IT・コンピュータ作品一覧
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データ分析に興味をもった人。難しそうと思っている人。データ分析のパターンを学べば、簡単にできます。
-
4.7※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データ分析の現場にあって入門書にないもの――それは、「汚いデータ」(ダーティデータ)です。本書は、データ分析の現場では、どんなデータに出会い、どのような問題が生じ、どう対応すればよいのかというノウハウを解説します。事前の加工(視覚化)から機械学習、最適化問題まで、100本ノックをこなして、ビジネス現場で即戦力になれる「応用力」を身につけましょう! Pandas、Numpy、Matplotlibなど10個のライブラリを練習します。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データ分析の現場にあって入門書にない「汚いデータ」(ダーティデータ)に対応する、プロのノウハウを解説します。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データ分析の現場にあって入門書にない「汚いデータ」(ダーティデータ)に対応する、プロのノウハウを解説します。
-
4.3Pythonはここ数年で日本語の書籍も増え、開発現場での利用実績も着実に増えてきています。ご自身の第二、第三の言語の選択肢としてPythonが気になっているという方も多いのではないでしょうか。また、「Pythonを始めてみたけど、実際に業務で利用するには不安が残る」「コードレビューに怯えながらPythonを書いている」という方も多いのではないでしょうか。 本書は、そういった方を対象に、Pythonという言語が持つ機能の実践的な使い方を紹介します。Pythonは、日常的なツールからWeb開発、データ分析、機械学習など分野を問わず利用できる汎用性の高い言語です。本書も同じく、Pythonという言語の仕様やその特徴的な機能、標準ライブラリでできることを中心に扱うため、分野を問わず活用していただけます。
-
3.0めんどうな仕事を Pythonで効率化しよう! 【本書の概要】 ビジネス現場では、様々な業務でPythonが利用され始めています。 Pythonを利用すれば、非常に短いコードで、日々の業務を劇的に効率化できます。 日常業務でもよくありがちな面倒な業務をPythonを利用して自動化する手法をまとめています。 【読者対象】 ビジネスでPythonを利用している方(これから利用しようと考えている方) 【本書のポイント】 面倒な業務をカテゴリで分けてピックアップ。 ファイル操作、Excel・Word・PDFファイルのデータ処理、 画像の整形、ファイル情報の取得やWebデータの取得など、 日常でありがちな面倒な仕事を数十行のコードで解決します。 またアプリ化し、ボタン1つで実行できる方法を併記しています。 【本書で扱うレシピの例】 ・年月を指定するだけでカレンダーを作りたい ・すべてのファイルの特定文字を一括置換したい ・特定のPDFファイルの任意の文字を抜き出したい 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコンBASICマガジン』(電波新聞社)の時代からゲームを作り続けて現在はコンテンツ制作や執筆活動を行い関西学院大学非常勤講師、 関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。 近著に、『Python1年生』『Python2年生 スクレイピングのしくみ』『Python2年生 データ分析のしくみ』『Python3年生 機械学習のしくみ』 『Java1年生』『動かして学ぶ!Vue.js開発入門』(いずれも翔泳社)、『ゲーム作りで楽しく学ぶ Pythonのきほん』『楽しく学ぶ Unity2D超入門講座』 『楽しく学ぶ Unity3D超入門講座』(いずれもマイナビ出版)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 OpenAI API は、ChatGPTの開発元が提供するAIモデル利用のためのAPIです。 これを利用することで、ChatGPTで使われている高度なAIモデルを自分のプログラムから簡単に利用できるようになります。 ただ「質問して答える」だけではありません。チャットのようにAIと連続したやり取りをする。 特定の用途に特化したAI ボットを作る。イメージ生成を行わせる。 自社製品の情報を学習させたオリジナルのAIモデルを作成し利用する。用意したデータを分析し、「意味」を調べて処理をする。 こうしたことがAPIを使えば驚くほど簡単に行えます。 本書では「Python」と「Node.js」を使い、API利用の方法を説明していきます。 それ以外の言語から利用する場合についても、各AIモデルごとにAPIを直接コールする方法を説明しています。 また、昨今のノーコードブームを考慮し、Power Automate、PowerApps、AppSheet、Click といったノーコードツールや、 Excel/OfficeスクリプトやGoogle Apps ScriptからAPIを利用する方法についても説明しています。 AI を避けては通れない時代。その時代にプログラムを組むためには、「AI を使いこなす武器」が必要です。 OpenAI APIというAI界最強の武器を使って、あなたのプログラムをAI化しましょう! Chapter 1 OpenAI APIを開始しよう 1.1. OpenAI APIの利用準備 1.2. OpenAIのアカウント設定 1.3. Python/Node.jsによるAPI利用 1.4. WebアプリケーションにおけるAPIの利用 Chapter 2 API利用の基本をマスターしよう 2.1. PythonにおけるAPI利用の基本 2.2. Node.js におけるAPI利用の基本 2.3. Web APIを直接利用する Chapter 3 プロンプトデザイン 3.1. 基本のプロンプト 3.2. IDとキャラクタ設定 3.3. その他のプロンプト機能 3.4. コマンド定義と出力形式 Chapter 4 Completionを探究する 4.1. エラー処理・モデル・編集API 4.2. オプション引数の利用 Chapter 5 Chat CompletionとTranscription 5.1. Chat Completionの基本をマスターする 5.2. Speech to textによる音声入力 Chapter 6 Image Generation 6.1. Image Generationの基本 6.2. イメージの編集 6.3. イメージのバリエーション Chapter 7 モデルとデータのチューニング 7.1. ファインチューニング 7.2. モデレーションによるポリシーチェック 7.3. Embeddingとセマンティック類似性 Chapter 8 Power Platform環境からのAPI利用 8.1. Power Automateでの利用 8.2. PowerAppsでの利用 8.3. Power Automate for Desktopでの利用 Chapter 9 ノーコード/マクロからの利用 9.1. Clickでの利用 9.2. Google Apps Scriptでの利用 9.3. Google AppSheetでの利用 9.4. Excel/Officeスクリプトでの利用
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonは、人工知能や機械学習に適したプログラミング言語として注目されています。しかし、PythonはWeb開発など普通のアプリ開発においても使いやすい優秀な言語なのです。本書は、PythonのWeb開発用フレームワーク「Django3」を使って、基本的な知識からテンプレート制作やデータベースアクセスの技術まで、実際に手を動かしながら身につく入門書です。あなたもDjango3で、Pythonによる最新のWebアプリ開発を体験しましょう!
