情報科学作品一覧

  • Rによる多変量解析入門 データ分析の実践と理論
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 多変量解析手法の理論と実践をバランスよく習得できる!  様々な媒体、経路を通じて大規模データが、驚くほど低コストで入手できるようになった現在、多変量解析手法に習熟したデータサイエンティストに対する学術界、ビジネス界からのニーズは非常に高まっており、これに対して大学や企業では、高いデータ解析力を持った人材の育成に注力し始めています。しかし、多くの多変量解析についての学習書は、理論的な説明に終始し、実務場面でどのように利用されているかについて、殆ど配慮がないのが現状です。  そこで本書は、多変量解析手法の理論と実践をバランスよく解説することで、統計が得意ではない大学生や実務者にも利用しやすい構成とし、本書1冊で多変量解析手法を実務に応用できるまで習得できる内容となっています。 第I部 多変量解析の基礎 第1章 多変量解析の基礎を学びたい―R による多変量データの基本的な統計処理 第2章 R によるデータハンドリングを学びたい ―アンケートデータと ID-POS データのハンドリング 第II部 量的変数の説明・予測 第3章 現象を説明・予測する統計モデルを作りたい (1) ―重回帰分析 第4章 現象を説明・予測する統計モデルを作りたい (2) ―階層的重回帰分析 第5章 さまざまな集団から得られたデータを分析したい―マルチレベルモデル 第6章 複雑な仮説を統計モデルとして表したい (1)―パス解析 第III部 心理尺度の分析 第7章 心理尺度を開発したい (1) ―探索的因子分析 第8章 心理尺度を開発したい (2) ―確認的因子分析 第9章 複雑な仮説を統計モデルとして表したい (2) ―潜在変数を伴うパス解析 第IV部 質的変数の説明・予測 第10章 クロス集計表をもっとていねいに分析したい―対数線形モデル 第11章 カテゴリに所属する確率を説明・予測したい―ロジスティック回帰分析 第V部 個体と変数の分類 第12章 似たもの同士にグループ分けしたい―クラスター分析 第13章 質的変数間の連関を視覚化したい―コレスポンデンス分析 第VI部 多変量解析を使いこなす 第14章 データが持つ情報を視覚化したい―パッケージggplot2による描画 第15章 多変量解析を実践で生かしたい―手法の組み合わせ
  • DETR&最新・物体検出アーキテクチャ入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Transformerを用いた代表的検出モデル「DETR」を中心に、ViT(Vision Transformer)による物体領域の検出、「CenterNet」による中心点予測型の検出、言語生成型アプローチである「Pix2Seq」、さらには「RetinaNet」などのCNN系アーキテクチャまで幅広くカバー、近年の物体検出分野の主要モデルを、比較・理解しながら習得できます。 全編にわたり、「Keras」(一部対応)と「PyTorch」の両ライブラリに対応しており、モデルの構築、推論、可視化、バックボーン(ResNet101/152)の変更や、COCOデータセットを用いた大規模推論処理の実装までを丁寧に解説しました。 画像分類のその先…「どこに、何があるのかを検出する」という実践的課題に挑むすべての人にお勧めの一冊です。 1章 開発環境について 2章 ViTモデルによる物体領域の検出(Keras) 3章 ViTモデルによる物体領域の検出(PyTorch) 4章 CenterNetによる物体領域の検出(PyTorch) 5章 DETRモデルによる物体検出(ResNet101) 6章 ResNet152をバックボーンとするDETRによる物体検出 7章 COCOトレーニングセットを使用下物体検出 8章 事前トレーニング済みDETRモデルによる物体検出 9章 Pix2Seqモデルを用いた物体検出(PyTorch) 10章 RetinaNetによる物体検出(Keras)
  • つくりながら学ぶ!PyTorchによる発展ディープラーニング
    4.3
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書ではディープラーニングの発展・応用手法を実装しながら学習していきます。ディープラーニングの実装パッケージとしてPyTorchを利用します。扱うタスク内容とディープラーニングモデルは次の通りで「ビジネスの現場でディープラーニングを活用するためにも実装経験を積んでおきたいタスク」という観点で選定しました。 [本書で学習できるタスク] 転移学習、ファインチューニング:少量の画像データからディープラーニングモデルを構築 物体検出(SSD):画像のどこに何が映っているのかを検出 セマンティックセグメンテーション(PSPNet):ピクセルレベルで画像内の物体を検出 姿勢推定(OpenPose):人物を検出し人体の各部位を同定しリンク GAN(DCGAN、Self-Attention GAN):現実に存在するような画像を生成 異常検知(AnoGAN、Efficient GAN):正常画像のみからGANで異常画像を検出 自然言語処理(Transformer、BERT):テキストデータの感情分析を実施 動画分類(3DCNN、ECO):人物動作の動画データをクラス分類 本書は第1章から順番に様々なタスクに対するディープラーニングモデルの実装に取り組むことで高度かつ応用的な手法が徐々に身につく構成となっています。各ディープラーニングモデルは執筆時点でState-of-the-Art(最高性能モデル)の土台となっており、実装できるようになればその後の研究・開発に役立つことでしょう。 ディープラーニングの発展・応用手法を楽しく学んでいただければ幸いです。
  • 試して学ぶ Dockerコンテナ開発
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンテナ型の仮想環境を作成、実行するためのプラットフォーム、Dockerの実践解説書。 本書は、エンジニアが普段行うようなWebアプリケーション開発環境の構築を、Dockerを用いて行うにはどのようにすればよいか、またその環境をDockerで作ることによってどのように開発を効率化させることができるか、にフォーカスした内容となっています。 PHPのLaravel、Node.jsのNuxt.js、RubyのSinatraとRuby on Rails、PythonのPyTorchといった、Webアプリケーションや機械学習の領域で用いられているものを対象として取り上げました。それぞれの解説は独立したものとなっているので、読者の方が使っている言語はもちろん、経験していない言語やフレームワークを試すのにも良いでしょう。
  • 試して学ぶ スマートコントラクト開発
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、スマートコントラクトアプリケーションを事例として、パブリックなブロックチェーンを用いたスマートコントラクト開発の手法を紹介する書籍です。 スマートコントラクトプラットフォームのデファクトであるEthereumと、スマートコントラクトを開発するためのプログラミング言語Solidityを中心に取り上げ、実際にアプリケーションを開発するためのプロセスを体験することができます。 スマートコントラクトのコーディングやテスト手法はもちろん、フロントエンドやミドルウェアを含めたアプリケーション提供のための包括的な手順を説明しています。さらに、ブロックチェーンの特徴を活かすサービスデザインの取り組みも紹介します。
  • Google Colaboratoryで学ぶ!あたらしい人工知能技術の教科書 第2版 機械学習・深層学習・強化学習で学ぶAIの基礎技術
    -
    待望の第2版! 定番のAI開発プラットフォームで 機械学習や深層学習、強化学習、転移学習の 基礎を習得 【本書の概要】 本書はUdemyで大人気の講座『AIパーフェクトマスター講座 -Google Colaboratoryで隅々まで学ぶ実用的な人工知能/機械学習-』をもとにした書籍です。 ●機械学習(回帰、k平均法、サポートベクターマシン) ●深層学習(画像識別や画像生成、RNN) ●強化学習(Cart Pole問題、深層強化学習) などのAI開発で必要となる人工知能技術について解説します。 サンプルを動かしながら、AI技術の仕組みを理解できます。 開発環境にはGoogle Colaboratoryを使用します。 【Google Colaboratoryとは】 ブラウザ上で利用できる機械学習や深層学習向けの開発環境です。 GPUを無料で利用できるので、コードの実行時間を大幅に短縮できます。 【本書ポイント】 ●機械学習・深層学習・強化学習の基礎知識を一気に学べる ●Pythonでコードを動かしながら機械学習・深層学習・強化学習の理論を学べる 【第2版の変更点】 ●Google Colaboratory環境のアップデート(2024年8月時点) ●各種ライブラリのアップデート ●データセット(住宅データ)の変更 【対象読者】 ●何らかのプログラミング経験のある方 ●機械学習・深層学習・強化学習を学ぶ意欲のある方 ●高校数学以上の数学知識のある方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • ディジタル情報流通システム コンテンツ・著作権・ビジネスモデル
