブスキミングとクレジットマスター 11 クレジットカード利用の安全対策 12 SNSで「捨て駒」を集める闇バイト ●第3章 社会・経済に影響を与えるITトラブル・インフラ障害 13 「やらせレビュー」が氾濫する理由 14 ランサムウェアが企業・病院で被害拡大 15 バックアップも暗号化? ランサム被害傾向 16 VPNなどの脆弱性が攻撃されて侵入被害 17 続発する内部不正事件の手口と背景 18 内部不正の動機は「給与待遇の不満」 19 スマホ決済で障害が多発する理由 20 スマホデータを捜査・裁判に使う時代 21 巨大災害におけるスマホ・携帯電話の障害 22 続発する携帯電話障害の理由 23 続発するクラウド・IT基盤の大規模障害 ●第4章 ビッグテックと国家が描く巨大なIT展望 24 世界はビッグテック=GAFAMが支配 25 GAFAMの売上構成比でわかるITニュース 26 グローバルIT企業と国家の衝突 27 日本は本当にデジタル後進国なのか 28 コロナ対策で見えたデジタル後進国・日本の課題 29 デジタル庁の要・ガバメントクラウド 30 カード自体の安全性は高いマイナンバーカード 31 頻発したマイナカード関連トラブルの原因 32 企業のあり方を変えるDXとは 33 IT技術による新しい文明「Society 5.0」 34 野心的目標に挑戦「ムーンショット」 ●第5章 私たちの生活を大きく変えるITサービス・最新技術 35 スマホ料金の多様化とパターン別お勧め 36 スマホ動画の勝者は? ショート動画の戦い 37 Web3(ウェブスリー)が夢見る新しいネット 38 生成AIの急速進化と基本技術 39 主要3社のマルチモーダルAIの特徴比較 40 生成AIの問題点と「使わないリスク」 ■著者プロフィール 三上洋(みかみ よう):東京都世田谷区出身、1965年生まれ。都立戸山高校、東洋大学社会学部卒業。テレビ番組制作会社を経て、1995年からフリーライター・ITジャーナリストとして活動。文教大学情報学部非常勤講師。専門ジャンルは、セキュリティ、ネット事件、スマートフォン、ネット動画、携帯料金・クレジットカードポイント。
-
3.8AIとより効果的な対話をするために 人工知能(AI)、特に大規模言語モデル(LLM)が私たちのコミュニケーション、働き方、そして思考に大きな革命をもたらしつつある現在、AIとのコミュニケーションは、単なる技術の領域を越えて、未来を形作るための重要な能力になっています。とくに、ChatGPTのような進化した大規模言語モデルがもたらす可能性を最大限に引き出すためには、プロンプトを理解して適切に操る能力(プロンプトリテラシー)が不可欠です。 本書は、大規模言語モデルの仕組みと「プロンプトエンジニアリング」の基本を理解するところから、AIに適切な質問をし、AIとより効果的な対話をするための「プロンプトパターン」「トリガープロンプト」、さらに進んだ発展的な技術、また最先端の「AIエージェント」にいたるまで、AIとのやりとりを最適化するための知識とノウハウが学べます。 具体的に例を挙げながらわかりやすく解き明かしているので、学生や一般のビジネスマンから読んでいただける内容になっています。本書を読めば、AIと効果的に対話するためのスキルや知識が身につき、すぐに日常生活や業務に活かすことができるはずです。 〈目次〉 第1章 大規模言語モデルの登場 第2章 プロンプトエンジニアリング 第3章 プロンプトパターン 第4章 トリガープロンプトの威力 第5章 発展的な技術 第6章 AIエージェントと社会 〈著者紹介〉 岡瑞起(Mizuki Oka) 研究者。筑波大学システム情報系 准教授/株式会社ConnectSphere代表取締役。2003年、筑波大学第三学群情報学類卒業。2008年、同大学院博士課程修了。博士(工学)。同年より東京大学 知の構造化センター特任研究員。2013年、筑波大学システム情報系 助教を経て現職。専門分野は、人工生命、ウェブサイエンス。著書に『ALIFE | 人工生命より生命的なAIへ』(株式会社ビー・エヌ・エヌ)、『作って動かすALife - 実装を通した人工生命モデル理論入門』(オライリージャパン)などがある。 橋本康弘(Yasuhiro Hashimoto) 研究者。会津大学コンピュータ理工学部上級准教授。1995年、東京大学工学部卒業。2000年、同大学院博士課程修了。博士(工学)。学術振興会特別研究員、東京大学工学系研究科講師、筑波大学システム情報系 助教などを経て現職。専門分野は、人工生命、計算社会科学。訳書に『ネットワーク科学入門』(丸善出版株式会社)、『人工知能チューリング/ブルックス/ヒントン』(株式会社岩波書店)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-1巻1,870円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 実は自然は計算をしている! 自然界は、私たちが考える以上に様々な手法で計算をしている。 本書は、その計算手法—アルゴリズム—を読み解き、新たな情報処理を確立しようという最先端の試みを、数式を極力避けて平易に解説した。わくわくする最先端の科学・技術に興味のある学部生、大学院生、研究者には必携の書である。
-
-
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 実践・自然言語処理シリーズの第3巻。本書は自然言語処理におけるテキスト処理の様々な要素技術を、実用的な手法に厳選してまとめている。前処理、類似度、重要度、検索、要約、フィルタリング処理といった基礎的な処理方法が網羅され、自然言語処理の各種ツールの使い方も丁寧に解説している。教科書だけでは不十分な、実践に足る情報をこの一冊を通して得ることができる。
-
4.8
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 インターネット上に蓄積された、膨大な量のデータを活用できるようにするため、いまデータサイエンスが注目されています。本書はそうしたデータサイエンスの基礎技術や関連するAI技術などのことをオールカラーでビジュアルに解説します。 ■世界中に雲のように存在するビッグデータ 現在、インターネットを介して誰でも閲覧できるサーバーが無数にあります。そこには文字情報だけでなく画像、音声、動画などの膨大な情報があります。こうした未整理の状態の複雑なデータをビックデータと呼びます。 ■ビッグデータから宝を掘り出す このビッグデータはただのガラクタの山ように見えて、じつはこの中にはお宝が埋まっています。お宝を、道具を使って採掘することをデータサイエンスではデータマイニングと呼びます。 ■データ分析の技術やツール 本書では、データの山から必要なデータを抽出する方法やデータから意味のある情報を取り出す統計の技法、ツールのことを、イラストや模式図、チャート図、表などを使ってフルカラーでていねいに解説しています。 ■切っても切れないAI技術との関連 また本書では、AIがデータを分析する手法であるニューラルネットワークやビッグデータを使ってニューラルネットワークを強化する機械学習、ディープラーニングについてもていねいに解説しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【豊富な図と数式のコンビで、深層学習の基本原理が直感的に理解できる!】 本書では「深層学習に使用する数学」について、意味を直感的に理解できるように図を多用することで式を補完する。 第I部では深層学習についての基礎事項と次の部で使用する数学について、第II部ではニューラルネットワーク(深層学習)の中身について、第III部では深層学習の自動チューニングについてそれぞれ詳述。深層学習の実践・応用へステップアップするための基礎がじっくりと学べる、第一歩に相応しい一冊。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Amazon社のAlexaやマツコロイドなど、人との対話を通して仕事をこなすコンピュータ内蔵システムやロボットが活躍している。 私たちが日常使う言語(自然言語)を、AIを用いてコンピュータに組み込むための技術「自然言語処理」を集めた本シリーズの第5巻『対話システムの作り方』では、様々な実例を通して対話システムを体系的に紹介していく。マツコロイドの制作にも関わった著者が、対話というものの本質から目的に沿った対話システムの作り方まで、幅広く解説する。対話システムの導入書!