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 日本では、人工知能や機械学習に適したプログラミング言語としてPythonが注目されています。しかし、Pythonはもっと普通のアプリ開発でも使いやすい優秀な言語です。本書は、PythonのWeb開発用フレームワーク「Django」を使って、Webアプリを開発する基礎知識を学ぶ入門書です。Python言語の基本的な知識から、テンプレート制作やデータベースアクセスの技術まで解説します。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Djangoの入門者向け書籍です。Djangoでの開発経験がない層が対象。手取り足取り教える内容で新バージョン対応の他、従来の使い方解説やフロントエンド+APIを使った開発など、開発方式の変遷にも対応。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆最新のDjango5.2に対応したWebアプリ開発入門◆ Django はライブラリーなどすべて揃っているフルスタックなフレームワークとして Python でアプリケーション開発を行ううえで最初に選択されるフレームワークです。生産性・実用性が高く,セキュリティ対策も盤石でありながら,使える機能が多すぎて習得が大変であるという欠点がありましたが,Django 5 系になり開発にかかるコストが大幅に短縮できたことで近年注目されています。本書は,5系初となるLTS版(LTS 5.2)に対応し,2種類の Djangoの開発方法である「関数ベースビュー(FBV)」「クラスベースビュー(CBV)」でアプリケーションを開発しながら,一通りの開発工程が学べます。 ■こんな方におすすめ ・最新のDjango5系の情報を知りたい人 ・Djangoでアプリケーション開発をやりたい人 ■目次 PART 1 Djangoの基礎 ・CHAPTER 1 開発を始める準備 ・CHAPTER 2 Djangoプロジェクトの作成 PART 2 FBV(関数ベースビュー)での開発 ・CHAPTER 3 基本的なデータ操作(CRUD処理) ・CHAPTER 4 ユーザーへの通知(Messagesフレームワーク) ・CHAPTER 5 入力フォーム(ウィジェット・バリデーション) ・CHAPTER 6 Django管理画面の使い方 PART 3 CBV(クラスベースビュー)での開発 ・CHAPTER 7 メニュー画面の作成とデータの表示 ・CHAPTER 8 データの登録・更新・削除(更新系処理) ・CHAPTER 9 データ分析の実装 PART 4 Djangoアプリの機能拡張 ・CHAPTER 10 認証と認可(ログインと権限管理) ・CHAPTER 11 データベース操作(ORMの活用) APPENDIX Djangoをさらに学ぶために ・APPENDIX 1 HTMLの効率的な管理(テンプレートの継承) ・APPENDIX 2 アプリ品質の向上(テストの基礎) ・APPENDIX 3 データ表示の改善(ページネーション) ■著者プロフィール 樹下雅章(きのしたまさあき):大学卒業後、ITベンチャー企業に入社し、様々な現場にて要件定義、設計、実装、テスト、納品、保守、全ての工程を経験。SES、自社パッケージソフトの開発経験。その後大手食品会社の通販事業部にてシステム担当者としてベンダーコントロールを担当。
-
-《Pythonで数値計算の基本をより実践的に!》 □NumPy、SciPyを動かしながら、数値計算の基本を学ぶフルカラーテキスト! □浮動小数点演算の基礎から偏微分方程式の数値解法までを一冊に凝縮! □Pythonスクリプトはサポートページにて無料公開! 【サポートページ】 https://github.com/tkouya/inapy 【目次】 第1章 数値計算と数学ソフトウェア 第2章 数の体系,コンピュータ,浮動小数点数 第3章 Pythonことはじめ 第4章 丸め誤差の評価方法と多倍長精度浮動小数点計算 第5章 初等関数の計算 第6章 基本線形計算 第7章 連立一次方程式の解法1 ―直接法 第8章 連立一次方程式の解法2 ―疎行列と反復法 第9章 行列の固有値・固有ベクトル計算 第10章 非線形方程式の解法 第11章 補間と最小二乗法 第12章 関数の微分と積分 第13章 常微分方程式の数値解法 第14章 偏微分方程式の数値解法
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonでスクレイピングとクローリングを学ぶための解説書です。
-
4.3GoogleなどのWebサービスで人気のスクリプト言語「Python」は,現在の言語に共通する,美しく模範的なプログラミングの学習に最適な言語です。本書は,プログラミングの知識がゼロの方でも理解できる,いちばん簡単なPythonの学習書です。プログラミングの基本の基本から,データ型を駆使した本格プログラムまで,豊富なイラストとサンプルを使って,Pythonならではのプログラミングのノウハウを楽しく解説します。
-
4.0好評の「いちばんやさしいPythonの学習書」が約8年ぶりにリニューアル! プログラミングの知識がゼロの方でも理解できるイラストやサンプル満載のわかりやすい解説はそのままに,最新のPython 3に完全対応。さらに,プログラミングの応用編としてWebアプリケーション作成やデータ分析の基本も解説しています。プログラミングの基本の基本から,データ型を駆使した本格プログラムまで,Pythonならではのプログラミングを楽しく解説します!
-
-本書はプログラミング言語の1つであるPythonのバージョン3を使って、プログラミングを「手を動かしながら覚える」ことに留まらず、読者が「実際にプログラムを作りながら覚える」ことを目指す入門書です。プログラミングに興味のある方やこれからプログラミングを始めてみたい方、一度は学習を挫折してしまった方にもわかりやすく、しっかりとプログラミングの基礎を身に付けられる内容になっています。
-
3.0プログラミング入門書のロングセラー、 プログラミング学習シリーズにPythonが新登場! 基本文法からクラス、メソッドの使い方・作り方まで しっかり学ぼう! 本書は、現在もっとも幅広く使われているプログラミング言語の1つ 「Python」がはじめてという初心者を対象に、文法やプログラムの基本知識を わかりやすく丁寧に教える入門書です。 これまで筆者が数多くの学生に対してプログラミングの授業をしてきた経験を 活かし、プログラミング初学者が「Python言語を通してプログラミングを学ぶ」 というコンセプトで、文法やプログラミングの基礎知識についてやさしく解説します。 Pythonでプログラミングをはじめたい学生や新人エンジニアにも最適な一冊です。 変数やif文による条件分岐、for文やwhile文を使った繰り返しから、 クラスやメソッドの使い方、作り方まで、つまずきやすいところを ケアしながら解説します。 サンプルプログラムは短くてシンプルなものを選び、何をしているのかが よくわかるように、コメントをしっかりつけました。 章の最後には練習問題があり、力試しもできます。 ・何から学習すれば良いかわからない ・Pythonをはじめて学ぶ・あらためて基本から学びたい ・現場で通用する基礎を身につけたい という方におすすめの1冊です。 ★本書を授業などで教科書として活用していただくことを前提に作成した 学習教材(スライド等)を提供しています。詳細は本書の奥付をご覧ください。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 プログラミング初心者の小中学生たちが絶賛! 世界一わかりやすくて楽しくて思考力も使うプログラミング本、待望の初登場! 『Python(パイソン)』は、人工知能(AI)、機械学習、データ分析、Web開発などで幅広く使われ、現在世界でもっとも人気のあるプログラミング言語の一つです。 本書で『Python』を体感して、価値ある一歩を踏み出してください! 【本書の特徴】 1)プログラミング初心者の小学生でもわかる→プログラミング経験ゼロでも大丈夫 2)ストーリー仕立ての会話形式→スラスラと楽しく読める 3)計算・作図・ゲーム作成と幅広く学習できる 4)チェック問題やチャレンジ問題が付いているので、思考力も強化できる 【対象読者】 ・小学生プログラミング教育必修化に伴い、何を教えればいいのか悩んでいる保護者の方々、教育関係者の方々 ・本格的なプログラミングをやってみたいと考えている小中学生の方々 ・プログラミングに興味があるけど、全くの未経験で不安に思っている方々 ・プログラミングを独学しようとしたけど、挫折してしまった方々 Day 1 準備する Day 2 計算する Day 3 描く Day 4 分類する Day 5 創る 特別付録1 特別付録2 特別付録3
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 暗号を用いた秘密のメッセージの作り方を指南する、初心者向けの書籍はたくさんあります。また、暗号の解読法を指南する、初心者向けの書籍はいくつか存在します。しかし、暗号を解読するためのプログラミングを指南する、初心者向けの書籍は皆無といえるでしょう。本書はそのギャップを埋めるためのものです。 本書は、暗号、暗号解読、暗号学について興味を持っている人のためのものです。本書の暗号(23章と24章の公開鍵暗号を除く)はすべて古典的なものであり、ノートPCの計算能力でも解読できます。現在の組織や個人はこうした古典暗号を使用しません。しかし、古典暗号を通じて、暗号を構成する土台や、脆弱な暗号の解読法について学べます。