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、ITの本質を分析し、これからのブロードバンド社会にむけた技術開発の方向を明らかにすることを目的とする。
  • 生成AIによるソフトウェア開発 ―設計からテスト,マネジメントまでをすべて変革するLLM活用の実践体系―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 生成AIおよびエージェントが拓くソフトウェア開発新時代 - 学会監修による全工程網羅の体系、事例、動向  本書は、情報処理学会ソフトウェア工学研究会の監修のもと、生成AI・LLM・エージェントをソフトウェアの設計からテスト、運用・保守にいたる全工程、さらにはマネジメントにまで組み込むための実践的な体系をまとめた一冊です。表面的な技術の流行にとらわれず、事例や研究動向を交えながら、社会や産業における新たな方向性を解説しています。  生成AIは、従来の自動化ツールでは困難だった多様で複雑なタスクを、思考のプロセスをともない、人と自然に対話するように遂行できます。これにより、顧客の声を的確に反映し、価値を継続的に高め、効率的かつ信頼性の高い開発と運用が可能になります。本書を通じて、従来の常識を超えたAI時代の開発のあり方を体得してください。 Chapter 1 生成AIの仕組み Chapter 2 生成AIによるソフトウェアの要求 Chapter 3 生成AIによるソフトウェアの設計 Chapter 4 生成AIによるプログラムの実装 Chapter 5 生成AIによるソフトウェアのテスト Chapter 6 AIエージェントによるソフトウェア開発の自動化 Chapter 7 生成AIの評価 Chapter 8 生成AIを活用したプロセスとマネジメント Chapter 9 生成AIによるソフトウェア産業の将来
  • LLMとハルシネーション ―基礎と対策―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 はたしてなぜ生成AIは嘘をつくのか? ハルシネーションの原理とその対策を一からわかりやすく解説  生成AIを利用する際に最も厄介な問題となるのがハルシネーション(hallucination)です.ハルシネーションは幻覚とも呼ばれる現象で,一見もっともらしいのに,まったく正しくない文章が生成されることをいいます.これによって,実際にはありもしない発言や事実が大量につくり出され,SNSなどで拡散されて私たちの社会や認識を大きくゆがめてしまっています.これからの情報系エンジニアにとって,ハルシネーションの対策に必要な知見やスキルは非常に重要です.  本書では,ハルシネーションに挑むための土台となるべき自然言語処理や機械学習の基礎的な知識や,「言語の正しさ」に関する基本的な知見から解説しています.そして,これまで研究されてきたハルシネーションの検出方法や,LLMの学習方法および構造の改善,RAGや外部モデルの利用によるハルシネーション対策について解説しています. AI関連の技術は日進月歩で進歩していますが,エンジニアにとって重要なことは流行に乗り遅れないことより,少しずつ自分の引き出しを増やしていくことであると考えられます.この観点から,本書では「スタンダードな手法への手っとり早い入門」という以上の価値を提供できるように心がけています. Chapter 1 自然言語処理の基礎 1.1 自然言語処理とは 1.2 トークン化と分散表現 1.3 言語モデル 1.4 自然言語処理の評価指標 1.5 言語の研究の歴史 Chapter 2 統計学と機械学習の基礎 2.1 帰 納 2.2 統計的推測 2.3 強化学習 2.4 さまざまな生成AI Chapter 3 TransformerとLLM 3.1 Transformer登場の背景 3.2 Transformerの内部構造 3.3 学 習 3.4 TransformerによるLLM 3.5 ChatGPT 3.6 さまざまな大規模言語モデル Chapter 4 ハルシネーションの基礎 4.1 ハルシネーションとは 4.2 事実性/忠実性 4.3 内在型/外在型 4.4 文や知識の正しさとは 4.5 ハルシネーションの発生源 4.6 ハルシネーションの検出と評価 4.7 ハルシネーションに関する評価ベンチマーク Chapter 5 ハルシネーションの抑制 5.1 学習データの改善 5.2 デコーディング方法の改善 5.3 モデル構造の改良 5.4 プロンプトエンジニアリング Chapter 6 外部知識活用にもとづく生成 6.1 検索を組み合わせた生成 6.2 疎ベクトル検索 6.3 密ベクトル検索 6.4 知識データベース 6.5 RAGの発展的な話題 6.6 ツール拡張生成
  • 改訂新版 Google Cloudではじめる実践データエンジニアリング入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆BigQuery徹底活用!◆ 2021年2月に刊行した「Google Cloudではじめる実践データエンジニアリング入門」の改訂版です。改訂版の刊行までにデータ基盤に求められる要件は変化し、本書ではその間に進化を続けたGoogle Cloudの各サービスの情報をまとめています。 - Google Cloudの新サービスの反映:Dataform、Dataplex、BigLake、Datastream、Vertex AI、Geminiなど - 各種Google Cloudの新機能のアーキテクチャへの反映:BigQuery、Dataflow、Pub/Sub、Cloud Coposer、Lookerなど データエンジニアリングの業務について一般的な知識を整理しつつ、Google Cloud 上でどのように構築するのかを、実践経験豊富な著者陣の現場のノウハウとともに説明します。 ■こんな方におすすめ - すでにソフトウェアコードはある程度かけるが、実践的にデータエンジニアリングへの入門をしたい方 - SQL を利用した分析を行っているが、データ基盤がどういう形なのか興味がある方 - すでにGoogle Cloud をデータ基盤として利用しているが、自社の設計について体系的に理解したい方、より良くする方法を探している方 ■目次 第1章 データ基盤の概要 第2章 データウェアハウスの概念とBigQueryの利用方法 第3章 データウェアハウスの構築 第4章 レイクハウスの構築 第5章 ETL/ELT処理 175 第6章 ワークフロー管理とデータ統合 222 第7章 データ分析基盤におけるセキュリティとコスト管理の設計 第8章 BigQueryへのデータ集約 第9章 ビジネスインテリジェンス 第10章 リアルタイム分析 第11章 発展的な分析 - 地理情報分析と機械学習、非構造データ分析
  • 深層学習による画像認識の基礎
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 CNNとViTによる画像認識を本格的に学ぶために! 本書は、深層学習(ディープラーニング)に基づく2つの技術、畳込みニューラルネットワーク(CNN)とVision Transformer(ViT)を通して、画像認識の基礎を実践例とともに解説するものです。 画像認識技術は、顔認証や異常検知など、現代社会に欠かせない技術として広く応用されており、研究開発も盛んに行われています。本書では、確かな理解のもとに画像認識技術の研究開発が可能となるよう、前半において理論的な基盤(深層学習の基本事項、畳込みニューラルネットワーク(CNN)、Vision Transformer(ViT))を、紙数を割いてわかりやすく解説していきます。また後半では、画像認識の基本的手法である物体検出と領域分割、学習データの大規模化に欠かせない自己教師あり学習を実例とともに解説し、最終章では今後ますます重要になると見込まれるVision and Languageのマルチモーダル処理を詳細に扱います。 全体を通して、擬似コードなどでアルゴリズムを把握できるようにしたほか、Python(PyTorch)のサンプルコードも用意し、読者自身が手を動かして画像認識を実践することができるようにしました。 第1章 画像認識の概要 第2章 深層学習の基礎 第3章 畳込みニューラルネットワーク 第4章 Vision Transformer(ViT) 第5章 物体検出 第6章 領域分割 第7章 自己教師あり学習 第8章 画像と自然言語