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 アジャイル導入のメリット最大化へ! ソフトウェア工学分野の“大御所”バートランド・メイヤー博士の手による、アジャイル入門書にして具体的な開発手法にまで言及した一冊。アジャイルのプラス面だけでなく、マイナス面にも切り込んで紹介している点が本書の特徴である。 アジャイルができること・できないこと、世間一般のアジャイルへの誤解などを明らかにすることで、アジャイル導入のメリットの最大化を目指す。各章ともコンパクトにまとめられており、初学者でも無理なく読み進められる一方、開発現場で頻出する諸問題にも詳しいため、現場レベルでも役立つ。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 言語において意味を成す最小の要素である「形態素」の解析方法について、技術者向けにその理論や実装方法を網羅的、体系的に解説する。実装や高速化等を扱いつつ、辞書やコーパスなどの言語資源の構築・利用についてもカバー。解析ツールを「ブラックボックス」として使っている人も中身を理解したうえで拡張・改良できる道筋ができ、ひいては独自の辞書の作成を目指せるようになる。C++11を使った具体的な実装方法も掲載。 199
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 深層(多段層)ニューラルネットワークの構築は人工知能を模索する研究者にとっては、長年の課題であり夢でもあり、まさに研究対象でもあった。しかしただ単に多層化するだけでは、能力をうまく発揮することは出来なかった。近年、大きなブレークスルーがあり深層学習の手法を使うことにより、機械が自ら表現を学習出来ることが分かった。しかし、新しい手法でもあり、未解決な課題も多く存在している。 本書は、この分野の最先端の著者らが、人工知能学会誌に掲載した連載解説を、大幅に加筆再編したものである。今までの到達点、今後の課題が、具体的な研究成果と共に書かれている。深層学習の理論・応用を、自らの研究に取り込むことを考えている読者には、まさに必携必読の書籍である。
-
3.5ITが社会のすみずみまで浸透した結果、仕事の進め方も、ITを前提に考えるのが当然になっています。デジタルトランスフォーメーション(DX)やRPA、AIが必要とされるのも、そうした流れの結果と言えます。とはいうものの、ITを活用したビジネスの進め方に必要なものってなんでしょうか。ITを使って、仕事をよりよくするためには、どうしたらよいでしょうか。 そこで私たちに必要なのは、IT技術の知識そのものではなく、自分のビジネスや業務をどうしたいかという「ビジョン」、そしてそれを実現するためにどのように仕事を「設計」するか、さらに、設計した仕事をIT前提で行うための「要件定義」という3つです。本書では、「ビジョン」「仕事の設計」「要件定義」をどのように行えばよいのか、ITがわからない方でもしっかり理解して手を動かせるように、ていねいに解説します。
-
3.5
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 IoT導入・運用というとセンサーやデバイスに注目しがちです。しかしIoTをうまく構築するためには、ネットワークとサーバを含むシステム全体を理解する必要があります。本書は、これからIoTシステムについて学習したい方、導入の検討をしている方を対象に、IoTとはどのようなものか、どうすればうまく構築できるのか、そして導入・運用のポイントまでをやさしく解説します。自動化・無人化を進めるコア技術がよくわかります。
-
5.0画像生成AIと著作権について、イラストレーター・エンジニア・弁護士の3人と一緒に考えよう 画像生成AIの急速な一般化に伴い、学習データや出力された画像に関して、法的・倫理的な議論が行われています。本書では、イラストレーター・AI開発者・弁護士というそれぞれ異なる立場の3名が、AIイラスト周辺の権利や倫理について説明や議論を行います。 画像生成AIと権利をめぐる議論には、著作権法を中心とした法律の知識と、生成系モデルを中心とした機械学習の知識、さらにイラスト制作の技術や当該分野における慣習などのクリエイティブ業界の知識という異なる3分野の知見が必要となります。また、新技術として社会実装されるためには、「適法か否か」という論点だけでなく、「倫理的に正しいといえるのか」「ビジネスとして成立しうるのか」など、複数の視点からの問題提起が必要となります。 本書では、3分野における基礎知識を説明しながら、画像生成AIの課題と可能性を指摘していきます。画像生成AIの学習データや出力に対して疑問をもっている方や、逆に画像生成AIを利用しており商用利用も考えている方など、立場問わず生成AIに関心のある方を広く読者対象として想定しています。 <本書のポイント> ・立場の異なる3人のプロが、50の質問に対して回答します ・画像生成AIをめぐる問題を広く取り上げ、法だけでなく倫理やビジネスなど複数の側面から議論します Chapter 1 画像生成AIと著作権の基本 Chapter 2 生成モデルと著作権 Chapter 3 学習データをめぐる問題 Chapter 4 生成AIをめぐるトラブルと対処法 Chapter 5 画像生成AIの課題と未来 補論 著作権法の基本
-
-
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ICTやIoT技術の発展によって社会にあふれる「ビッグデータ」を活用して、有用な「価値」を引き出す学問分野「データサイエンス」は、ビジネスから行政、医療、スポーツなど、あらゆる分野で注目されている。データサイエンスの基礎となるデータ処理(情報学)やデータ分析(統計学)手法の基本やあらまし、さまざまな分野での活用実例などを、図版や写真、イラストを使ってやさしく解説するシリーズ第10弾。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 今やニュースで聞かない日はないAI〈人工知能〉。ディープラーニングに代表される先進的技術が世界を変えるとして産業界やビジネス社会からの関心も高い。そもそも人工知能とは何か、どういう歴史を歩んできたのか、どういった課題があるのか、そして私たちの生活にどのような影響を与えるのかを説いた、これからを生き抜く教養としてのAI入門書。話題の先端科学に触れたいという知的好奇心に応えるシリーズ第6弾。
-
4.0ビッグデータ。言葉だけが先行し、その活用はなかなか広がっていない。データを使ってしっかりとした効果や成果を出せるまでには至っていない。 この分野での経験豊富なAgoop社長の著者は、ビッグデータを利活用できているのは、民間ではデータ分析の実績がある比較的大きな企業であり、公的には国や政令指定都市のような予算規模が大きく人材の豊富な自治体に限られていると分析する。 ビッグデータという概念やその活用は、けっして末端まで浸透しているとはいえず、ビッグデータが社会実装されて継続的・永続的に活用されている事例は、まだそれほど多くない。 なぜ、ビッグデータを活用できなかったのか。うまく利活用するにはどうすればいいのか。著者はビッグデータを、ビッグデータを超えるビヨンド・ビッグデータとして考え直し、新たな概念としてとらえることを提案する。豊富な事例をもとに解き明かされるビヨンド・ビッグデータの世界を理解できる好著。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 現代社会で必要不可欠な「暗号」についてやさしく、わかりやすく解説!! 暗号は、情報の秘匿のみならず保護や認証といった目的のための現代生活に欠くことのできないキーテクノロジーです。 今後も応用分野が広がる電子暗号技術はデジタル技術と数学的処理により成り立っていますが、その仕組みを理解するのは難しいものがあります。 本書は、エピソードを交えながら、古典的暗号から電子暗号まで、暗号が現代生活にどのように利用されているか、 意外なところで活躍している暗号や、その仕組みを分かりやすく紹介します。 第1部「黎明期の暗号とその分類」では暗号とは、そして過去の暗号法を分類して紹介。 第2部「近代暗号と暗号機械の誕生」では試行錯誤から生まれた様々な暗号機械の登場と戦後までを振り返ってみた。 また、ここでは過去に利用された多項式暗号の実際の解読方法の例を紹介する。 第3部「エレクトロニクスと暗号技術」ではエレクトロニクスと暗号のかかわりを紹介。 第4部「サイバー時代の暗号技術」では今、主流となっている暗号のアルゴリズムやそれを取り囲む話題などを紹介。 仮想通貨のブロックチェーンやそのベースのひとつハッシュ値、いまや暗号存続の脅威となっている量子コンピュータについてもその仕組みを解説する。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 シンギュラリティ(Singularity)とは人工知能(AI)が人間の能力を超えることで起こる「技術的特異点」のこと。ロボット技術がさらに進化し、大変革が起こって後戻りできない世界に突入すると、人類はどうなるのか――。本書はシンギュラリティの実例と最新動向をわかりやすい文章と写真・イラストで解説し、近未来に訪れる世界を多角的に描き出す。話題の先端科学に触れたいとの知的好奇心に応えるシリーズ第3弾。