-
-本書は流行のPythonを用いてコンピュータをコントロールするインタプリタを作る方法についてやさしく、詳しく解説します。 コンピュータ言語の設計者はいったいどうやって言語を作ったのでしょうか。それに対する答えがこの本です。 本書ではコンパイラの世界では有名なlex(字句解析プログラムのソースを作るプログラム)など、他のライブラリには一切頼りません(使うのはPythonの標準的なライブラリのみ)。フルスクラッチで、つまり読者の力のみで、読者の書いたプログラム通りにコンピュータを動かすシステムを作ります。本書に沿って、説明を読み、実際にコードを入力しては実行して動作を確認、ということを繰り返してゆけば最後には小規模ですが確実に動く、自分で動作の理屈が分かっているインタプリタが完成します。 特別のライブラリを使うわけでもなくPython で普通にコーディングしているだけなので、できあがったインタプリタ(新しい言語)は実行速度という点ではあまり期待できません。しかし、今や多くの人がPython を使いますし、そのPython で「インタプリタをどうやって作るのか」理解できるのだと考えれば本書の意義は大いにあるでしょう。またC++など高速なコンパイラを使える読者ならば、本書で得た知識があれば高速なインタプリタを作ることができるでしょう。
-
5.0【本書の概要】 人工知能開発の分野では、機械学習(教師あり学習)を利用した開発が非常に多くなってきています。 本書は、機械学習の基礎から、Pythonのフレームワーク(scikit-learn:サイキットワーン)や NUmPyといったライブラリを利用した開発方法について、初学者でも理解しやすいようにイラストを交えて、 丁寧に解説した書籍です。 本書では教師あり学習だけにとどまらず、教師なし学習についても触れています。 【本書の特徴と構成】 機械学習について基礎からきちんと学習できよう、構成を工夫しています。 第1章では開発環境の準備について解説しています。 第2章では機械学習に必要なPythonの基礎知識について丁寧に解説しています。 第3章では機械学習でよく利用するグラフの描画について主だった方法を中心に解説しています。 第4章では機械学習に必要な数学の知識について必要最低限の解説をしています。 第5章では教師あり学習(回帰)についてサンプルを元に丁寧に解説しています。 第6章では教師あり学習(分類)についてサンプルを元に丁寧に解説しています。 第7章ではニューラルネット・ディープラーニングの基本について解説しています。 第8章ではニューラルネット・ディープラーニングの応用について解説しています。 第9章では教師なし学習について、ポイントを押さえて解説しています。 特に第5章から第9章では、機械学習を学ぶ過程でつまづきやすいポイントについて 著者がピックアップし、丁寧に解説しています。 【対象読者】 機械学習について学びたい初学者 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0Pythonプログラムを動かしながら機械学習の基礎をしっかり学べる! 【本書の目的】 人工知能関連サービスや商品開発において 機械学習の基礎知識が必要となります。 本書では数式とPythonプログラムをつなげて 機械学習の基礎をしっかり学ぶことができます。 【本書の特徴】 本書は、機械学習の原理を数式でしっかり理解し、 Pythonプログラムによってその理解を深めていくことができる書籍です。 ・数式とコードを連携して解説 ・学習内容を「要点整理」で復習 ・TensorFlow 2.7に対応 ・Python 3.9に対応 【読者が得られること】 機械学習のしくみとPythonプログラムを つなげて理解できます。 【対象読者】 機械学習の基礎を数学的な原理からプログラム実装までしっかり学びたい理工学生・エンジニア 【目次】 第 1 章 機械学習の準備 第 2 章 Pythonの基本 第 3 章 グラフの描画 第 4 章 機械学習に必要な数学の基本 第 5 章 教師あり学習:回帰 第 6 章 教師あり学習:分類 第 7 章 ニューラルネットワーク・ディープラーニング 第 8 章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 第 9 章 教師なし学習 第10章 要点のまとめ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-数学の基礎知識とPythonコードを紐づけて機械学習の基本を学べる! 【本書の目的】 現在、人工知能関連のプロダクト・サービスが数多く見受けられるようになりました。 人工知能関連の開発に機械学習の基礎知識は必須です。 本書はそうした機械学習の基礎知識を学びたいエンジニアに向けた書籍です。 【本書の特徴】 本書は機械学習の基本について、数学の知識をもとに、 実際にPythonでプログラムしながら学ぶことができる書籍です。 ・最新のPython 3.7に対応 ・学習内容を「要点整理」で復習 ・数式とコードをつなげたわかりやすい解説 【読者が得られること】 本書を読み終えた後には、機械学習のしくみとプログラミング手法を理解できます。 【対象読者】 機械学習の基礎を学びたい理工学生・エンジニア 【目次】 第1章 機械学習の準備 第2章 Pythonの基本 第3章 グラフの描画 第4章 機械学習に必要な数学の基本 第5章 教師あり学習:回帰 第6章 教師あり学習:分類 第7章 ニューラルネットワーク・ディープラーニング 第8章 ニューラルネットワーク・ディープラーニングの応用(手書き数字の認識) 第9章 教師なし学習 第10章 要点のまとめ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-【本書の概要】 本書は株式会社アイデミーで大人気の講座『ディープラーニングで画像認識モデルを作ってみよう!』を書籍化したものです。 機械学習の基本からはじまり、Pythonの基礎、データの処理、深層学習の基本から応用ついて、 サンプルを元に実際に動かしながら、わかりやすく解説します。 各項には練習問題がありますので、学習効果を確かめながら読み進めることができます。 本書を読めば、機械学習から深層学習の基本を一気通貫で学習できます。 これから深層学習をはじめたい、初学者の方におすすめの1冊です。 【本書の対象】 人工知能関連の開発に携わる初学者(開発者、研究者、理工系学生) 【本書の構成】 第1章から第3章で機械学習の基本を、 第4章から第6章ではPythonの基礎知識を、 第7章から第9章ではNumPyやPandasの基礎知識を、 第10章から第13章では可視化の基礎知識を、 第14章から第15章ではデータの扱い方の基本を、 第16章から第18章では教師あり学習やハイパーパラメータとチューニングを、 第19章から第22章では深層学習について基本から応用まで、 丁寧に解説します。 【著者プロフィール】 石川 聡彦(いしかわ・あきひこ) 株式会社アイデミー 代表取締役社長 CEO。 東京大学工学部卒。株式会社アイデミーは2014年に創業されたベンチャー企業で、 10秒で始める先端テクノロジー特化型のプログラミング学習サービス「Aidemy」を提供。 様々な企業のアプリケーション制作・データ解析を行った。現在の主力サービス「Aidemy」は AIやブロックチェーンなどの先端テクノロジーに特化したプログラミング学習サービスで、 リリース100日で会員数10,000名以上、演習回数100万回以上を記録。 早稲田大学主催のリーディング理工学博士プログラムでは、AIプログラミング実践授業の講師も担当した。 著書に『人工知能プログラミングのための数学がわかる本』(KADOKAWA/2018年)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-AI開発に必要な数学の基礎知識がこれ1冊でわかる! 【本書の目的】 本書は以下のような対象読者に向けて、 線形代数、確率、統計/微分 といった数学の基礎知識をわかりやすく解説した書籍です。 【対象読者】 • 数学がAIや機械学習を勉強する際の障壁になっている方 • AIをビジネスで扱う必要に迫られた方 • 数学を改めて学び直したい方 • 文系の方、非エンジニアの方で数学の知識に自信のない方 • コードを書きながら数学を学びたい方 【目次】 序章 イントロダクション 第1章 学習の準備をしよう 第2章 Pythonの基礎 第3章 数学の基礎 第4章 線形代数 第5章 微分 第6章 確率・統計 第7章 数学を機械学習で実践 Appendix さらに学びたい方のために ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-線形代数の基礎を Pythonプログラムをもとに丁寧に解説! 【本書の内容】 線形代数(ベクトル・行列の基本から特異値分解)について、Pythonのプログラムをもとにわかりやすく解説した書籍です。線形代数の基礎理論をPythonによる具体例を交えて解説しているので、実際の挙動を見ながら基礎理論の知識を習得できます。 