  • ゲームAI研究の新展開
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ゲームAI研究の「これまで」と「これから」を第一線の研究者がわかりやすく解説  本書は,ゲームAI研究の「これまで」と「これから」を第一線の研究者がわかりやすく解説した書籍です.  ゲームAI研究は従来より,AIの社会実装における重要な示唆を与えるものとして大きな役割を果たしてきました.特に近年,深層学習の登場により注目を集める分野になっています.しかし,すべての情報を得られない不完全情報ゲームや実環境の外乱が結果を大きく左右するスポーツ等の不確定ゲーム,コミュニケーションがゲームの勝敗に大きな影響を与えるコミュニケーションゲームなど,まだまだ多くのゲームで人間を超えるゲームAIをつくることが困難な分野もあります.さらに,AlphaGoZeroが人間のプロを超越したとされる完全情報ゲームの囲碁でも,囲碁AIが陥ってしまう穴が見つかっています.  また,人間を超越したゲームAIが人間と共存するために求められる人間らしさや楽しさの理解,これからのデジタルゲームに求められるゲームデザインとゲームAI,ゲーム体験の評価手法および人間の認知機能の理解なども課題として残されています.  本書は,これまでのゲームAI研究の理解の上に,これからゲームAI研究をする人にとってヒントとなるエッセンスの詰まった必読書です. CHAPTER 1 ゲームと知能研究 1.1 知能研究におけるゲーム 1.2 ゲーム研究のメインストリーム 1.3 ゲーム研究の残された課題 CHAPTER 2 不完全情報ゲーム 2.1 CFR 2.2 ガイスター 2.3 大貧民 2.4 ポーカー 2.5 不完全情報ゲームのゲームAIの可能性 CHAPTER 3 不確定ゲーム 3.1 バックギャモン 3.2 バックギャモンのゲームAI 3.3 ゲームAIの評価の可視化 CHAPTER 4 コミュニケーションゲーム 4.1 ゲームにおける社会的相互作用 4.2 Hanabi 4.3 人 狼 CHAPTER 5 実環境のゲーム 5.1 カーリング 5.2 測定データの処理 5.3 研究事例 5.4 実環境で人間プレイヤを支援する技術 5.5 実戦運用と課題 5.6 ミニ四駆AI 5.7 ミニ四駆AIの技術と課題 CHAPTER 6 ゲームデザイン 6.1 ゲームにおけるゴール 6.2 ルール設定 6.3 ゲームデザインの表現 6.4 レベルデザイン 6.5 難易度の調整 CHAPTER 7 メタAIとプロシージャル コンテンツ ジェネレーション 7.1 メタAI,PCG,機械学習 7.2 メタAIとは 7.3 アルゴリズムによるPCG 7.4 機械学習を用いたPCG 7.5 学習を含んだMCS-AI動的連携モデル CHAPTER 8 人間らしさと楽しさの演出 8.1 人間らしさのさまざまな側面 8.2 ゲームの要素とAI技術 8.3 ゲームAIに求められる人間らしさ 8.4 人間プレイヤの人間らしさ 8.5 人間らしさの実装方法 8.6 人間プレイヤの感じ方のモデリング 8.7 実例(FPS,スーパーマリオブラザーズ,囲碁,不確定ゲーム) CHAPTER 9 ゲーム体験の評価 9.1 AlphaZero以後のゲームAI研究 9.2 主観的事項の評価・計測手法 9.3 楽しさの評価 9.4 今後の課題 CHAPTER 10 人間の認知機能とスキルアップの原理 10.1 スキルアップの原理 10.2 熟達にともなう潜在化と自動化 10.3 熟達者の認知特性の実例 10.4 熟達者の脳 CHAPTER 11 認知研究とAIの人間への影響 11.1 ゲームと認知研究 11.2 ゲームの認知科学的研究 11.3 生体データの計測と解析 11.4 ゲームによる学習支援 11.5 人間を超えるゲームAIの反響 11.6 将棋界に起こった変化と邂逅 11.7 囲碁AIが囲碁界に与えた影響 11.8 eスポーツとゲームAI 11.9 人間の知を超えたゲームAIとその応用
  • 徹底解説 NFTの理論と実践
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 NFTを仕組みとコードで知り尽くす!  NFTは、ブロックチェーン技術における最大のトレンドです。唯一無二のデジタルトークンとして、アートはもちろん、メタバースの不動産、チケット機能など、様々な応用があります。本書は、NFTについて基礎から応用まで深く学べる、実践的なガイドです。暗号通貨の歴史やブロックチェーンの基本概念、そしてスマートコントラクト設計やデプロイ方法など、理論と実践の双方を広くカバーします。すぐにデプロイできる多数のサンプルも紹介、NFTやDeFiの開発に興味ある方は必読の一冊です。この本を手に取って、NFTの深い世界に飛び込んでみてください! はじめに 第1章 NFTの全体像  1.1 NFTとは  1.2 NFTが誕生するまで  1.3 NFTの様々な事例  1.4 Fungibility?代替可能性とは  1.5 ブロックチェーンとNFT  1.6 NFTのエコシステム 第2章 NFTを体験する  2.1 ウォレットの準備  2.2 ETHの購入と出庫  2.3 NFTの購入  2.4 NFTの発行と販売. 第3章 NFTを支える技術  3.1 ブロックチェーンの設計思想と仕組み  3.2 BitcoinとEthereum  3.3 ブロックチェーンノードとNode as a Service  3.4 メインネットとテストネット  3.5 ブロックチェーンエクスプローラ  3.6 スマートコントラクト  3.7 Ethereum上のスマートコントラクト  3.8 コンテンツのホスティング  3.9 Dappsフロントエンドとweb3.js 第4章 最初のトークン:Hello NFT  4.1 事前準備  4.2 NFTコードの作成  4.3 ローカル環境でのテスト  4.4 パブリックブロックチェーンへのデプロイ  4.5 フロントエンドの実行  4.6 コントラクトコードのアップロード 第5章 スマートコントラクト開発に役立つ知識  5.1 Solidity言語について  5.2 Ownableによる管理用の関数の実装  5.3 アップグレード可能なコントラクト  5.4 ガスの節約  5.5 パブリックブロックチェーンへのデプロイ  5.6 テストの記述  5.7 TypeScriptを用いた開発 第6章 NFTの規格ERC-721について  6.1 実装すべき関数  6.2 2種類の移転関数  6.3 2種類の委任  6.4 実装すべきイベント1  6.5 トークンのメタデータについて  6.6 トークンを列挙できるようにするERC721Enumerable  6.7 発展的な内容 第7章 IPFS上のアートNFT  7.1 IPFSについて  7.2 Pinataへのアップロード  7.3 コントラクトの作成  7.4 トークンの発行  7.5 NFT売買サービスでの確認 第8章 チケットトークンの実装  8.1 設計について  8.2 チケットコントラクトの開発  8.3 フロントエンドの開発  8.4 バックエンドの開発  8.5 動作の確認  8.6 発展的な検討事項 第9章 ジェネラティブNFTの実装  9.1 設計について  9.2 コントラクトの開発  9.3 メタデータ生成ロジックとバックエンドの準備  9.4 フロントエンドの準備  9.5 動作の確認  9.6 テストネットでの実験 付録 索引
  • ハンズオンで分かりやすく学べる Google Cloud実践活用術 データ分析・システム基盤編
    -
    クラウドのサービスが高度化を続けています。素の仮想コンピューターに一からシステムを構築するというのはもはや時代遅れ。用意されたさまざまなサービスを組み合わせて短期間で目的のシステムを構築することが重要になっています。  Google Cloud(旧名称Google Cloud Platform=GCP)にはさまざまなサービスがあり、これらを活用することで、開発・運用・保守の短縮化・低コスト化・安定化が可能です。本書はGoogleの監修を受けており、2巻構成でGoogle Cloudの「AI・機械学習」「ビッグデータ」「コンテナ」の機能と使い方を解説します。本巻ではこの中で「ビッグデータ」と「コンテナ」に焦点を当てます。  ビッグデータを管理するBigQueryは従来のデータベースと異なり、インデックスを作る必要がないのが特徴。データ分析に力を発揮します。コンテナを管理するオーケストレーション・ツールではGoogleが開発したKubernetesが業界標準となっていますが、Google CloudではKubernetesを使いやすくするGoogle Kubernetes Engine(GKE)を用意しています。  本書ではハンズオンでこれらを学習できます。データはGoogleが用意しているものを使っているので、実際に試すのも容易です。