-
4.5※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 2025年に人工知能が到達しているであろう地点を現実的に予想! これからの社会に人工知能を活かすための技術を解説! 東京五輪も終わり、超・超高齢社会を迎え大きく様変わりしているであろう「2025年」。人工知能はどこまで発展・進歩し、我々の社会に活用されているのでしょうか。 本書は、2025年に人工知能が到達しているであろう地点、およびクリアできていないであろう問題点について、AIX(電気通信大学人工知能先端研究センター)を代表する研究者が独自の視点で予想します。 1章 2025年が やって来る! 2章 ロボットと人工知能 3章 IoTとは 時間・空間・人―物間をつなげることの効果とインパクト 4章 自然言語処理と人工知能 5章 人工知能における感性 6章 社会に浸透する汎用人工知能 あとがき
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 昨今、ソフトウェアの正しさを保証するソフトウェア検証の技術が重要視されているが、その中でも特にモデル検査が脚光を浴びている。それは数理論理学などに関する知識があまりない技術者にも、ソフトウェア開発の中で利用することが可能だからであろう。本書はSPINを中心にモデル検査をいかにしてソフトウェア開発のプロセスの中に位置づけるかについて実例を通して詳説している。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、実際にアーキテクチャを設計するための具体的なスキルとして設計原則や開発プロセスと対応付けながら、アーキテクトの最も基本的な素養としてのソフトウェアパターンを丁寧に解説している。ソフトウェアアーキテクト育成ための理論と実践という観点でバランスのとれた書籍であり、独習書として実務家にも最適である。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 仕様の段階で誤りをなくす注目の手法「Bメソッド」を実践活用するための解説書。安心安全を含めてますます高度な機能や性能が要求されるソフトウェアシステムの開発において、厳密な仕様記述を基に開発を行う形式手法に対する関心と期待が高まっている。本書は、我が国初のBメソッドの書き下ろし入門書である。実際の開発への適用を意識した実用指向の内容が、平明でわかりやすく記述されている。
-
-
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ライバルはディープラーニング!! OTTERは、数学における定理やパズルの解法の証明を支援するソフトウェアで、述語論理を用いて解を導き出す。医療・金融システムの安全性構築、ウイルス検知などにも適用され、欧米では近年、高い評価を受けている。最大の特徴は、ユーザが与えた不完全な論理(情報)であっても、自動的に正しい推論を行うことができる点にある。 統計的論理を用いる機械学習等に手詰まり感のある中、OTTERには推論を通して新しい解を導き出す“創発的機能”があり、注目のAI技術である。 本書は、OTTERが得意な論理パズルを具体的な解法プログラムとともに紹介しながら、自動推論・定理証明の方法を解説する。人工知能の研究者・技術者、必読必携の書である。
-
4.0世の中で氾濫している「人工知能・AI」という言葉に惑わされないようにするため、人工知能についての正しい知識を身につけ、理解することが必要です。 人工知能分野の発展に貢献しているのが 機械学習・深層学習(ディープラーニング)と呼ばれる技術で「人工知能(AI)を使ってなにかプロジェクトをやってほしい」と言われたとき「ビジネス課題を機械学習・深層学習でどのように解決すればよいか」と置き換えて考えればよいケースがほとんどです。 本書では、あいまいな状態になっているビジネス上の課題を機械学習を試すことのできるような形に課題を書き換えたり、人工知能の代表的な手法である推論・探索、知識表現、機械学習、深層学習の各手法をフレームワークとして考え、実際のビジネスで活用できるといった“AI的思考力”を高める方法を解説していきます。 また人工知能は万能ではなく、ビジネス上における課題は千差万別です。本書の目指すところは「人工知能で解決できるものなのか」を自ら判断し、「人工知能のどの技術を使えばよいのか」が分かるようになることです。 人工知能技術の大部分は数学によって支えられていますが、本書はあくまでも「ビジネスで人工知能を活用するために知っておくべきこと」をまとめたものですので“難しい数式”は一切出てきません(もちろん、プログラミングも)。 『機械学習・深層学習という言葉は聞いたことはあるけれど、よく分からない』『ビジネス課題に適用できる自信がない』『どのように評価すればよいのか検討がつかない』といった方にとって、本書は役に立つはずです。
-
4.3本書は,AIに関心はあるがあまり数学が得意でない,多くの社会人や大学生,高校生が持つ「ディープラーニングがどうして動作するの?」という疑問に答える超入門書です。偏微分方程式などの難しい大学レベルの数学抜きに,Excelで見て動かして,ディープラーニングを学べます。図示しやすいパターン認識を題材にし,Excelの確認,数学の復習を織り込みます。数学的に難しいことはExcelに任せるため,計算に自信のない人でも,ディープラーニングを学ぶことができます。本書では,簡単なExcel操作と初等的な数学の知識だけで,ディープラーニングの動作原理を基本から理解できるようになります。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Windows 11でのコンピュータ操作、Office 2021活用などの基礎を学べる1冊。 本書は、パソコンやインターネットを使用するうえで身につけておくべき情報リテラシーの習得を目標としています。 好評の『情報リテラシー教科書』最新版となる本書は、機能・インターフェースが一新されたWindows 11とOffice 2021に対応しています。 キーボードでの入力やマウスの扱い方などの初歩的なPC操作から始めて、コンピューターやネットワークの基礎的な知識を学んだのち、Microsoft Officeのソフト(Word、Excel、PowerPoint)の操作法を学んでいきます。 レポート作成、プレゼンテーション、データ処理、グラフ作成などを解説しつつ、私たちにとって不可欠な存在になりつつあるクラウドコンピューティングや人工知能(AI)の話題にもコラムなどで触れています。 イントロダクションにはマンガページを設けるなど、学生の学習意欲を沸かせるように工夫を凝らしています。苦手意識のある方でも、情報基礎がしっかり身につく一冊です。 第1章 パーソナルコンピュータの基礎 第2章 インターネット利用 第3章 Microsoft Word 第4章 Microsoft Excel 第5章 Microsoft PowerPoint
-