【本書の特徴】 ・実際にプログラムで数値を入れて線形代数の計算結果を確認できる ・プログラムで結果を見ながら学習できるので幾何学的にイメージできる 【対象読者】 ・Python を使いながら線形代数を学びたい学生、文系エンジニア ・線形代数の基礎を学びなおしたいエンジニア 【本書で扱う線形代数の主なトピック】 ・ベクトルの基礎 ・行列の基礎 ・線形方程式系の解を求める計算方法 ・行列式の基礎 ・部分空間の基礎 ・直交の定義・直交基底の作成方法 ・最小二乗法による線形回帰 ・固有値・固有ベクトルの定義と具体的な計算方法 ・行列を対角化する方法 ・特異値分解の定理 【目次】 第0章 開発環境の準備 第1章 ベクトル入門 第2章 行列 第3章 線形方程式系 第4章 行列式 第5章 部分空間 第6章 直交性 第7章 固有値と固有ベクトル 第8章 特異値分解 【著者プロフィール】 かくあき 学生時代から数値解析を中心にPython,Matlab,Fortran,C,LISPなどのプログラミング言語を利用している。Pythonの普及の一助となるべく、Udemyで講座を公開。Kindle Direct Publishingで電子書籍を出版するなど、情報発信を行う。著書に『現場で使える!Python科学技術計算入門』『Pythonで動かして学ぶ! あたらしいベイズ統計の教科書』(いづれも翔泳社)がある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0FLOCブロックチェーン大学校による書下ろし! Pythonでブロックチェーンの仕組みを学ぼう!! 【本書の概要】 本書は、ブロックチェーンの仕組みと基礎技術を、 Pythonによるサンプルを交えながら、やさしく解説した入門書です。 【本書の特徴】 ブロックチェーン技術者の育成・人材紹介及びキャリア支援で著名な 株式会社FLOCおよび同社が運営する FLOCブロックチェーン大学校の人気講師 赤澤直樹氏の執筆協力により、 基礎から体系的にブロックチェーン技術の仕組みを学べます。 全体で5部構成となっています。 ・第1部では、ブロックチェーンの概要と構成技術を丁寧に解説。 ・第2部では、本書で扱う必要最低限のPythonの基礎知識を解説。 ・第3部では、ブロックチェーンの仕組みを簡単なサンプルをもとにわかりやすく解説します。 ・第4部では、第3部の知識をもとにブロックチェーン・プログラムを作成します。 ・第5部では、もっとブロックチェーンを知りたい方のために最新開発事例などを解説します。 【対象読者】 ・ブロックチェーンの仕組みを学びたいエンジニア ・Pythonを利用しているデータサイエンティストやAIエンジニア ・教養としてブロックチェーンエンジニアリングを学びたいビジネスパーソン、学生 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 機械学習エンジニア必見! ベイズ統計の基礎から ベイズ統計モデリングまで Pythonプログラムをもとに丁寧に解説! 【本書の内容】 ベイズ統計の基礎知識からベイズ統計モデリングまで、 Pythonのプログラムをもとにわかりやすく解説した書籍です。 前半ではベイズ統計の理解に必要な確率の説明からはじまり、 ベイズ統計学、ベイズの定理、ベイズ推定の基本事項をわかりやすく解説。 後半では線形モデルを例題として、MCMC法を用いたモデルの推定方法について解説します。 【本書で扱うベイズの定理について】 事後分布を求める際に問題となる、ベイズの定理の積分計算を回避する方法を2つ紹介します。 1つは、共役事前分布によって事後分布の解析解を求める方法です。 そしてもう1つは、MCMC法を使用することで数値計算によって事後分布を推定する方法です。 MCMC法はPythonのライブラリのPyMC3を用いて手軽に実践することができます。 【本書の扱うベイズ統計の範囲】 ・確率の基本 ・ベイズの定理 ・ベイズ推定 ・MCMC法:マルコフ連鎖モンテカルロ法 ・線形モデル ・一般化線形モデル 【対象読者】 ・ベイズ統計モデリングをこれから学ぼうとされる方 ・ベイズ統計モデリングの基礎知識が少ない機械学習エンジニア ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.8世界最大のデータ分析コンペサイト Kaggle(カグル)に挑戦して データ分析の基礎知識を身に付けよう! 【本書の概要】 本書はこれからデータ分析をはじめたいと思っている方や、 Kaggleに興味のあるデータ分析の初心者に向けて、 Pythonの実際のコードとともに丁寧に解説した書籍です。 データ分析で必要な一般的な知識とともに、 Kaggleへチャレンジするフローや、 Kaggleの初心者向けコンペへの取り組み方を紹介します。 データ分析や機械学習の一端に触れ、 実際に課題を解決するプロセスを体感できます。 【本書の対象読者】 ・データサイエンティストを目指す学生 ・データ分析に興味はあるが、あまり経験や知見がないデータ分析の初学者の方 【本書のポイント】 Kaggleの初心者向けチュートリアル「Titanicコンペ」「House Pricesコンペ」について、 分析の準備から結果の考察、そして精度を上げるプロセスを ステップバイステップでコードとともに、わかりやすく解説しています。 【本書より扱うコンペの特徴:本書より抜粋】 ・Titanicコンペの特徴 乗客ごとに性別や年齢、乗船チケットクラスなどのデータが、 生存したか死亡したかのフラグとともに与えられています。 生死に影響する属性の傾向をデータから分析して、 生死がわからない(予測用に隠されている)乗客について、 生死結果を予測することが目的です。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
5.0本書は、Pythonでプログラミングをした経験のある読者が、 各種オープンソースソフトウェア(OSS)やライブラリを利用して、 自然言語処理を行うWebアプリケーションを作って動かし、自然言語処理を体験するための書籍です。 またその中で、自然言語処理に関連するさまざまな概念や手法、 簡単な理論についても学ぶことができ、本格的な学習の 前段階としても最適です。 本書の構成としては大きく2つの部に分かれており、 それぞれ以下のような内容を解説しています。 第1部:データの準備 ●テキストデータの収集 ●データベースへの格納 ●検索エンジンへの登録 第2部:データの解析 ●文法構造を調べる ●意味づけ ●知識データとの連係 全13章を順に追いながらWebアプリケーションを作っていくことで、 自然言語処理に関連するさまざまなテーマを学ぶことができます。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.8※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Excelシート間のコピペをはじめ、単純なパソコン仕事は小さなプログラムを書くことで自動で行うことができます。 こうしたプログラムを書けるようになることが、自分の仕事を効率化したい社会人にとって大きな武器になることは間違いありません。 本書ではプログラミング言語Pythonを使って、パソコン仕事の中心であるExcel作業を自動化する方法を紹介します。 Excelの自動化といえば「マクロ・VBA」が定番ですが、Pythonの強みは ・Excelアプリを起動しなくてよい ・メールやWebブラウザなども簡単に自動化できる という点にあります。 本書ではExcelとともにメール、Webの自動化もしっかり扱います。これにより、Webから抽出したデータをExcelファイルに保存してメールで送信、といった連携も行えるようになり、仕事での活用の幅が広がります。 プログラミング初心者である社会人が、実際に自分の仕事が自動化できるように、必要な情報をもれなく丁寧に解説することを心掛けました。本書を片手に「新しい仕事のやり方」を始めましょう! <本書の方針> ・オブジェクトなどの難しいプログラム理論は一切使いません。 ・一番単純な道具だけで、準備に時間をかけず、すぐ始められます。 ・実践的な例題で、実務で本当に使えるプログラムを紹介します。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「Excelの請求書の作成」、「作成した請求書のPDF化」「請求先への請求書のメール送信」、これらを自動化するサンプルプログラムの作成を通して、業務にも役立つ実践的な知識とノウハウをマスターしよう。
-
3.0Excelは全ビジネスマン必須のアプリケーションですが、操作がめんどうだと感じたことはありませんか? 本書は、「Python」というプログラミング言語を使って、そんなめんどうな業務を自動化・効率化する方法を紹介します。プログラミングがはじめての人にもわかるように、コードの書き方からしっかり解説。ExcelやGoogleスプレッドシートでのグラフ作成やデータ収集、表計算、データ分析など、ひととおりの業務をプログラムで動かす方法がわかります。 プログラミングのはじめの一歩としてもオススメです。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ストーリーでPythonと機械学習がわかる!! 『機械学習入門―ボルツマン機械学習から深層学習まで―』、『ベイズ推定入門 モデル選択からベイズ最適化まで』につづく、お妃さまシリーズの第3弾を刊行するものです。Pythonの学習を主軸としたものであり、機械学習を実践したくなった人、およびカジュアルでわかりやすいPython入門本を探している人をターゲットとします。Pythonのコードとコードの説明をイラストでわかりやすく解説します。現在注目されているGAN(敵対的生成ネットワーク)についても解説。 第1章 魔法の鏡との出会い 第2章 機械学習の発見 第3章 思い出のアヤメ 第4章 器用な鏡、不器用な小人 第5章 あなたは誰?顔認識システム 第6章 表情豊かな鏡に戻れ!