  • 医療AIとディープラーニングシリーズ 2021-2022年版 標準 医用画像のためのディープラーニング-実践編-
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 医用画像におけるディープラーニング(Deep Learning)をまとめた本格的なシリーズ  初版(2019年7月発行)以降の変更点を取り込んだ最新版!  医用画像に人工知能を本格的に導入するためのわかりやすい解説書。 ・TensorFlow+Kerasで行う ・Anaconda上で環境構築する ・データはだれでも入手できるデータを使う を基本的な方針としてまとめました。  少しでもプログラミングができれば、だれでも読み込める内容になっています。 Chapter 1 環境構築 Chapter 2 データの準備/前処理 Chapter 3 Shallow network の利用 Chapter 4 畳み込みニューラルネットワークの利用 Chapter 5 画像の領域分割( U-Net) Chapter 6 動画像のシーン分割と分類 Chapter 7 画像のノイズ除去 Chapter 8 画像の超解像 Chapter 9 画像の特徴抽出 Chapter 10 画像の変換や生成 Chapter 11 評価方法
  • 実践GAN 敵対的生成ネットワークによる深層学習
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 GAN(Generative Adversarial Networks):敵対的生成ネットワークは機械学習技術の一種で、2つの分離したニューラルネットワークを使い実物と区別が付かないほどリアルな画像を生成することを可能とします。 本書はGAN:敵対的生成ネットワークを学びたい方のために入門から実装まで、理論を交えつつ解説していきます。本書全体を通じてJupyter Notebookを使い、実装はPython、Kerasで行っていきます。 機械学習とニューラルネットワーク、Pythonプログラミングについてある程度の経験がある方を主な対象読者としており、数学に関しては最小限のものに絞って解説します。 本書の目的は、GANが達成してきたことを理解するための知識と道具を提供し、そこから新しい応用を見つけ作り出す力をつけていただくことです。GANは多くの可能性に満ちていますから、意欲的な方々であれば学術界・実世界に大きなインパクトを与えられることでしょう。 Part 1 GANと生成モデル入門 Part 2 GANの発展的な話題 Part 3 ここからどこへ進むべきか
  • 大規模言語モデルへのアプローチ ―機械翻訳における文例を用いた文解析木発生方式―
    NEW
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 もう一つのLLM ―大規模言語モデルの一手法―  解析木を中間データとする機械翻訳方式は,原言語解析木発生,原言語解析木から目的言語解析木への言語変換,目的言語解析木から目的言語文発生という縦続する3つの処理から構成される.このうち原言語文解析木発生処理は,方式が原言語文を理解することに相当し,処理誤りの9割がこの処理で発生するといわれている.  本書の「文例を用いた文解析木発生方式」は,この原言語解析木発生動作を行うものであり,既存の機械翻訳方式KATEの解析木発生部分をベースとして,これに多数の文例文とその句構造解析結果である文例解析木の対を用いるための改良を加えた方式である.この方式は,大量の言語データを用いる点において大規模言語モデル(LLM)の一種といえる.  「文例を用いた文解析木発生方式」は,1つのデータ対の効果が大きいことにより,学習データの枯渇の影響を受けにくいという利点が得られる.本書の後半で通常のニューラルネットワークを用いた単語列間変換(seq2seq)方式との共同動作の構想を示している.同一入力に対して「文例を用いた文解析木発生方式」とニューラルネットワークを用いたseq2seq変換方式という動作機構の全く違う2つの方式の出力間の共通部分を得ることにより,信頼度の高いデータ対を獲得し,それを新しいデータ対として用いることにより,両方式に対してより信頼性の高いデータ対の自動取得が可能となることが期待される. Ⅰ編 文解析木発生方式 序章 まえがき 1章 機械翻訳における文例を用いた文解析木発生方式の構成 2章 共通単語列の検出 3章 文例排他木の作成 4章 一時排他木木値算出 5章 上位被覆 6章 解析木発生 7章 禁止木非含有判定 8章 文解析木発生方式各部分の役割 9章 機械翻訳における文例を用いた文解析木発生方式の動作実験 10章 ニューラルネットワークを用いた単語列間変換との結合動作に関する構想 11章 ニューラルネットワーク単語列間変換による翻訳に対する1つの提案 12章 Ⅰ編のまとめ Ⅱ編 文解析木発生方式のアルゴリズム A. Ⅱ編の構成 B. 一時排他木木値ユニットを除く一時排他木発生モジュール C. 一時排他木木値ユニット D. 上位被覆モジュール E. 最大木値木発生ユニット F. 解析木発生モジュール G. ニューラルネットワークを用いた単語列間変換との共同動作 H. ニューラルネットワーク単語列間変換による翻訳に関するアルゴリズム
  • LLM本番システム構築ノウハウ 基礎から実装・運用の方法、アプリ構築の実例まで
    完結
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 現場で使えるLLMを構築、本番環境に展開!成功へ導くための包括的なガイド本書では、大規模言語モデル(LLM)を実装し、本番環境にデプロイするためのノウハウを解説。LLMの基礎概念から、実装、デプロイ、運用、管理における複雑な課題とその解決策まで、包括的に取り上げます。まず、LLMの可能性と限界、そして自社構築か既存サービスかの判断基準などから説明。また、運用(LLMOps)に関しては、ダウンロード時間、デプロイ時間、レイテンシー、GPU管理、トークン制限、ハルシネーション、バイアスといった具体的な課題への対策を詳しく解説。データエンジニアリングの重要性にも触れ、成功に不可欠なデータ準備、評価指標、クリーニング、前処理を説明。トレーニングとファインチューニングのほか、効果的なプロンプトエンジニアリングについても具体的に紹介。さらに、Llamaの再実装、Raspberry Piというエッジデバイスへのデプロイ、AIコーディング拡張機能の構築など、読者が自らの手で動かせるようなサンプルプロジェクトを説明します。本書は、LLMの可能性を最大限に引き出し、実際に機能する製品に変えるために必携の一冊となっています。※ 本書は『LLMs in Production: From language models to successful products』(Manning Publications)の翻訳書です。※本書の内容はPythonとPyTorchの知識があることが前提となっています。【章構成】第1章 言葉の覚醒:なぜLLMは注目を浴びたのか第2章 LLM:言語モデリングの本質を探る第3章 LLMOps:LLM向けのプラットフォームを構築する第4章 LLMのためのデータエンジニアリング:成功へのステップ第5章 LLMの訓練:生成モデルの作り方第6章 LLMサービス実践ガイド第7章 プロンプトエンジニアリング:プロンプトの魔術師になる第8章 LLMアプリケーションの構築:インタラクティブな体験を作り出す第9章 LLMプロジェクトの作成:Llama 3を再実装する第10章 AIによるコーディング支援プロジェクト:この機能がもっと早くほしかった第11章 Raspberry Piでのデプロイ:限界に挑戦第12章 本番環境は絶えず変化する:物語はまだ始まったばかり