4.0推薦・細田守監督(『サマーウォーズ』『竜とそばかすの姫』) 生まれながらの身体を離れ、スキルをインストールせよ! ロボット、バーチャルキャラクター、すべての人間がアバターとなり 一人の体験が、人類の体験になる—— 仮想空間[メタヴァース]に身体性をもたらすことで現実との融合をはかり、すべての人びとが身体と体験を共有し合う世界の実現を目指す気鋭の情報工学者の「思考」と「実践」とは。 米TIME誌「世界の発明50」に選出されるなど いま世界が注目する研究者・起業家による「テクノロジーの最前線」と「未来予測」! 目次 序章 誰か一人の体験が世界を輝かせる 第1章 感覚伝達とインターフェース ——新しいメディアの創造 第2章 BodySharing ——体験を入出力する未来のデヴァイス 第3章 サイバーとフィジカルが融合する世界 第4章 変容する脳と身体——ポストヒューマンへの解放 第5章 溶け合う心と知の変容——データ駆動社会における能動的誤配と自由意志 第6章 未来を創造する——2050年自己複製化[マルチスレッド]と死の克服 終章 未来を生み出すための物語
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 UPPAALは,モデル検査ツールとしては比較的利用が容易ではあるが,実際の開発には多くのハードルがある.本書では,そのようなハードルを乗り越えるために必要な,UPPAALツール,時間オートマトン,検証したい性質を記述するための時間時相論理に関する知識,および実際の開発で検証の対象となるUML設計仕様のUPPAALによるモデル化方法など,具体的事例も交えてノウハウを解説している.
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 品質向上に貢献する、要求獲得技法を詳解! ソフトウェアが社会に浸透すると供に、ソフトウェア開発の上流工程ではビジネスや運用環境の変化に即した要求の獲得・仕様化・確認・管理が求められている。要求工学では曖昧で変化しやすい要求を工学的に扱うことで、品質の高い要求仕様書を効率的に作成する各種の手法が開発されている。本書は、要求工学の基礎知識の理解と習得に役立つ1冊である。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 オープンソースの広がりにより、多様な機能を実現することは以前と比較すると驚くばかりに容易になっている。しかし、このような開発法ではスケーラビリティと高信頼性を同時に保証することはできない。機能の実現や追加が比較的安易にできる時代になったからこそ、成長し続けるシステム全体の正常な動作を保証しうる開発検査手法の必要性が増している。 本書では、優れた開発者として最先端の理論やツールと使ってソフトウェア開発をするために必要な基礎知識である、論理学、並行システム、オートマトン、モデル検査のアルゴリズムや実装技術、モデル検証ツールをまとめて解説する。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 社会の様々なところにソフトウェアが組み込まれる中、従来その信頼性を確保するための手法であったテスト手法は、時間やコストなどの面で開発の現状に追いつけない状況にある。そのテスト手法に代わるものとして注目されてきているのが形式的手法による検証(モデル検査法)であり、その中の一つがSPINである。本書はSPINの基礎から実際の利用方法までを具体的に解説する日本で初めての書籍である。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 論理的なバクを発生させない形式手法!!Event-Bは、パリ地下鉄、ニューヨーク地下鉄、バルセロナ地下鉄、ドゴール空港のシャトルの無人運転を成功に導いた、J.R.アブリエル氏が考案した新しい形式仕様言語である。Event-Bは、仕様記述の単位をイベントとし、基礎となる集合論などはBメソッドの考え方を継承する。本書は、Event-Bの入門書である。また実際に利用するための仕様構築統合環境として、RODINプラットホームの利用方法を解説する。具体的に学べるよう図書館の事例や、組込みとして自動車のドアロック・システムを紹介している。形式手法や、形式仕様言語を学ぶ技術者や研究者には最適の書である。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 電子カルテの普及など、情報技術を活用した今後の望ましい医療の実現に向け、医療従事者を取り巻く環境は大きく変化しており、「情報」にかかわらずにいることはできなくなっています。看護・福祉などの医療従事者にとって、情報リテラシーは仕事を始めてからでも必要な重要な能力です。 本書は、医療系に特化した情報リテラシーのテキストで、医療を題材にした例題や演習を取り入れ、医療従事者に必要とされるICTスキルを身につけることができます。第2版では、2015年1月発行の初版をベースに、教育現場の半期15コマの授業に合わせた15Lesson構成に変更しました。また、初版ではOffice 2013/2010対応でしたが、第2版ではOffice 2016/2013対応になっています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 民事裁判におけるIT化法案(「民事訴訟法等の一部を改正する法律」)が成立したことをきっかけに、IT技術および人工知能技術の導入が急速に発展してきている。 本書ではまず第1部で「人工知能と法」分野の歴史、次に法律における推論についての基礎的な知識を説明する。第2部では法律への具体的な人工知能の技術の詳細について紹介を行っている。現在の法学に対する人工知能の到達点と、今後の日本の社会像が見えてくる充実の一冊。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆------------------------------------------------------------◆ 生成AIと一緒なら、できることがこんなに広がる! ◆------------------------------------------------------------◆ 『生成AIと一緒に学ぶ Excel VBAふりがなプログラミング』は、生成AIを活用してExcel VBAやマクロの基本を楽しく学べる新しいスタイルの学習書です。企業のDX推進課を舞台に、「AIでプログラムを生成する」→「生成されたコードを読んで、ふりがなをふってみる」→「しくみを理解する」という実践的な流れで進行。プログラムにふりがなをふることで理解が深まり、Excel VBAの基礎をしっかり身につけられます。 AI生成のコードは、意図通りに動かないこともありますが、それを修正したりカスタマイズしたりする力を養えるのがこの本の大きな魅力。「Excel VBAを仕事で使いたい」「入門書で挫折した経験がある」という方にぴったりです。具体的なミッションを解決しながら、プログラミングスキルを楽しくステップアップできます。生成AIと一緒に、Excel VBAの世界に飛び込んでみませんか? ■本書の内容 Chapter 1 「Excel VBAと生成AIでDXして!」といわれて Chapter 2 「1日でExcel VBAの基礎を身に付けて!」といわれて Chapter 3 「便利な小物マクロをたくさん作って!」といわれて Chapter 4 「見積書の作成を自動化して!」といわれて Chapter 5 「大量のデータの突合せ作業をやって!」といわれて Chapter 6 「ピボットグラフを自動的に作って!」といわれて ■本書はこんな人におすすめ ・Excel VBAの基本を身につけたい人 ・過去にExcel VBAの入門書で挫折してしまった人 ・仕事でExcel VBAを活用してみたい人
-
-
-
3.0
-
4.0システム開発における最初の関門である「要件定義」を、豊富なイラストや表、具体例を用いてわかりやすく解説しています。現場に立つうえでエンジニアが身につけておくべき知識が満載の一冊です。
-
3.9★【シリーズ累計35万部】Excel本の歴史を塗り替えた伝説の1冊が全面リニューアル! 「5時間かかる作業が3時間でできます」ではなく「1秒で終わらせます」へ―― 作業そのものをゼロにしてしまう“究極の効率化”を実現するExcel VBAのポイントと、毎日の業務を瞬時に終わらせるしくみの作り方をかつてないアプローチで解説した定番書がリニューアル。 大量の書類作成の自動化、イミディエイトウィンドウによる効率的なデバッグなどの話題を追加し、画面をすべてOffice 365+Windows 10に刷新しました。 300社5000人の指導実績に裏打ちされた、実務直結のExcel入門決定版!