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 未来への確かな意思決定に、時系列予測を活用しよう! 本書は、時系列予測の理論とPythonによる実装を体系的にわかりやすく解説します。時系列データ分析が未経験でも通読できるよう、基礎となる数学から始め、ビジネスや研究の場で実践するためのスキルが身に付くよう丁寧にフォローします。 ビジネスの現場では、データに基づく意思決定が重要視され、特に時系列データ分析は、売上予測や需要予測、在庫最適化など、多くの領域で活用されています。そうした時系列予測の理論と実践を学ぶために必要な知識を、本書の活用によって身に付けることができます。 ※本書と『Pythonによる時系列分析―予測モデル構築と企業事例―』との違い 本書では時系列予測(を主とする時系列分析)の数学的な解説や数理モデルを詳解することから ・確かな理論的裏付けに基づく実践(コーディングや評価・検証)を試したい 方におすすめです。 一方、『Pythonによる時系列分析―予測モデル構築と企業事例―』は、(特にビジネス応用を念頭に置いた)時系列分析の入門として ・まずはハンズオンで実践してみたい ・ビジネスにおける時系列分析(を含めたデータ分析の全体像)をつかみたい という方におすすめです。 第1章 時系列予測が変えるビジネスの未来 第2章 統計的推測と時系列分析の基礎 第3章 時系列予測のための数理モデル 第4章 予測モデルの評価と検証 第5章 時系列予測事例 付録A Python環境構築
-
-【PythonでGUIをつくる!】 2018年6月にオフィシャルリリースされたQt for Pythonを利用して、インタラクティブで機能的なGUIをPythonで作成してみませんか? 本書はQt for Python とQt Quickを使用したUIの基本的な作成方法を解説します。
-
-★数学とプログラミングを対比させながら、一歩一歩わかりやすく! 実務に即してPyMC5プログラミングでベイズ推論を使いこなせるようになる。 最初の一冊として、データサイエンティストにおすすめ! 【サポートサイト】 https://github.com/makaishi2/python_bayes_intro 【主な内容】 第1章 確率分布を理解する 1.1 ベイズ推論における確率分布の必要性 1.2 確率変数と確率分布 1.3 離散分布と連続分布 1.4 PyMCによる確率モデル定義とサンプリング 1.5 サンプリング結果分析 1.6 確率分布とPyMCプログラミングの関係 第2章 よく利用される確率分布 2.1 ベルヌーイ分布(pm.Bernoulliクラス) 2.2 二項分布(pm.Binomial クラス) 2.3 正規分布(pm.Normal クラス) 2.4 一様分布(pm.Uniform クラス) 2.5 ベータ分布(pm.Beta クラス) 2.6 半正規分布(pm.HalfNormal クラス) 第3章 ベイズ推論とは 3.1 ベイズ推論利用の目的 3.2 問題設定 3.3 最尤推定による解法 3.4 ベイズ推論による解法 3.5 ベイズ推論の精度を上げる方法 3.6 ベイズ推論の活用例 第4章 はじめてのベイズ推論実習 4.1 問題設定 (再掲) 4.2 最尤推定 4.3 ベイズ推論 (確率モデル定義) 4.4 ベイズ推論 (サンプリング) 4.5 ベイズ推論 (結果分析) 4.6 ベイズ推論 (二項分布バージョン) 4.7 ベイズ推論 (試行回数を増やす) 4.8 ベイズ推論 (事前分布の変更) 4.9 ベータ分布で直接確率分布を求める 第5章 ベイズ推論プログラミング 5.1 データ分布のベイズ推論 5.2 線形回帰のベイズ推論 5.3 階層ベイズモデル 5.4 潜在変数モデル 第6章 ベイズ推論の業務活用事例 6.1 ABテストの効果検証 6.2 ベイズ回帰モデルによる効果検証 6.3 IRT (Item Response Theory)によるテスト結果評価
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 15の課題でアルゴリズムとデータ構造を学ぶ。各章の前半で具体的な事例から原理を理解する。確実に身につけるために各章に練習問題とその解答を配置。また後半ではPythonを使ってアルゴリズムのプログラムを組み、実際にどのように動くかを体験できる。 原理部分の理解と、プログラミング部分が分かれているので、原理が理解できていないのか、プログラムが理解できていないのかが、明確に区別できる。
-
-※PDF版をご希望の方は Gihyo Digital Publishing (https://gihyo.jp/dp/ebook/2023/978-4-297-13293-4)も合わせてご覧ください。 プログラミング言語Pythonを使ってプログラミングに挑戦する本です。プログラミング初心者向けの勉強会の運営にかかわっている著者ふたりが,そこで学んだ初心者がつまずくポイントを「10の壁」として定義し,各章でそれを乗り越える構成にしています。初心者に加え,一度プログラミングに挫折した「再」入門者も対象に,やさしく解説しています。 <10の壁> 学習継続力の壁/PCスキルの壁/環境構築の壁/変数の壁/組み立て方の壁/練習から実用の壁/読みやすいコードの壁/アイデア実現の壁/完成の壁/プログラマーらしさの壁
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 コンピュータの計算力を目いっぱい使う本!検算にも! 本書は、PythonのモジュールであるSymPyを使って、式の展開結果を得たり、計算を行う方法を解説するものです。 式の展開、計算(方程式を解くほか)は、小学校から高校、大学まで何時間もひたすら鉛筆で書きまくり解を得るレッスンが行われますが、専門家でもなければ、せっかく長時間をかけて身に付けた数学力も年月を経るごとに忘れていってしまいます。しかし、Python+SymPyを使えば、忘れてしまっても、そもそも苦手でもサクサクで解け、式の展開に時間を使うことなく、結果が得られます。本書では、Pythonにおけるそれらテクニックを多数解説します。 第1章 Sympyとは何か? 第2章 Pythonの基本の基本 第3章 簡単な式の計算 第4章 初等関数を扱ってみよう 第5章 方程式を解いてみよう 第6章 微分、積分の計算をしてみよう 第7章 線形代数の計算をしてみよう。 第8章 機械学習で現れる計算をしてみよう。 付録 Pythonでの数式に関するスペース/演算子、関数など
-
-※この商品は固定レイアウトで作成されており、タブレットなど大きいディスプレイを備えた端末で読むことに適しています。 また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 本書はPythonというプログラミング言語を用いて、ゲームを制作しながらアルゴリズムを学ぶ入門書です。 Pythonはソフトウェア開発や学術研究の分野で広く用いられるようになり、企業や教育機関で使われる主要なプログラミング言語の1つになりました。 また基本情報技術者試験にPythonが加わるなど、情報処理を学ぶ人たちにとっても触れる機会の多い言語になっています。 Pythonの人気が高まったのは、 ・記述の仕方がシンプルで、他のプログラミング言語より短い行数でプログラムを組める ・記述したプログラムを即座に実行でき、開発効率に優れている ・ライブラリが豊富で、それらの多くが使いやすい などの理由からです。 Pythonはプログラミング言語の中で特に学びやすく、誰もが習得できる言語であることも、広く普及した理由として挙げられるでしょう。 本書はアルゴリズムの学習に力を入れています。初学者が理解できるようにプログラミングの基礎からスタートし、やさしいアルゴリズムから段階を踏んで高度な内容を学ぶ構成になっていますので、どなたにも安心して手に取っていただけます。 ここで言うアルゴリズムとは、問題を解決するための手順や手法のことです。アルゴリズムを学ぶとさまざまな問題を解決する力が伸びるといわれており、しばらく前からアルゴリズムを学ぶ大切さが、色々なところで説かれるようになりました。 アルゴリズムと聞くと難しそうと考えてしまう方もいるかもしれませんが、心配は無用です。本書はゲームを制作していく過程で色々なアルゴリズムを習得できるようになっています。 みなさん、ゲームを作りながら、プログラミングとアルゴリズムを楽しく学んでいきましょう! (本書「まえがき」より)
-
-本書は主にPythonを使用して、「おうちで」「クラウドコンピューティング」できる環境を自作します。ここで2語を強調したのは、人によってこれらの言葉の解釈が異なるだろうと考えたためです。本書では、次のような定義となります。 本書では、公開サーバに本書で作成した環境を置くのではなく、あくまでご家庭内(LAN)の範囲において、学習目的で環境構築します。したがって、なるべく一般的なご家庭の開発環境を想定し、「冗長性」や「セキュリティ」については基本的に考慮していません。ご自身で本書内容を再現される際は、この点に十分ご注意ください。
-
-本書はWebアプリ用のPythonを使って会員制サイトを作る入門書です。Pythonで会員制サイトを作ると聞くと「どうせDjangoやFlaskを使うんでしょう?」と思われるかもしれませんが、本書は追加パッケージをまったく使わずにPythonの標準モジュールだけを使って会員制サイトのシンプルなゲームSNSを開発します。 Pythonと一緒にインストールされた標準モジュールだけを使う理由は、リーズナブルなレンタルサーバーはPythonに機能追加するpipが使えないからです。つまりDjangoやFlaskが使えないからです。 本書では、まず、「HTML5+JavaScript+CSS+jQuery」でミニゲームを開発したり、各Webページの作成などを解説しています。その後は、作成したWebページをもとに、PythonでWebページを書き出したり、データベース「SQLite3」の利用方法などを解説しています。
-
4.0※この商品は固定レイアウトで作成されており、タブレットなど大きいディスプレイを備えた端末で読むことに適しています。 また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 大手メーカーで活躍してきたクリエイターがゲーム開発のノウハウをゼロから教えます! 本書はPythonを使用した、ゲームプログラミングの解説書です。 類書とは異なり、終始一貫「ゲーム開発」に焦点を当て、今書いているプログラムがどのような"動き"に反映され、どのような"面白さ"に結びつくのかを、正しく学ぶことができます。 一般的なソフト開発ではなく「ゲーム開発の作法」をきちんと学ぶことによって、ゲーム好きな読者の皆さんの就職や趣味といったリアルな世界がより充実してくれることを願い、出版されました。 【読者対象】 ○ゲーム業界に就職したい学生・社会人 ○SNSや同人で自作ゲームを発表したい方 ○落ち物パズル、RPGの作り方を知りたい方 ○一般ソフトとゲーム制作の違いを知りたい方 ○Pythonを始めたけど作るものが浮かばない方 ……高校生ぐらいから読めます! 【本書の特長】 ○業界の基礎知識やプログラマーの役割からきちんと解説 ○Pythonの基本文法をしっかり解説、プログラミング初心者も安心 ○プログラム1行ごとに説明を付けており、理解しやすい ○豊富な図解とイラストを用い、イメージで理解できる ○開発に必要な素材はすべて無償ダウンロードできる クイズ、すごろく、おみくじ、診断アプリ、迷路、自動生成ダンジョン、落ち物パズル、本格PRGなど……簡単なミニゲームから難しいものまで幅広く教材を用意しています。 さらに、読者特典として3つのおまけゲームもプレゼント! すべてのゲームをつくり終えた時、あたなのプログラミングスキルは何倍にも向上しているに違いありません。 本書を機に、ぜひゲームプログラミングの世界に飛び込んでみてください!