  • 医療健康データの取扱説明書 ―IT技術者が知っておくべき要点―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 医療健康情報に関するデータを適切に取り扱うための知識をわかりやすく整理! IT技術者を主要読者対象として、医療健康情報を高度に活用するための、医療倫理にもとづくELSI(Ethical, Legal, Social Implications)、ならびに、関係法令等についてわかりやすく解説した書籍です。 医療健康情報の活用の歴史やポイント、および、医療健康情報を扱う研究者・技術者ならば当然抑えておくべき倫理的配慮、ならびに活用事例や課題についてまとめています。 人の医療健康にかかわる分析や、生成AIとの連携など、今後の発展や方向性に興味がある方にもお勧めです。 第1章 医療におけるDX~なぜ、医療機関で情報処理技術者が必要とされるのか?~ 第2章 医療機関の現状と課題 第3章 医療健康情報の利活用の現状と課題 第4章 医療保健情報を取り巻く法制度と解説 第5章 匿名加工医療情報、仮名加工医療情報の利活用
  • データサイエンス教本(第2版) ―Pythonで学ぶ統計分析・パターン認識・時系列データ分析・深層学習―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonでデータサイエンスの理論と実践を学ぶ  データサイエンスは、「データを科学的に扱う」学問分野です。近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。  本書は、データサイエンスの基礎となる統計分析からパターン認識(機械学習)、時系列データ分析、深層学習などを、Pythonを使って実際に分析しながら学ぶものです.  データの取り扱い、確率・統計の基礎といった基本的なところから、パターン認識、深層学習といった統計・機械学習手法、時々刻々と変化する時系列データの分析などの解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。  Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。  第2版にあたっては深層学習を大幅に拡充し、自然言語処理、生成系(AutoEncoder、GAN)などの近年重要視されるテーマを取り上げました。 1章 はじめに 2章 データの扱いと可視化 3章 確率の基礎 4章 統計の基礎 5章 回帰分析 6章 パターン認識 7章 時系列データ分析 8章 深層学習の基礎 9章 深層学習による画像処理 10章 深層学習による自然言語処理 11章 生成系深層学習 12章 深層強化学習 索引
  • 詳解セキュリティコンテスト
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 情報セキュリティ技術を競うコンテスト:CTF(Capture the Flag)について技術的な背景の解説を通し実践的に学んでいく一冊です。現代CTFにおいて主流である4ジャンルを解説します。 ・Web(Webアプリケーションへの攻撃) ・Crypto(暗号解読) ・Reversing(バイナリ解析) ・Pwnable(低級プログラムの掌握) 各Part冒頭には必要な基礎知識の説明を用意、幅広くかつ丁寧に解説しますので現代CTFの傾向が理解できるとともに、競技を楽しむための足腰を鍛えることができます。 「問題をどのような目線で分析するか」「どのような時に、どの解法を検討するか」といった問題と向き合う際の思考法への言及にも注目してみてください。 情報セキュリティの技を磨く足掛かりに。 CTFに臨むための技術を理論と実践で身に付けよう Part 1 準備 1章 CTF入門 2章 実習環境の準備 3章 問題環境の構築 4章 Python入門 Part 2 Web 5章 WebセキュリティとCTF 6章 Webの基礎知識 7章 ディレクトリトラバーサル 8章 XSS 9章 SQLインジェクション 10章 SSTI 11章 SSRF 12章 XXE Part 3 Crypto 13章 暗号について 14章 環境構築 15章 ハッシュ関数 16章 共通鍵暗号 17章 初等整数論 18章 RSA暗号 19章 ElGamal暗号 20章 その他の公開鍵暗号 21章 乱数 22章 練習問題 Part 4 Reversing 23章 Reversingを始める前に 24章 アセンブリ言語 25章 アセンブリを読んでみよう 26章 静的解析に触れてみよう 27章 動的解析を組み合わせよう 28章 より発展的な話題 29章 実践問題の解答 Part 5 Pwnable 30章 導入 31章 シェルコード 32章 スタックベースエクスプロイト 33章 共有ライブラリと関数呼び出し 34章 ヒープベースエクスプロイト 35章 仕様に起因する脆弱性 36章 実践問題の解法 付録A ASCIIコード 付録B Linuxシステムコール(x86_64) 付録C 主要な定数値一覧
  • Pythonによるバイオデータ解析入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 バイオのデータもPythonで! 生物学に関わる理解・研究では、コンピュータによるデータ処理が欠かせないものとなってきています。生物学の扱う系はもともと非常に複雑で雑音が多く、統計的な解析が広く使われてきましたが、特に最近のDNA/RNA解析ではいわゆる次世代シーケンサ(NGS)が大量のDNA配列データを生み出してそれを整理しなければならないなど、コンピュータによるデータ処理が必須になっています。  本書は、生物学分野において行われる、さまざまなデータ解析処理について、Pythonを用いて行う方法を解説し、理解することを目的としています。従来、簡単な処理はExcelを使ったり、RやSPSSなどの統計処理を主目的とする言語・ソフトウェアパッケージが用いられてきました。そのなかで本書は、比較的新しく、機械学習やデータ分析に優れたプログラミング言語であるPython を使って、初歩的なデータ処理をどのように行えばよいのかを紹介しています。 第 1 章 バイオデータ処理 第 2 章 プログラムを動作させるための知識 第 3 章 Pythonによる入力・出力データ加工のためのプログラミング 第 4 章 Pythonからバイオデータを扱うライブラリ 第 5 章 可視化のためのライブラリ 第 6 章 統計処理に便利な汎用の統計パッケージ 第 7 章 変異解析・発言解析の流れの例
  • 現場で使える!NumPyデータ処理入門 機械学習・データサイエンスで役立つ高速処理手法
    -
    機械学習・データサイエンスで役立つ高速処理手法 【本書の概要】 ビッグデータを扱う機械学習の現場では、Pythonの高機能で利用しやすい数学・科学系ライブラリが急速に広まってきています。 本書は、機械学習・データサイエンスの現場でよく利用されているNumPyの基本から始まり、 現場で使える実践的な高速データ処理手法について解説します。 特に、現場でよく扱う配列の処理に力点を置いています。 最終章では機械学習における実践的なデータ処理手法について解説します。 【NumPy(ナンパイ)とは】 NumPyは、機械学習・データサイエンスの現場で扱うことの多い多次元配列(行列やベクトル)を 処理する高水準の数学関数が充実しているライブラリです。 Python単体では遅い処理であっても、C言語なみに高速化できるケースもあり、 機械学習・データサイエンスの分野におけるデータ処理に欠かせないライブラリとなっています。 【対象読者】 機械学習エンジニア、データサイエンティスト 【著者紹介】 吉田拓真(よしだ・たくま) データサイエンス関連のサービスを提供する株式会社Spot 代表取締役社長。 Webメディア『DeepAge』編集長。 尾原 颯(おはら・そう) 東京大学工学部機械工学科所属。 大学ではハードウェア寄りの勉強が多め。 趣味はアカペラとテニス。基本的に運動が好き。最近、ランニングを始める。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • VDM++による形式仕様記述
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 明確な仕様の記述と検証を行わずして、抵当な開発を行うことは出来ない! ソフトウェア開発では、上流工程を自然言語で表現する。このため論理的不一致などがおき、手戻りが発生する。これを解決する方法として考えられたのが、数学を用いた形式手法である。本書は、この手法の一つであるVDMとオブジェクト指向記述言語VDM++について実践的に解説する。
  • “巧みさ”とロボットの力学 プレミアムブックス版