-
4.0IoTについての基本的な知識が身に付く本です。IoTサービスの導入の際に必要となる知識や、IoT機器の仕組みなど、幅広い分野について理解できるようになります。2018年10月より開始されたIoT検定ユーザー試験パワー・ユーザーの教科書&問題集としても使うことができます。
-
3.8Amazon Web Services(AWS)のしくみや関連技術についてわかりやすく解説する図解本です。エンジニア1年生、IT業界などへの転職・就職を目指す人が、AWS関連の用語、しくみ、クラウドとネットワークの基礎技術などを一通り学ぶことのできる、1冊目の入門書としてふさわしい内容を目指します。本書では、クラウドやネットワークの基礎から解説し、AWSのサーバーサービス、ストレージサービス、ネットワークサービス、データベースサービスについて具体的なサービス名を挙げながら初心者向けにわかりやすく紹介します。今までのAWS解説書では用語がわからず難しかったという人も本書なら安心して学ぶことができます。
-
-「FOR文やIF文といったステートメントは理解しているし,フォームの作り方,呼び出しなどもわかっている」しかし,「目の前にある業務を効率化するプログラムをどう作ればいいかわからない」。こんな悩みを抱える方を対象に,「プログラム化するためのロジックを考える力を養う」「システム化するためのスキルを習得する」ことを目的とする本です。 コーディングの定石から,汎用化・省力化でよりよいプログラムを作る方法,ユーザに合わせてUIやエラーケースを考慮しながら業務システムとして仕上げる方法まで,数多くの例題を用意し,少しずつレベルを上げながら詳しく解説していきます。
-
4.0機械学習・ディープラーニングについて学ぶための、図解形式の解説書です。エンジニア1年生、機械学習関連企業への就職・転職を考えている人が、機械学習・ディープラーニングの基本と関連する技術、しくみ、開発の基礎知識などを一通り学ぶことができます。
-
4.2本書は、ブロックチェーンの基本やしくみ、開発手法やツールなどを一通り学ぶことのできる図解入門書です。ブロックチェーンの基礎技術としては、最も普及しているビットコインブロックチェーンや、スマートコントラクトのプラットフォームとして注目されるイーサリアムなどを題材に解説を行い、現在のブロックチェーンの技術的課題や最新動向もしっかりフォローします。エンジニア1年生、フィンテック業界への転職・就職を目指す人、ブロックチェーンを導入したい企業の担当者に向け、豊富なイラストや具体的な資料を用いてわかりやすく解説します。
-
3.0
-
3.9機械学習エンジニアになりたい人に 機械学習エンジニアを志望する人が増えています。 採用数も増えており、さまざまな就職・転職サイトで「機械学習エンジニア」の募集がされており、この数は今後さらに増えることが予想できます。 しかし、採用側の話を聞くと、志望する人の大半は求める能力に達していないというミスマッチが発生しています。 これは、「機械学習エンジニア」という仕事が誕生して間もないため、 どのような能力を必要とするのかをエンジニア側が理解していないことに原因があります。 【本書の構成】 本書は「仕事編」と「実務編」の2部構成です。 「仕事編」では、機械学習エンジニアになりたい人向けに、 その仕事内容や必要な知識レベル、なるための勉強法、採用されるための履歴書の書き方などを解説します。 「実務編」では、身の周りのAI技術や実務ノウハウ、各国の機械学習エンジニア事情について解説します。 また、実際に機械学習エンジニアとして働く人やゼロから機械学習の知識を身につけた方々のインタビューも掲載しています。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-
-
-「メルマガ配信を自動化したい」「社内資料をもとに提案書を作成させたい」「お客様からの問い合わせに 24時間対応できる仕組みが欲しい」……こういったリクエストを耳にすることが増えてきました。AI(人工知能)はすでに私たちの生活に入り込み、日常生活や業務などのあらゆることを効率化してくれています。 しかし、実際に導入してみると、「思ったほどの精度が出ない」「期待したようには使えない」と戸惑う場 面も少なくありません。そういった背景には、AIに対する過度な期待と誤解があることがほとんどです。 あるいは「AIを使えば需要なんて簡単に予測できるんだろう」「提案書くらいAIに任せればいいじゃないか」……そんな言葉を、上層部や管理職の何気ない一言として耳にすることもあるでしょう。 「生成AIに任せてよい仕事」と「生成AIには任せてはならない仕事」の境界線は、どこにあるのでしょうか? ブレーンストーミング、ドキュメント要約、営業AIエージェント、メルマガ生成といった活用事例をもとに、新進気鋭のデータサイエンティストが生成AI・LLM(大規模言語モデル)の可能性と限界、ビジネス活用の注意点を解き明かします。 【目次】 ◆第1章 AIで何ができるのか 【活用の基本】 1-1 生成AIがビジネスシーンで活躍する理由 1-2 3つの生成AI活用例 ◆第2章 AI活用5つのキーワード【活用の段取り】 2-1 言葉のエンジン[LLM] 2-2 うまく指示する技術[プロンプトエンジニアリング] 2-3 外部情報を活用する[RAG] 2-4 AIの司令塔[AIエージェント] 2-5 研修で育成する[ファインチューニング] ◆第3章 その仕事、AIには無理です【活用の現実】 3-1 ビジネス活用のハードルを乗り越えるには 3-2 営業ロールプレイングの課題 3-3 ドキュメントの質が左右する社内ナレッジ検索 3-4 「業務の流れの言語化」がAIエージェントを活かす 3-5 メルマガ生成で自社らしさを出すには ◆第4章 任せられる仕事、任せられない仕事【活用の戦略】 4-1 AI時代の成功の鍵 4-2 実際の現場が示す「生成AIとの協働」 4-3 「生成AIに任せてよい仕事」と「任せてはならない仕事」の境界線
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆Excel、Word、PowerPointを使用した実習形式◆ 初学年の大学生向けの情報リテラシーのテキストです。本書は学校採用を目的に企画しています。半期の授業を想定した15章構成で、それぞれの章が1回の授業に対応します。Word、Excel、PowerPointを使用した実習形式の内容です。学生が完成例だけを見て自己流で作成を始めることを回避するため、画像を小出しにするなどの工夫をしています。スモールステップで無理なく作業を進めていき、技能を身につけていきます。 ■こんな方におすすめ ・PC作業に不慣れな大学1年生、テキスト採用を考える先生 ■目次 ●第1章 情報モラル ・1-1 ユーザー認証 ・1-2 SNS ・1-3 サイバー犯罪と法律 ・1-4 情報セキュリティ ●第2章 式の入力と基本操作 ・2-1 Excelの基本画面 ・2-2 四則演算,表示桁数 ・2-3 セルを参照しての計算、オートフィル ・2-4 SUM関数、割合と絶対参照 ・2-5 第2章の演習問題 ●第3章 統計関数と表の見た目の整え方 ・3-1 複合参照 ・3-2 AVERAGE関数 ・3-3 MAX関数、MIN関数 ・3-4 第3章の演習問題 ●第4章 論理関数 ・4-1 IF関数、IFS関数 ・4-2 AND関数、OR関数 ・4-3 第4章の演習問題 ●第5章 数え上げの関数と条件付きの統計処理 ・5-1 COUNTA関数、COUNT関数 ・5-2 COUNTIF関数、COUNTIFS関数 ・5-3 SUMIF関数、AVERAGEIF関数 ・5-4 第5章の演習問題 ●第6章 数値の丸めを行う関数と並べ替え ・6-1 ROUND関数、ROUNDUP関数、ROUNDDOWN関数、INT関数 ・6-2 並べ替え ・6-3 第6章の演習問題 ●第7章 条件付き書式とグラフ作成 ・7-1 条件付き書式 ・7-2 グラフ作成 ・7-3 第7章の演習問題 ●第8章 検索関数とエラー回避 ・8-1 VLOOKUP関数 ・8-2 IFERROR関数 ・8-3 第8章の演習問題 ●第9章 文字の入力と修飾 ・9-1 Wordの基本画面 ・9-2 ひらがな、カタカナ、漢字、英数字、記号の入力 ・9-3 フォントと段落の書式設定 ・9-4 第9章の演習問題 ●第10章 ページレイアウト ・10-1 ページ設定と段組み ・10-2 文末脚注とページ番号 ・10-3 第10章の演習問題 ●第11章 段落番号、脚注、Excelグラフの挿入 ・11-1 段落番号 ・11-2 脚注とヘッダー ・11-3 Excelグラフの貼り付け ・11-4 第11章の演習問題 ●第12章 図形と表の挿入 ・12-1 基本図形、テキストボックス、数式エディタ ・12-2 表の挿入 ・12-3 数式の形式の変更 ・12-4 第12章の演習問題 ●第13章 校閲 ・13-1 文章校正、コメント、変更履歴、置換 ・13-2 行間の調整、ルーラーの使い方 ・13-3 第13章の演習問題 ●第14章 スライドの作成と特殊効果 ・14-1 PowerPointの基本画面 ・14-2 スライドの作成 ・14-3 画面切り替えとアニメーション ・14-4 第14章の演習問題 ●第15章 コンテンツプレースホルダーの利用 ・15-1 SmartArt、表の挿入 ・15-2 Wordファイルをもとにスライドとノートを作成 ・15-3 第15章の演習問題
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2024年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2022年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
-
3.5
-
-本書は文系理系を問わず、高校卒業レベルの読者が、情報科学とデータ分析の基礎を学ぶための入門書です。とくに「データサイエンス」を理解するための基礎知識と、その関連技術の紹介に重点を置いています。 また、本書は数理・データサイエンス教育強化拠点コンソーシアムが公開しているリテラシーレベルのモデルカリキュラムを参考に構成しています。たとえば、第1章は標準カリキュラムの「1.導入、社会におけるデータ・AI 利活用」に、第2章は「2.基礎、データリテラシー」、第3章は「3. 心得、データ・AI 利活用における留意事項」、第4章は「4.選択、オプション」に相当します。数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル)に 対応させると、第1章が「項目1」と「項目2」、「項目3」に、第2章が「項目5」に、そして第3章が「項目4」に対応しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は量子ウォークを用いる探索問題について、基礎的事項から具体的計算まで丁寧に解説する。 量子ウォークとは確率論におけるランダムウォークの量子版である.従来のランダムウォークでは見られない特異な挙動を示すことから、最先端の研究対象として注目を集めている。また、その探索アルゴリズムは、量子コンピュータにも応用可能とされ大変注目されている.量子系の計算科学に関心のある多分野の読者必携の書である。
-
3.8
-
4.4
-
-
-
3.0「Excel VBAの文法は入門書で学んだ。基礎の知識はひととおりある。でも,実践になると思うようにマクロが書けない……」。Excel VBAは生産性アップや時短を後押ししてくれる強力なツールですが,こんな“困った”を持つ人が少なくありません。「なぜ書けないのか」を知り尽くす著者の大村あつしさんは,知識とアイデアは別のものと指摘します。「いま持っている知識にアイデアとテクニックを加えればマクロを書くスキルは目に見えて上がる。そして,必ず知っておきたいアイデアの数は厳選できる」と。本書は,自動化,高速化から,データベース,ユーザーフォーム,外部ファイルの操作まで,お持ちの知識を活性化して上級者への確かな足がかりを築くことをお助けします。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンピュータ理論の古典に学ぶ! 本シリーズは,「コンピュータ理論の起源」を当時の原典に探る試みとして,現在もコンピュータ理論の古典と呼ばれる,チューリングとフォン・ノイマンの論文を紹介する。 第1巻である本書には,チューリングのコンピュータに関わる重要な論文4編の完訳と,それぞれの論文に対し,内容を的確に理解するための時代背景を含めた詳細な解説が収められている。 コンピュータ理論に興味のある読者はもちろん,コンピュータに携わる読者には必携の書である。
-
4.5
-
-
-
4.0
-
5.0業務でVBAプログラムを組んでいる人の多くは,部署で一番パソコンやExcelに詳しいからという理由で任されていることも多く,プログラミングの基本的な素養や知識を知らない方も多いでしょう。このため,動けばOKといった,その場しのぎのコードを書いてしまいがちです。そういったコードは,あとから見直したり再利用する際にトラブルを起こしやすく,またどこになにが書いてあるかわかりにくいので,せっかくの生産性や効率性を落としがちです。本書は,そのようなVBAではじめてプログラムを組んだという人たちにプログラミングの基礎を示し,あとから見て読みやすく,変更や再利用に強いVBAプログラムの書き方を身につけるための本です。
-
5.0進化発展するディープラーニング。その代表格がRNN(Recurrent Neural Network/再帰型ニューラルネットワーク)とDQN(Deep Q-Network/深層Qネットワーク)です。RNNは自然言語処理の分野で最も注目されるアルゴリズムです。またDQNは強化学習の手法で目覚ましい精度を挙げています。これらはいずれもAI応用の入り口となります。本書は,これらを万人のツールであるExcelを用いて,難しい数学やプログラミングの知識抜きに,動かしながら,目で見てしくみを理解できる画期的な入門書です。難解といわれるRNNとDQNの「最適化」などの難しい計算部分をExcelにまかせ,その動作原理をわかりやすく知ることができます。本書がAI学習のハードルを一気に下げてくれます。