-
5.0※この商品は固定レイアウトで作成されており、タブレットなど大きいディスプレイを備えた端末で読むことに適しています。 また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 Pythonゲーム開発入門の決定版! 人気ジャンルを題材にプログラミングの腕を磨こう! 大好評を博している『Pythonでつくる ゲーム開発 入門講座』に、第2弾『実践編』が登場! 前作同様、Pythonを用いたゲームプログラミングの基礎をまんべんなく解説しながら、今回は「アクション」「シューティング」「3Dカーレース」といった人気ジャンルの開発に挑戦します。 【本書の特長】 ○複数の演習を通し、ゲーム開発の知識・技術を大幅UPできる ○三角関数、遠近法などの知識を開発に活かす方法を学べる ○マップエディタやランチャーなど関連ツールの開発も行う ○プログラム1行ごとに説明を付けており、理解しやすい ○豊富な図解とイラストを用い、イメージで理解できる ○開発に必要な素材はすべて無償ダウンロードできる さらに、ゲーム開発でぶつかる"壁を乗り越えるためのヒント"も豊富に用意しました。 【開発のヒントが満載】 ・マップやアイテムの配置はどうするのか ・自機と敵機のヒットチェックはどうするのか ・"弾幕"の軌道はどうやって計算するのか ・面白さにつながる難易度とはどの程度なのか ・エフェクトやサウンドはどうやって組み込むのか ・坂道のカーブ、奥行、起伏はどう表現するのか ・Pythonで3Dを表現するにはどうしたらよいのか ……こんな疑問に答えます! ゲーム素材400本、プログラム80本、遊んで面白いゲーム5本を無償提供! 本書を読み終えた頃、ゲーム開発の知識はかなり高いレベルに到達できるでしょう。 また、各プログラム内にPythonのプログラミング技術を多くちりばめたので、Pythonを使う力もぐんと伸びているはずです。 ゲーム開発の基礎を盤石にしたい方、Pythonの技術に磨きをかけたい方にオススメの1冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 みんな知ってるスマホゲームやレトロゲームの“あの動き”は、実際にどのようなプログラミングでできているのか? 本書は、実際に「あのゲームの」「あの動き」を作りながらPythonアルゴリズムを学ぶゲームプログラミング入門書です。撃つ・当たる・爆発するシューティングゲーム、逃げる・追いかける・先回りする迷路ゲーム、ジャンプ・ダッシュ・スクロールできるアクションゲームなど、様々なゲームの動きをまずは作ってみましょう!
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで対話型のシステムをつくろう! 近年、しゃべってコンシェル(NTTドコモ)やSiri(Apple)、Alexa(Amazon)などの音声対話アプリケーションや対話型のデジタルサイネージ、Sota(ヴイストン、NTT、NTTデータ)などのコミュニケーションロボット、電話自動応答など、人工知能技術を活用した知的対話型のアプリケーションが広く世の中に浸透しつつあります。 本書は、このような人と自然言語で対話するシステム(対話システム)の作り方をハンズオン的に解説するものです。プログラミングしながら、ツールを使いながら、対話システムの開発を体験します。 第1章 対話システムをつくるにあたって 第2章 タスク指向型対話システム 第3章 非タスク指向型対話システム 第4章 Amazon alexa/Google homeへの実装 第5章 発展的な話題
-
-本書ではプログラミング言語「Python」を使った視覚化(グラフの作成)について解説しています。 Phthonの実行環境としてはGoogle Colaboratoryを使用し、まずは基本的な視覚化ができることを目指します。その後は、視覚化に必要なPythonプログラムの構造と流れの習得します。 また、Python活用を進める上でつまずく可能性があるデータクリーニングや、機械学習にご興味をお持ちの方に向け、「モデルの最適化と評価」についても解説しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 iPhone、iPadでPythonを使いこなそう! iOSでPythonプログラミングができる人気アプリ「Pythonista3」を使い、Pythonの基礎からnumpy/scipyなど拡張モジュールによる数理計算、2Dグラフィックを使ったゲーム作成、そしてiOS機能を拡張するプログラミングまでを楽しくマスターしよう 人気の高いプログラミング言語といえばPythonですが、Pythonを使うにはコンピュータが必要です。しかし現在、コンピュータを持っていない人は若い人を中心に増えています。そんな時代にプログラミングをするにはどうすれば良いでしょうか?答え「スマホでプログラミングすればいいのです!」 本書は、アプリ「Pythonista3」を使って、iPhone(iOS)でPythonプログラミングを学ぶための本です。 Pythonista3では、Pythonの基本的な機能は勿論、numpyやmatplotlibといったPythonで最も広く使われるモジュール、さらには「iPhoneのための機能」が充実していたり 2Dグラフィックに関する機能も強力で、すぐにでもリアルタイムゲームをプログラミングできます。 本書では、「標準モジュールを使った数理計算」「UI部品を使ったプログラミング」「2Dグラフィックを使ったゲームプログラミング」「iOSのさまざまな機能の利用」などについて 解説します。また、Pythonがはじめて、という読者のために、巻末ではPythonの基礎文法なども解説してあります。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで音作りをはじめよう! ・音のプログラミングが音響楽の基本からわかる! ・音の信号処理もていねいに解説! ・打楽器・管楽器・弦楽器・鍵盤楽器の音が手もとで作れる! ・ソースコードはWebからダウンロード可能! 本書は、コンピュータで音作りをしてみたい方に向けた、サウンドプログラミングの入門書です。音作りに興味があるけど何からはじめたらという初心者のために音響の基本から解説をはじめ、コンピュータでの音の考え方、音を加工するディジタル信号処理の基礎をていねいに説明し、シンセサイザ、エフェクタの音作りなどを解説します。さらに、さまざまな音響合成のテクニックとともに、その具体例として、ゼロから楽器音をつくり出すフルスクラッチ合成のレシピを紹介します。サウンドプログラミングの言語には、音データの読み書きはもちろん、波形、周波数特性、そしてスペクトログラムの描画も簡単に行える、Pythonを採用しています。 Pythonを使ってサウンドプログラミングの第一歩を踏み出しましょう! はじめに 目次 第1章 音響学 1.1 純音 1.2 複合音 1.3 音の三要素 1.4 音の大きさ 1.5 音の高さ 1.6 音色 第2章 サウンドプログラミング 2.1 サンプリング 2.2 標本化 2.3 量子化 2.4 WAVEファイル 2.5 サウンドプログラミング 第3章 コンピュータミュージック 3.1 五線譜 3.2 音階 3.3 音符 3.4 強弱 3.5 拍子 3.6 テンポ 3.7 音楽の三要素 3.8 コンピュータミュージック 3.9 自動演奏 第4章 MIDI 4.1 MIDI 4.2 ノートオンとノートオフ 4.3 ノートナンバー 4.4 ベロシティ 4.5 プログラムチェンジ 4.6 プログラムナンバー 4.7 パーカッションマップ 4.8 MIDIファイル 4.9 DTM 4.10 自動演奏 第5章 ディジタル信号処理 5.1 周波数分析 5.2 スペクトログラム 5.3 楽器音の周波数分析 5.4 フィルタ 第6章 シンセサイザ 6.1 音響合成のアプローチ 6.2 アナログシンセサイザ 6.3 オシレータ 6.4 時間エンベロープ 6.5 加算合成 6.6 減算合成 6.7 FM合成 6.8 カープラス・ストロング合成 6.9 音のリアリティ 第7章 エフェクタ 7.1 リバーブ 7.2 ディストーション 7.3 コンプレッサ 7.4 イコライザ 7.5 モジュレーション 7.6 デチューン 第8章 ミキシング 8.1 モノラル再生とステレオ再生 8.2 音像定位 8.3 ミキシング 8.4 音楽制作 8.5 ボーカルキャンセラ 第9章 打楽器の音をつくる 9.1 グロッケンシュピール 9.2 トライアングル 9.3 チューブラーベル 9.4 マリンバ 9.5 シロフォン 9.6 ティンパニ 9.7 シンバル 9.8 銅鑼 9.9 ハイハットシンバル 9.10 バスドラム 9.11 タムドラム 9.12 スネアドラム 第10章 管楽器の音をつくる 10.1 フルート 10.2 ピッコロ 10.3 クラリネット 10.4 オーボエ 10.5 バスーン 10.6 サキソフォン 10.7 トランペット 10.8 トロンボーン 10.9 ホルン 10.10 チューバ 第11章 弦楽器の音をつくる 11.1 バイオリン 11.2 ビオラ 11.3 チェロ 11.4 コントラバス 11.5 ハープ 11.6 アコースティックギター 11.7 エレクトリックギター 11.8 エレクトリックベース 11.9 スラップベース 第12章 鍵盤楽器の音をつくる 12.1 パイプオルガン 12.2 リードオルガン 12.3 ハープシコード 12.4 アコースティックピアノ 12.5 エレクトリックピアノ 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで、本格的な機器分析データの解析 化学分析データの処理プログラムをPythonで作ろう、という本です。自ら作ることにより、目的のはっきりした使い勝手のよいものを作ることができます。本書はそのための指南書です。 第1章 機器分析の世界 第2章 Pythonの基礎 第3章 統計の基礎 第4章 データの前処理と可視化 第5章 ケモメトリックスの基礎 第6章 次元削減 第7章 クラスタリング 第8章 回帰 第9章 クラス分類 第10章 フィッティング 第11章 二次元相関分光法