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ロボットが“巧みさ”を手に入れるには? 冗長自由度系の不良設定性から“巧みさ”の力学的原理に迫る 人が日常的に何気なく行っている、目標物に向けて手を伸ばしたり、物を掴んだりするような巧みな動作。 それを多関節・多自由度なロボットで実現するには、その動作を生み出す「プログラム(計算式)」を用意しなければなりません。そして、そのプログラムを記述する時に、逆運動学の不良設定性が問題となります。 この問題をいかに解消するか? それがロボットで「巧みさ」を実現するための鍵となります。 本書では、ロボットが自然にこの問題を解消するための、数学的道筋に言及し、「巧みさ」の源泉を探ります。 本書は『"巧みさ"とロボットの力学』(2008年5月刊行)をプレミアムブックス版として復刊したものです。内容は変更されていませんので、ご了承ください。
  • React Native+Expoではじめるスマホアプリ開発
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 JavaScriptによるネイティブアプリ開発の現場のノウハウ、教えます! 「React Native」は、Facebookが開発しているスマートフォンアプリ向けの開発環境で、2015年3月にオープンソースとして公開されました。ほとんどのコードをJavaScriptで記述でき、スマートフォンのAndroidとiOSに両対応したネイティブアプリの開発が可能です。名前からもわかるように、同じくFacebookが開発したUI用のライブラリであるReactをベースの技術としており、コンポーネントを組み合わせてUIを構築できます。Facebookは、自社や傘下のInstagramのスマートフォンアプリ開発にReact Nativeを利用しています。 Reactをベースにし、JavaScriptで開発を行えるため、Web系の開発者がスマートフォンのネイティブアプリ開発を始めるには、React Nativeは最適なプラットフォームといえるでしょう。 また、「Expo」は、React Nativeによる開発・アプリ配布を支援するためのツールとサービスです。本書では、開発環境としてExpoを使って解説しています。 本書では、ある程度、Web開発の知識があり、これからスマートフォンのネイティブアプリ開発に取り組もうという人に向けて書かれています。 【各章の内容】 ●第1章 React Nativeの概要、および、その開発支援ツールである「Expo」と「Create React Native App(CRNA)」について説明しています。 ●第2章 React Nativeに必要となるnode.js、そしてExpoの導入について説明しています。 ●第3章 Androidエミュレータ/iOSシミュレータの導入と、デバッグ環境などの具体的な利用方法を解説します。また、実機での動作確認方法にも触れています。 ●第4章 TODOアプリの開発を通してReact Nativeの基本を学んでいきます。 ●第5章 Flexboxレイアウトを学ぶために、逆ボーランド電卓を作成します。 ●第6章 統一的なUIを持ったアプリの作成を可能にする「UIライブラリ」を使ってTODOアプリを拡張します。 ●第7章 Fluxアーキテクチャを使って、TODOアプリを書き直してみます。 ●第8章 トイレマップとGPSロガーの2つのアプリを通して、ライブラリの利用、GPSやカメラといったスマートフォン機能の使い方など、本格的で実践的なReact Nativeプログラミングについて学びます。 ●第9章 アプリ内でWebページを表示するための「WebView」を使ったプログラミングを解説しています。 ●第10章 React Native CLIを使ったネイティブモジュールを使った開発について解説しています。 ●第11章 Google Play/App Storeでの配信について説明しています。 ●第12章 意外とハマるポイントでもあるReact Native/Expoのバージョンアップについて解説しています。 ●付録 tvOS/Windowsに対応したアプリの対応方法を解説しています。
  • 基礎からわかる時系列分析―Rで実践するカルマンフィルタ・MCMC・粒子フィルタ―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 時系列データとは気温や株価のように時間順に得られる系列データを指します。時系列データの分析方法にはさまざまありますが、本書では確定的な方法と確率的な方法を解説します。確定的な方法については移動平均法に基づく方法、確率的な方法については、状態空間モデルに基づく方法を取り上げ、これらの解説と合わせてどのようにコードに落とし込むかについても丁寧に解説します。初めて時系列分析を試みる方はもちろん、応用的な手法についても取り上げているのですでに時系列分析に携わっている方にも興味を持っていただける内容になっています。
  • ソフトウェア工学の基礎 32
    NEW
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はFOSE主催ワークショップの予稿集(2025年度)。ソフトウェア工学研究の活性化に寄与する情報がまとめられています。
  • 緊急事態のための情報システム 多様な危機発生事例から探る課題と展望
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 緊急事態は情報が「カギ」になる! 3.11の東日本大震災時に経験したように、緊急事態(災害時)には日常とはまったく違う情報システムが必要となる。それは、いわゆる情報系だけではなく、人的リソース、行政活動、ボランティアなど様々なことが複合的に絡み合う形で動的に変化しながら形成されていく。 本書は、米国を中心にこれらについて研究された成果が整理されてまとめられている数少ない邦訳書である。実践的なケーススタディが多数盛り込まれており、我国の今後の取組みへ向けての貴重な指針となろう。
  • 量子コンピュータシステム  ―ノイズあり量子デバイスの研究開発―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 従来のコンピュータシステムの視点から量子コンピュータシステムをとらえた他に例をみない解説書.実用化に向けて急速に進化する量子コンピュータシステムの全容と課題がわかる.  本書は,従来のコンピュータシステムの視点から量子コンピュータシステムをとらえた,他に例をみない解説書です.本書の著者の1人のFrederic T. Chong氏は,コンピュータアーキテクチャの世界的な研究者でありながら,いち早く量子コンピュータシステムの研究に取り組み,多くの先駆的な成果を上げており,その知見を活かして,現在のノイズのある量子コンピュータシステムの全容と課題を本書にコンパクトにまとめています.  また,多種多様な観点より参考文献が豊富にあげられており,本書で量子コンピュータの現在の全体像を押さえ,必要に応じて参考文献を頼りに深掘りしていくことで,これからの量子コンピュータの研究開発者に求められる素養が身につけることができます.  黎明期とはいえ,量子コンピュータは実用化に向けて急速に進化しており,これから量子コンピュータにかかわる研究者,技術者,学生にとってエキサイティングな時代が到来することは間違いありません.従来のコンピュータがたどった経緯を振り返れば,量子コンピュータの黎明期にあたるいまこそ,その基礎固めに最適な時期といえます.ぜひ本書を一読してみてください. 第I部 量子コンピュータの基礎 第1章 量子計算の起源と現在 第2章 量子計算と古典計算 第3章 量子アルゴリズムとアプリケーション 第II部 量子コンピュータシステム 第4章 量子コンピュータシステムの最適化 第5章 量子プログラミング言語 第6章 量子回路の合成とコンパイル 第7章 マイクロアーキテクチャとパルスコンパイル 第8章 ノイズ緩和と誤り訂正 第9章 量子計算の古典シミュレーション 第10章 量子コンピュータシステムのこれから
  • 機械学習
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 原著は中国の数多くの大学や高専で使われている機械学習の標準教科書にして、2016年の刊行以来2020年11月までの発行数が54万部を超えるベストセラー書籍。  本書は大まかに基礎,具体的手法、先進的理論からなり、少ない数学的知識で読めて各章が短いという教科書的配慮がなされている。「スイカを切らずにその良し悪しを機械学習でどう判断するか?」が本書の骨子になっており、書影に描かれたスイカは本書のトレードマークとなっている。  中国はいかにして機械学習の分野をリードするに至ったか、そのエッセンスを紐解く一冊。
  • データプラットフォーム技術バイブル ~要素技術の解説から実践的な構築法、利活用まで~