-
4.0
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆Wolframなら1行プログラムで体感しながらデータサイエンスがたのしく学べる!◆ 私たちの身の回りにあふれる「データ」は、デジタルデータの世界で画像、文章などさまざまな形で表現される万物を対象に、私たちが新しいストーリーを組み立てる手助けをしてくれます。私たちは「データサイエンス」という魔法の杖で、すべての事実をデータとして「思考の地平」に取り込み、見える化し、そこから新しいストーリー、つまり未来を紡ぐことができるのです。ただし、データサイエンスが本当に魔法の杖になってくれるのは、私たちがその本質を理解してうまく扱うことができた場合です。 本書は、データサイエンスやAIの本質を、手を動かしながら楽しい体験を通して、ワクワクしながら学べる題材があふれています。本書で扱っているWolfram言語には、データサイエンスやAIの世界を学ぶためのたくさんの「関数」が、あらかじめ用意されています。それらの関数を使うことで、ワクワクしながらこの世界に入門できるのです。 数学の計算やプログラミングの書式に煩わされることなく、クリエイティブなことにチャレンジできる本書で、ぜひあなたもAIとデータサイエンスに入門してみてください。 ■こんな方におすすめ ・実際にプログラムを自分で動かしてAIとデータサイエンスを学びたい方 ・AIとデータサイエンスの基礎を学んで教科学習や探究活動に活かしたい中高生や教員の方 ・Wolfram言語を使ったデータ分析やAI プログラミングの実践や活用方法に興味のある大学生や教員の方 ■目次 ●第1章 Wolfram言語の世界を体験してみよう ・1-1 オンラインコンテンツで体験してみよう ・1-2 基本ルールを学び、実際に使ってみよう! ●第2章 プログラミングの基礎 ・2-1 コンピュータのしくみ ・2-2 プログラミング言語の歴史と言語の種類 ・2-3 アルゴリズムとデータ構造 ・2-4 プログラムの3つの基本処理 ●第3章 画像データから見える世界 ・3-1 画像データとは ・3-2 画像処理のいろいろ ●第4章 音・音声データから見える世界 ・4-1 音・音声データとは ・4-2 音声処理のいろいろ ●第5章 AIのしくみ ・5-1 AIの頭脳はプログラム ・5-2 AIの頭脳を鍛えるしくみ:機械学習 ・5-3 教師あり機械学習とは ・5-4 演習:教師あり機械学習でお菓子を分類してみよう ・5-5 教師なし機械学習とは ・5-6 演習:教師なし機械学習で動物をグループ分けしてみよう ●第6章 テキストデータから見える世界 ・6-1 テキストデータとは ・6-2 自然言語処理 ・6-3 ワードクラウドとは ・6-4 演習:「走れメロス」のワードクラウドを作ろう ●第7章 統計学の基礎 ・7-1 統計学とAI・データサイエンスの関係 ・7-2 データの収集と種類 ・7-3 ヒストグラムと基本統計量 ・7-4 演習:ヒストグラムと基本統計量を求めてみよう ・7-5 2つのデータの関係 ・7-6 データの可視化(データビジュアライゼーション) ●第8章 社会の中でのAI・データの利活用 ・8-1 データ駆動型社会 ・8-2 AI・データ活用事例 ・8-3 個人情報と情報セキュリティの心得 ・8-4 AI・データを扱う上での心得 ●第9章 生成AI ・9-1 AIの歴史 ・9-2 ニューラルネットワーク ・9-3 知識ベースのWolframAlphaを使ってみよう ・9-4 生成AIのしくみ ・9-5 生成AIの未来 ●Appendix 現実世界を読み解くデータサイエンス ■著者プロフィール ※所属・肩書等は2025年8月初版発行時のものです。 北村美穂子:京都ノートルダム女子大学 社会情報学環 教授。博士(工学)。Wolfram Alpha LLCコンサルタント。 金光安芸子:Wolfram Research, Inc. 勤務。京都ノートルダム女子大学 社会情報学環 客員教授。 ドゥラゴ英理花:聖徳学園高等学校 校長補佐・データサイエンス部長。東京大学大学院教育学研究科博士課程在籍。WiDS TOKYO @ Shotoku アンバサダー。 小野陽子:大妻女子大学 データサイエンス学部 教授 国立研究開発法人 理化学研究所AIP 客員主管研究員。博士(工学)。 吉田智子:京都ノートルダム女子大学 社会情報学環 教授・学環長、ND教育センター 副センター長。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆「データサイエンス」の基礎を徹底解説◆ データサイエンスに重点を置いた情報科学とデータ分析の入門書です。 基礎知識から、関連する技術をわかりやすく解説します。本書の構成は、それぞれ標準カリキュラムの以下に相当します。 第1章「1. 導入、社会におけるデータ・AI利活用」 第2章「2. 基礎、データリテラシー」 第3章「3. 心得、データ・AI利活用における留意事項」 第4章「4. 選択、オプション」 数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル)に対応させると、第1章が「項目1」と「項目2」「項目3」に、第2章が「項目5」に、そして第3章が「項目4」に対応します。また、本書を改訂するにあたり、新たに生成AIに関するトピックを第6章として、さらにオープンデータの活用を第7章に追加しています。第6章は応用基礎レベルの「3. AI基礎」に該当します。第7章は応用基礎レベル「2.データエンジニアリング基礎」に相当します。 データサイエンスの基礎を学びたい方、AI技術に興味がある方、データ分析の実践力を身につけたい方など、幅広い読者におすすめです。 ■こんな方におすすめ ・情報科学およびデータ分析の基礎を学びたい方 ■目次 第1章 社会におけるデータ・AI活用 ・1-1 社会で起きている変化 ・1-2 社会で活用されているデータ ・1-3 データサイエンス・AIの活用領域 ・1-4 データサイエンス・AIの利活用のための技術 ・1-5 データサイエンス・AIの利活用の最新動向 第2章 データの要約と可視化 ・2-1 データの要約 ・2-2 要約統計量 ・2-3 関係をとらえる ・2-4 データの可視化 ・2-5 まとめ ・2-6 参考文献 第3章 データの法規と倫理 ・3-1 データ解析のインパクトと倫理 ・3-2 データの健全な取り扱い ・3-3 個人情報 ・3-4 結果の説明可能性 ・3-5 データと情報に関する権利と法律 ・3-6 参考文献 第4章 データ活用の手法と実践 ・4-1 はじめに ・4-2 代表的な確率分布 ・4-3 確率論とベイズの定理 ・4-4 推測統計学の基礎 ・4-5 統計的検定の基礎 ・4-6 ROC解析と推論の評価 ・4-7 モデリング ・4-8 回帰分析 ・4-9 単回帰分析 ・4-10 クラスタ分析 ・4-11 参考文献 第5章 データ構造、アルゴリズム、プログラミング ・5-1 プログラミングの話題に入る前に ・5-2 データ構造 ・5-3 アルゴリズム ・5-4 プログラミングの基礎 ・5-5 参考文献 第6章 深層学習、生成AI ・6-1 深層学習 ・6-2 生成AI ・6-3 参考文献 第7章 オープンデータの活用 ・7-1 オープンデータ ・7-2 クリエイティブ・コモンズ ・7-3 機械判読に適したデータ ・7-4 さらなるデータの活用と課題 ・7-5 機械学習によるデータの活用と限界 付録A RStudioによるRの実行 付録B Google ColabによるPythonの実行 ■著者プロフィール ●石田基広(いしだ もとひろ):徳島大学デザイン型AI教育研究センター教授。