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ●知識ゼロから始められるゲーム制作&プログラミングの入門書 本書は、プロのゲームクリエイターがやさしく解説する、ゲーム制作&プログラミングの入門書です。 ゲームを自作するには、プログラミングやゲーム制作の知識に加えて、ゲームのアルゴリズムを組むための数学の知識も必要不可欠です。そこで、ゲーム作りやプログラミングが初めてという方に向けて本書を執筆しました。Pythonという学びやすいプログラミング言語を使って、ゲームを作りながらプログラミングの基礎知識、ゲームの制作方法、そしてヒットチェック(当たり判定)などゲーム作りに必要なアルゴリズムや数学を無理なく学べる内容になっています。 【本書のサンプルゲーム】 モグラ叩き、テニスゲーム、カーレース、シューティングゲーム、ジャンプアクションゲーム、3Dダンジョン探検プログラムなど。 「とにかくゲームを作ってみたい」「知識ゼロからプログラミングやゲーム制作を学びたい」「何かを作りながらプログラミングやアルゴリズムを学びたい」「ゲームでよく使うアルゴリズムや数学を学びたい」といった方におすすめの一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで実務に使える数理最適化のスキルを身につけよう! ▼この本の特徴 本書は、Pythonを用いた数理最適化の入門書です。Pythonを使ってさまざまな課題を実際に解いてみることで、数理モデルを実務で使いこなす力を身につけます。 この本の特徴は、数理最適化のアルゴリズム自体ではなく、数理最適化を用いた課題解決に重きを置いている点です。ビジネスなどにおける課題を数理最適化で解く際に現場で発生しうる試行錯誤が多分に盛り込まれており、実務における手順や気をつけるべきポイントを学習することができます。 ▼この本の構成 本書は二部構成です。 第Ⅰ部はチュートリアルです。中学校で習う連立一次方程式や高校で習う線形計画法を題材として、数理最適化の基礎的な考え方とPythonによる初歩的な実装を学びます。シンプルな課題設定なので、数学的な難しさを感じることなくPythonに集中して基礎を学習することができます。 第Ⅱ部はケーススタディです。 実際に社会で起こりうる、さまざまな課題を数理最適化によって解いていきます。 学校のクラス編成やサークル活動における学生の乗車グループ分けなどの学生にとっても身近な課題や、キャンペーンの効果最大化や効率のよい配送計画の立案などのビジネスにおいてたびたびぶつかる課題などを解いていくことで、手順や注意点、効率のよい方法などが学べます。 ▼第1版からの変更箇所 ・5章(車両の配送計画) 問題の理解を助けるために挿絵・最適化結果の可視化を増やし、実装プログラムの解説を充実させました。また、最適化に登場する部品の列挙アルゴリズムについては、計算速度よりも理解しやすさを優先したものに差し替えました。 ・6章(数理最適化APIとWebアプリケーションの開発)にFastAPIやStreamlitの記述を追加 PythonのWebアプリケーション開発のフレームワークであるFlaskに加え、人気のFastAPIやデータサイエンティストでも簡単にWebアプリケーションが開発できるStreamlitについて追記しました。 ・7章(商品推薦のための興味のスコアリング)行列表現に関する説明の調整 簡単な数理最適化問題の行列表現から解説を行い、段階を踏んで理解できるようにしました。さらに、ソースコードの解説を追記することで、プログラムにおける行列の扱い方を理解しやすくなりました。 ▼このような方におすすめ ◎ 数理最適化の実務応用について知りたい方 ◎ 施策の効果最大化や効率化に取り組むビジネスマン(エンジニア・マーケター・リサーチャーなど) ◎ 情報・経済・経営系などの学部や学科の学生 ◎ データサイエンティストを志す方 第Ⅰ部 数理最適化チュートリアル 第1章 数理モデルとは 第2章 Python数理最適化チュートリアル 第Ⅱ部 数理最適化のケーススタディ 第3章 学校のクラス編成 第4章 割引クーポンキャンペーンの効果最大化 第5章 最小コストで行う輸送車両の配送計画 第6章 数理最適化APIとWebアプリケーションの開発 第7章 商品推薦のための興味のスコアリング Appendix メソッド・関数早見表
-
-3Dプログラミングをやったことがある方なら、きっと3Dツール、中でも「ポリゴンモデラー」を作ってみたいと憧れる方が多いでしょう。念のために説明すると、3Dのオブジェクトを作成・編集などすることを「モデリング」といい、そのためのツールを「モデラー」と言います。 本書ではプログラミング言語「Python」を使い、その3Dツールとしてmqoファイルの「3Dビューア」と「ポリゴンモデラー」を開発する方法を詳しく解説します。 3Dの描画には「OpenGL」を扱える「pyglet」パッケージを使います。そして「pyglet」をラップした、筆者が開発した3Dライブラリ「kantanengine(簡単エンジン)」を使います。本書ではこの「kantanengine」ライブラリの中身も計2章に分けて詳しく解説します。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 高校卒業から大学1年程度を対象として、プログラミングの知識がゼロでも無理なくPythonでプログラミングの学習を始められます。はじめてプログラミングを行うレベルを対象とするため、プログラムとは何か?といったところから説明します。Pythonの文法レベルをインタラクティブモードと簡単なプログラミング事例を示しながら、生徒に解を導かせるとともに、各章の最後に練習問題を提示し、読者が自分で考える機会を設けています。本書を通読することで、プログラミングの初心者がPythonを使って、実用的なデータ処理ができるレベルまで到達することを目標とします。実例として、実用的なExcelなどの表計算ソフトのデータの加工、データの可視化などを掲載しています。Python3、実行環境は、macOSターミナル、Windows 10 WSL、Linuxターミナルなど。
-
4.0★確率的プログラミング言語がすぐに使える!★ ・Pythonでのコーディングを前提に、PyMC3、Pyro、NumPyro、TFP、GPyTorchをカバー。 ・回帰モデルの基本から潜在変数モデル・深層学習モデルまでを幅広く解説。 【主な内容】 第1章 ベイジアンモデリングとは 1.1 データ解析とコンピュータ 1.2 ベイジアンモデリングの基礎 1.3 代表的な確率分布 1.4 近似推論手法 第2章 確率的プログラミング言語(PPL) 2.1 ベイジアンモデリングとPPL 2.2 自動微分・最適化アルゴリズム 2.3 PyMC3の概要 2.4 Pyroの概要 2.5 NumPyroの概要 2.6 TensorFlow Probabilityの概要 2.7 GPyTorchの概要 第3章 回帰モデル 3.1 線形回帰モデル:線形単回帰モデル 3.2 線形回帰モデル:線形重回帰モデル 3.3 一般化線形モデル:ポアソン回帰モデル 3.4 一般化線形モデル:ロジスティック回帰モデル 3.5 階層ベイズモデル 3.6 ガウス過程回帰モデル:ガウス尤度 3.7 ガウス過程回帰モデル:尤度の一般化 第4章 潜在変数モデル 4.1 混合ガウスモデル 4.2 行列分解モデル 4.3 状態空間モデル 4.4 隠れマルコフモデル 4.5 トピックモデル 4.6 ガウス過程潜在変数モデル 第5章 深層学習モデル 5.1 ニューラルネットワーク回帰モデル 5.2 変分自己符号化器 5.3 PixelCNN 5.4 深層ガウス過程 5.5 正規化流
-