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 DX・AI時代における技術の本質を掴む!データ基盤技術の叡智とビジネス活用を徹底解説 ★大規模プロジェクトを複数手掛ける著者2名が執筆! ★500ページ超のボリュームで包括的に解説! 近年、データ活用の重要性が高まる一方で、適切な技術を選んで効果的に活かすことは容易ではありません。データ基盤の構築手段は多様化しているため、どの技術をどのように組み合わせるべきか迷う場面も多いでしょう。 本書は、ビジネスの成長に不可欠な「データプラットフォーム」の構築と活用について解説する一冊です。ユーザー行動やセンサーログなどのデータを収集・整理し、ETL処理やELT処理を経て価値ある情報に変換し、意思決定に活かす方法を紹介します。データ品質の維持や、効率的な分析手法についても詳しく解説しています。 DX(デジタルトランスフォーメーション)が進むなか、データとデジタル技術の役割はさらに重要になっています。本書では、Apache Sparkをはじめとする技術の選定や活用方法、設計の考え方を詳しく解説。最新技術だけでなく、将来の変化にも対応できる普遍的な知識を提供します。データを活用してビジネスの競争力を高めたい方、最適なデータ基盤を構築したい方は、本書を通じてデータプラットフォームの理解を深め、より効果的な活用を目指しましょう。 <本書で紹介する要素技術・原則(一部)> ・ログ転送:Fluentd ・アーキテクチャパターン:CQRS+ES、Delta、Kappa、Lambda、Lakehouse、メダリオンアーキテククチャ ・データフォーマット:Apache Hudi、Apache Iceberg、Delta Lake ・データレイク:Apache Spark、Databricks ・データウェアハウス:Amazon Redshift、Google BigQuery、Snowflake、Treasure Data ・ストリーミング:Amazon Kinesis、Apache Kafka ・ジョブスケジューラ:Apache Airflow、Digdag ・ETL処理:Apache Spark、Embulk ・ELT処理:dbt ・BIツール:Metabase、Redash ・データサイエンス:A/Bテスト、LLM、MLflow ・設計開発:データメッシュ、ドメイン駆動設計(DDD)、RDRA ・法則・原則:DIKWモデル、SOLID原則、YAGNI原則 Chapter 1 データプラットフォーム概論 Chapter 2 データプラットフォームの構成要素 Chapter 3 ログ転送 Chapter 4 データ変換・転送(バッチ編) Chapter 5 データ変換・転送(ストリーミング編) Chapter 6 データプロビジョニング Chapter 7 データマネジメントを支える技術 Chapter 8 要件分析 Chapter 9 データプラットフォームの構築 Chapter 10 データプラットフォームの改善 <著者> 島田 雅年(Masatoshi Shimada) インターネット広告、動画メディア、リテール、金融、官公庁など、さまざまな業界のプロダクト設計や開発に従事。得意分野は、組織内のデータを整理して、企業価値の向上を目的とするビッグデータ処理基盤構築。データ活用の現場では、営業職などのビジネス職域における多彩な課題が存在するケースが多く、円滑なデータ提供を支えるデータプロビジョニングシステムの構築はもちろん、組織構築や教育支援などのコンサルティングも手掛ける。 藪本 晃輔(Kosuke Yabumoto) 10年以上にわたりインターネット広告のプロダクト開発に従事。大量のトラフィックを処理する広告配信システムをはじめ、データ管理システムや広告効果計測ツール、媒体収益化など、さまざまなインターネット広告関連プロダクトにて、プロジェクトマネージャーや開発責任者を歴任。ロケーションデータを活用したインターネット広告事業を展開する株式会社ジオロジックではCTOに就任し、データプラットフォーム構築を中心に、エンジニアリングマネージャーから設計・開発まで幅広く担当。現在はスマートニュース株式会社にて、エンジニアリングマネージャーとして広告システムの開発に従事。 <編集者> 丸山 弘詩(Hiroshi Maruyama) 書籍編集者。早稲田大学政治経済学部経済学科中退。佐賀大学大学院博士後期課程編入(システム生産科学専攻)、単位取得の上で満期退学。大手広告代理店勤務を経て現在は書籍編集に加え、さまざまな分野のコンサルティングや開発マネジメントなどを手掛ける。著書に『スマートフォンアプリマーケティング 現場の教科書』(マイナビ出版)など多数、編集書籍に『ブロックチェーンアプリケーション開発の教科書』『ビッグデータ分析・活用の ためのSQLレシピ』(マイナビ出版)など多数。 ※この商品は固定レイアウト型の電子書籍です。 ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 ※お使いの端末で無料サンプルをお試しいただいた上でのご購入をお願いいたします。
  • AI・量子コンピュータにかかわるリスク管理 ―セキュリティからガバナンスヘ―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 これからのシステムリスク管理の常識をわかりやすく解説 本書は、AIと量子コンピュータが当たり前になる、これからのITシステムのリスク管理について、基本からわかりやすく解説した書籍です。特に、リスク管理を有効に機能させるために重要な考え方や具体的な手法についても詳しく解説しています。 今後、AIや量子コンピュータのもたらす技術革新にかかわるリスク管理能力の欠如は、あらゆる組織にとって致命的なウィークポイントになります。しかし、革新的な技術のもたらすリスクを網羅的に洗い出すことは難しいのが実情です。また、それらのリスクにより生じる損害の大きさや、損害がどの程度の可能性で発生するのかが不明瞭であることも多く、従来からのプロジェクトごとでのリスク管理手法がうまく適用できません。 そのようなリスクをうまく管理するために組織に必要となる、重要なITガバナンスについてまとめています。 第1章 ITシステムにおけるリスクと新技術 第2章 量子コンピュータが暗号にもたらすリスク 第3章 AIの発展と規制 第4章 AIシステムにおけるリスク管理 これからのリスク管理とガバナンス
  • バージョン8&9両対応! Red Hat Enterprise Linux完全ガイド
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 レッドハットのエンジニアが直伝! 導入からシステム管理コンテナー構築まで完全網羅。 サーバー向けLinux分野で圧倒的なシェアを誇る米Red Hat社の商用Linuxディストリビューション「Red Hat EnterpriseLinux(RHEL)」解説書の決定版。 2022年5月にリリースされた最新バージョン9だけでなく、いまだ多数のユーザーが利用しているバージョン8についても完全対応。 すぐに移行せず、しばらく8を使おうと考えている人にも役立ちます。 RHELの導入方法から各種サーバーのインストール方法や設定・管理方法、運用に役立つコマンドやツールの利用方法などを豊富なコマンド実行例と共に解説。 本書を片手にサーバーの管理や運用に必要な作業をすぐ試せる構成になっています。 セキュリティやコンテナ技術、仮想化技術など今どきのサーバー管理者に必須の技術要素についてもしっかりと学べます。 さらに、RHELを運用する際に起こりがちなトラブルの対処法や、RHELでサーバーを安定的に運用し続けるために欠かせない メンテナンスに関する知識なども70ページ以上のページを使って詳しく紹介しています。RHELを初めて触る人から既にサーバーを運用している人まで、 RHELの導入・管理・運用に欠かせない情報を網羅的に掲載しています。
  • AI事典 第3版
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIはいまや,さまざまな研究の根幹をなしており,関わる分野も多岐にわたる。本書は,人工知能(AI)研究を牽引する代表的な研究者が編・著を務め,各研究カテゴリーの最前線で活躍する100余名の気鋭の研究者が執筆を手掛けた事典である。  コンセプトは「執筆者の主観を軸に,読者が興味を持って面白く読める内容にすること」。従来の主要テーマのほか,ディープラーニング,AIにおける論争,汎用人工知能など,いま外せないトピックスを幅広く解説する。  AI研究者はもちろん,工学,理学,脳科学,医学,薬学,農学,社会学,哲学など,すべての分野の学生・研究者の未来に影響を与える,ターニングポイントとなる書!!