1991年東京都立大学大学院博士後課程中退。著書『Rによるテキストマイニング入門 第二版』(森北出版, 2017)、『新米探偵、データ分析に挑む』(SB Creative, 2015)、監修Wonderful Rシリーズ(共立出版)、Data Science Library(技術評論社)。本書の監修、前書き、付録Bの執筆を担当。 ●大薮進喜(おおやぶ しんき):徳島大学教養教育院/デザイン型AI教育研究センター教授。博士(理学)。2003年東京大学大学院理学系研究科博士後期課程修了。専門は宇宙物理学。本書の監修、第1章の執筆を担当。
-
3.0生成AIにどの業務を任せればよいのか? いま多くの企業は生成AIの導入フェーズを終え、活用フェーズに移行しつつあります。 どのように生成AIと向きあい、活用するべきでしょうか? 本書は、営業、マーケティング、R&D、製造・物流、顧客管理、人事、情報システム、経営企画・経理財務など8部署50業務ごとの活用方法を徹底分析。部署ごとの業務をどの程度AIに任せられるのか、「データ」と「ルール」の2軸で構成されたマトリクスに落とし込んで解説します。 プロジェクトの進め方、費用対効果の測定方法、そしてそしてERPやCRM、Copilotといった他のソリューションとの連携の可能性もカバーしています。 生成AIを単なるツールで終わらせない、戦略的かつ計画的に活用できるようになるための要諦を示す一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 あたらしい1年生シリーズ 「データサイエンス1年生」の登場! ヤギ博士、フタバちゃんと一緒に データサイエンスの世界に飛び込んでみよう! 【本書の概要】 Python1年生でもおなじみのヤギ博士とフタバちゃんと一緒にデータサイエンスの基本について体験できる書籍です。データサイエンスに必要な知識から始まり、基本的なデータの読み解き方や、データの傾向や特徴をつかむ方法について解説します。 【本書の開発環境】 Google Colaboratory 【対象読者】 ・Pythonの基本文法は知っている方(『Python1年生』を読み終えた方) ・データサイエンスについて知りたい初心者 ・Pythonを使ってデータサイエンスの手法を体験したい初心者 【本書のポイント】 ・対話形式で、イラストを交えながら、基礎知識を解説します。 ・データの読み解き方をサンプルを元に学習できます。 ・データの傾向や特徴のつかみ方を学習できます。 【目次】 第1章 「好奇心×データ」で世の中の謎を解き明かそう 第2章 データサイエンスの基本的な手順 第3章 データからわかることは?:探索的データ分析 第4章 本当にそうだろうか?:確証的データ分析 第5章 アイスクリームの売り上げ分析で体験 第6章 AIで変わるデータサイエンスの未来 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコンBASICマガジン』(電波新聞社)の時代からゲームを作り続けて、現在はコンテンツ制作や執筆活動を行い、関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。近著に『Python2年生 スクレイピングのしくみ 第2版』、『Python2年生 データ分析のしくみ 第2版』『ChatGPTプログラミング1年生 Python・アプリ開発で活用するしくみ』、『Python3年生 ディープラーニングのしくみ』、『Python2年生 デスクトップアプリ開発のしくみ』、『Python1年生 第2版』、『Python3年生 機械学習のしくみ』、『Java1年生』、『動かして学ぶ! Vue.js 開発入門』(いずれも翔泳社)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.0ChatGPT&Midjourneyによる プロンプトエンジニアリングの 基本的な手法が学べる 【企画背景】 画像生成AIのMidjourneyやStable Diffusion、文章生成AIのChatGPTなどに代表される生成AIは、その高い精度と自然言語によるインターフェイスにより現在世界中の注目を集めています。生成AIはビジネスや開発の現場など多方面で利用が活発になり、生成AIでコンテンツを作成するプロンプトエンジニアリングの需要が高まってきています。 【ChatGPTとは】 会話形式で質問に答えてくれる文章生成AI。 【Midjourneyとは】 テキストから画像を作成する画像生成AI。 【書籍の概要】 生成AIを利用したプロンプトエンジニアリングの実践手法について解説した書籍です。生成AIの概要と基本的な利用手法から始まり、文章生成AIや画像生成AIを利用したコンテンツ生成の基本的な手法を解説します。最終章では今後の生成AIの展望についても触れています。 【対象読者】 ・文章生成AIや画像生成AIを利用したい方 ・プロンプトエンジニアリングに興味ある方 【本書の特徴】 ・ChatGPTやMidjourneyといった人気の生成AIの概要をつかめる ・文章生成AIや画像生成AIのプロンプトエンジニアリングの基本手法がわかる ・ChatGPTとMidjourneyを組み合わせたプロンプトエンジニアリング手法がわかる 【目次】 Chapter0 イントロダクション Chapter1 生成AIの躍進 Chapter2 文章を生成するAI:ChatGPTによるプロンプトエンジニアリング Chapter3 画像を生成するAI:MidjourneyによるAI画像生成 Chapter4 生成AIによる創作活動 (ChatGPT&Midjourney) Chapter5 生成AIの未来 Appendix さらに学びたい方のために 【著者プロフィール】 我妻 幸長(あづま・ゆきなが) 「ヒトとAIの共生」がミッションの会社、SAI-Lab株式会社の代表取締役。AI関連の教育と研究開発に従事。 東北大学大学院理学研究科修了。理学博士(物理学)。 法政大学デザイン工学部兼任講師。 オンライン教育プラットフォームUdemyで、10万人以上にAIを教える人気講師。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。