  • Splunkユーザーのためのデータ分析実践バイブル SPLとMLTKを駆使した前処理から機械学習の手続きまで
    -
    あらゆるデータの収集・検索・分析・可視化ができる データ分析プラットフォーム×機械学習を目的別に徹底解説 本書は、Splunkを使ったデータ分析の解説書です。 効率的な前処理から機械学習までを扱い、 Splunk上で機械学習を実現するMLTKを丁寧に解説しています。 各章は機械学習の概念に始まり、データ分析をする上で必要な基礎知識、 Splunkを用いたデータの可視化、データ加工方法の紹介から 実際にサンプルケースを用いた分析とその解説で構成されています。 Splunkを用いてデータ分析・機械学習に取り組みたい人には必読の1冊です。 【こんな方にお勧めします】 ・Splunkを使っているが、SPLの書き方に困っている方 ・Splunkでの効果的なデータの可視化の方法を知りたい方 ・Splunkでの機械学習の方法を知りたい方 【目次】 第1章 Splunkについて 第2章 機械学習の流れ 第3章 Splunk・MLTKによる機械学習 第4章 Splunkへデータ登録するまでの基本的な手続き 第5章 特徴量を生成するための前処理と手法 第6章 Splunkによる特徴量評価 第7章 機械学習の実演 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • アルゴリズムイントロダクション 第3版 総合版:世界標準MIT教科書
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 世界標準 MIT 教科書!! 原著は,計算機科学の基礎分野で世界的に著名な4人の専門家がMITでの教育用に著した計算機アルゴリズム論の包括的テキストであり,その第3版.前版までで既にアルゴリズムとデータ構造に関する世界標準教科書としての地位を確立しているが,より良い教科書を目指して再び全面的な記述の見直しがなされ,それを基に新たな章や節の追加なども含めて,大幅な改訂がなされている. 単にアルゴリズムをわかりやすく解説するだけでなく,最終的なアルゴリズム設計に至るまでに,どのような概念が必要で,それがどのように解析に裏打ちされているのかを科学的に詳述している. さらに各節末には練習問題(全957題)が,また章末にも多様なレベルの問題が多数配置されており(全158題),学部や大学院の講義用教科書として,また技術系専門家のハンドブックあるいはアルゴリズム大事典としても活用できる. 本書は,原著の第1~35章,および付録A~Dまでの完訳総合版である.また巻末の索引も圧巻で,和(英)‐英(和)という構成により,「数理用語辞典」としてもまことに有用である.
  • 実践ソフトウェアエンジニアリング (第9版)
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ソフトウェアエンジニアリング・スタンダードの第9版 「ソフトウェア技術者なら、この財産を活用しない手はない」とマイクロソフト榊原彰氏よりの推薦文にあるように、その通りに期待できる内容です。 「本書は米国においての第1版が発行(1982年)されて以来、世界累積300万部を超えるベストセラーの最新刊である第9版の邦訳書です。ソフトウェア同様、改良が続けられているソフトウェアエンジニアリングの「最良の手法」を解説している書籍であり、現役のソフトウェアエンジニアならびに学生諸氏におすすめする1冊です。 原書:Roger S. Pressman, Bruce R. Maxim, Software Engineering,McGraw-Hill, 2020 著者について/まえがき/訳者まえがき 第1章 ソフトウェアとソフトウェアエンジニアリング 第1部 ソフトウェアプロセス 第2章 プロセスモデル 第3章 アジャイルとプロセス 第4章 推奨のプロセスモデル 第5章 ソフトウェアエンジニアリングの人間的側面 第2部 モデリング 第6章 プラクティスの指針となる原則 第7章 要求エンジニアリング 第8章 要求モデリングの推奨手法 第9章 設計の概念 第10章 アーキテクチャ設計の推奨手法 第11章 コンポーネント設計 第12章 ユーザエクスペリエンス設計 第13章 移動体端末におけるソフトウェアの設計 第14章 パターンに基づく設計 第3部 品質とセキュリティ 第15章 品質の概念 第16章 レビューの推奨手法 第17章 ソフトウェア品質保証 第18章 ソフトウェアセキュリティエンジニアリング 第19章 ソフトウェアテスト―コンポーネントレベル 第20章 ソフトウェアテスト―統合レベル 第21章 ソフトウェアテスト―移動体端末と特定ドメインに対するテスト 第22章 ソフトウェア構成マネジメント 第23章 ソフトウェアメトリクスと分析 第4部 ソフトウェアプロジェクトのマネジメント 第24章 プロジェクトマネジメントの概念 第25章 実行可能で役立つソフトウェア計画 第26章 リスクマネジメント 第27章 ソフトウェアサポート戦略 第5部 先端的な話題 第28章 ソフトウェアプロセス改善 第29章 ソフトウェアエンジニアリングの新興トレンド 第30章 おわりに 付録/参考文献/索引/訳者プロフィール
  • ヒトの耳 機械の耳
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 聴覚系や脳が音を処理する理論をモデル化し、それをコンピュータや機械で活用する方法を解説した書。機械聴覚の土台となる基礎科学と、効率的なシステム構築法について詳解。補聴器や音楽情報検索、自動音声認識など、機械学習分野への応用についても解説。

最近チェックした作品からのおすすめ