4.6基礎理論を飛ばさない! 推定・検定から統計モデル・機械学習へ! 本書は統計学の理論をゼロから学べる教科書です。 IoTやビッグデータの発展によりさまざまなデータが社会にあふれ、 全てのデータを確認するのは難しくなってきています。 多くのデータから価値があるデータを作成するには統計学の知識が必須です。 【本書のポイント】 本書は統計学をはじめて勉強するかたでも、 読み進めていけるように、以下の3点を重点的に解説しています。 ・データをどのように分析するのか ・なぜそのように分析するのが良いことなのか ・Pythonを使ってどのように分析するのか 【統計学を勉強するためのツールについて】 この書籍では、学習していく際のツールに、プログラミング言語のPythonを使用します。 PythonはExcelやRより自由度が高く、機械学習に多く利用されているので幅広い層から注目を集めています。 Pythonに馴染むことにより、機械学習を利用したデータ分析者になるための基礎的な技術も身に付けられます。 【本書の構成】 本書は全7部構成になっています。 それぞれの部で次のようなことを解説しています。 第1部では統計学の基本を解説しています。 第2部でPythonの基本やJupyter Notebookの使い方を説明します。 第3部でPythonを用いた統計分析の方法を学びます。 第4部からは統計モデルについて学んでいきます。 第5部では正規線形モデルを解説します。 第6部それを発展させた一般化線形モデルについて解説します。 第7部は、統計学から機械学習へのつながりを学びます。 統計学やPythonのことを何も知らない方にもオススメの一冊です。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-統計学の基礎から 統計モデリング、機械学習の入り口まで しっかり学べる! 【本書の概要】 データサイエンスやAIについて学ぶ上で欠かせない 統計学の知識をPythonを利用して 基礎からしっかり学べる書籍です。 【統計学の学習にPythonを利用する理由】 Pythonは統計学を学ぶのに便利なライブラリが多数用意されており データサイエンス、AIの研究開発に数多く利用されています。 統計学の基礎を学ぶのに格好のプログラミング言語です。 【対象読者】 ・統計学の初学者 ・統計学を学びたいエンジニア 【本書のポイント】 はじめて統計学を学ぶ方でも躓かずに学習できるよう 以下の3つをもとに丁寧に解説しています。 ・データの分析方法 ・分析の意味 ・Pythonによる分析の実践 【目次】 第1部 統計学をはじめよう 第2部 PythonとJupyter Notebookの基本 第3部 記述統計 第4部 確率と確率分布の基本 第5部 統計的推定 第6部 統計的仮説検定 第7部 統計モデルの基本 第8部 正規線形モデル 第9部 一般化線形モデル 第10部 統計学と機械学習 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 プログラマが最初に学ぶべきアルゴリズムを解説。 処理を効率化するテクニックが身につく! 本書は、プログラミング言語のPythonを使ったアルゴリズムの入門書です。アルゴリズムの処理の流れや論理構造を根本から理解できるように、図と文章で丁寧に解説しています。 さらに、本書では、アルゴリズムを改良するテクニックを紹介しています。 アルゴリズムを改良すると、処理を効率化できたり、別のプログラムで応用できたり、コードが読みやすくなったりします。 自分で手を動かしてプログラムを改良することで、アルゴリズムの使い方や改良方法を実践的に学べます。 本書の1章~10章では、ソートや探索など、様々な場面で使われている基本的なアルゴリズムとその改良テクニックを解説しています。 補章では、初学者でも本書の内容を理解できるように、Pythonの基本的な文法を解説しています。 いろいろなプログラムの書き方を学びたい方、プログラミングの力を伸ばしたい方におすすめです。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 エンジニアの基礎体力を身につける 本書はPythonを用い、ITエンジニアが身につけておくべき王道のアルゴリズムを手を動かしながら学べる入門書です。 教育機関で16年教鞭をとり、公式アプリ2000万DL超の開発実績を持つ廣瀬豪氏が、教育者・プログラマーとしての経験を生かし、データ構造とアルゴリズムの学習が「一生モノの財産になる」という視点で解説します。スタック、キュー、リスト、木、グラフなどデータ構造の基本から、サーチ、ソート、ハッシュといった王道アルゴリズムを厳選しつつ、ユークリッドの互除法、文字列探索、最短経路問題、フラクタル図形の描画、マンデルブロー集合などワンランク上の知識・技術まで網羅します。 サンプルプログラムは手入力しやすい短めのコードを108個用意し、すべての行に1行ずつコメントを付けて読解しやすいように工夫しています。また、ゲームクリエイターという肩書を持つ著者ならではの教材として、「アルゴリズムの見える化」という類書にはない楽しい要素を盛り込んでいる点もポイントです。 資格試験、就職試験に挑む方、大学や専門学校で情報処理を学ぶ方など、プログラミングの力を伸ばしたいすべての方におすすめです。
-
-※PDF版をご希望の方は Gihyo Digital Publishing (https://gihyo.jp/dp/ebook/2022/978-4-297-13233-0)も合わせてご覧ください。 本書籍は,Pythonによる衛星データ解析に興味がある初学者に向けた入門書となっています。学校の情報の授業等で利用する際の副教材になることを意識し,衛星データだけでなくデータサイエンスの基礎的な内容も含めました。学校で地球環境やご自身が住んでいる地域がどのように変化しているか調べたい方はもちろんのこと,衛星データを使って何かビジネスを始めたい方にも読んでいただきたいと思っています。従来のデータサイエンスの教材の場合には身近なデータを利用することが難しかった中で,衛星データであれば身近な地域のデータを利用して解析することができます。少しのプログラミング変更で解析対象地域を変えることができるようになっているので,関心のある地域の変化についてぜひ調べてみてください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 一冊に、AIと数学とアルゴリズムの基本を濃縮! Pythonの深層学習フレームワークを自作! 社会の中で日々存在感を増している「AI」と「数学」と「アルゴリズム」。その基本を180ページに詰め込んだのが本ムックです。 バブルソートのような基本的なアルゴリズムから、手書き数字認識もできる深層学習フレームワークの自作、AIで使われる数学の基礎である線形代数、そして経済学のアルゴリズムであるゲーム理論まで、様々な話題を扱っています。 もちろん、単に解説するだけではなく、Pythonで動くコード付き!動かしながら、深く学ぶことができます。 ≪目次≫ 第1章 絶対に知っておきたいアルゴリズム10選 その1 基礎から機械学習まで厳選した10個のアルゴリズムを Pythonによる実装とともに解説! 第2章 絶対に知っておきたいアルゴリズム10選 その2 3つのテーマで厳選した10個のアルゴリズムを Pythonによる実装とともに解説! 第3章 自分で作るPython深層学習フレームワーク Python+NumPyでフレームワークを完全自作! 深層学習の原理がよくわかる! 第4章 Pythonで線形代数を学ぼう AI&データサイエンスで使う数学の基礎! 第5章 Pythonで学ぶ「ゲーム理論」 人間関係をプログラミングできる! 第6章 プログラミング時代の数学との付き合い方
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 中級者以上に向けた、特定の技術分野のアルゴリズムの紹介と、そのアルゴリズムを実装したコードを解説する、より技術的・実践的な「機械学習実践シリーズ」の1冊目として、「音源分離」をテーマとしています。近年、AIスピーカをはじめとした、人が話した音声を理解する音声認識システムがさまざまな場面で使われています。一般的に音声認識システムは、1人の人の声を聞き取ることを想定しており、聞きたい人の声以外の音が入ってくると、どうしても聞きたい人の声を正確に聞き取ることが難しくなります。「音源分離」とはこのようにさまざまな音が混ざった中から、欲しい音だけを抽出するという技術です。本書では、音源分離の基礎から、Pythonを用いた実装までを詳しく解説しています。また、音源分離で用いる数学的知識の基礎として、線形代数や行列・ベクトルの微分の方法、確率統計の基礎について示しています。音源分離を理解しコードを書くためには、プログラミングに関する知識はもちろん、線形代数、微分積分、確率・統計といった数学的知識も必要不可欠です。とくに音源分離では複素数の行列・ベクトルを用いるので、複素数の計算方法について重点的に示しています。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「音声合成」とは、人間の音声を人工的に作り出す、音声情報処理の一分野です。深層学習の発展に従い、画像認識・音声認識などの分野と同様に、音声合成においてもパラダイムシフトが起きています。本書では、従来の統計的音声合成システムの基礎について解説した上で、深層学習技術による近年の音声合成の発展について詳説しています。また、実際に公開されているデータセットを用いて、深層学習を用いた音声合成システムを作るための実装の解説も行っています。本書は、2020年8月24日刊の『Pythonで学ぶ音源分離』、2021年5月20日刊の『Pythonで学ぶ音声認識』に続く、特定の技術分野のアルゴリズムの紹介と、そのアルゴリズムを実装したコードを解説する、より技術的・実践的な「機械学習実践シリーズ」の3冊目です。中級者以上向け。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「音声認識」とは、音声信号から発話内容を認識することで、AIスピーカなどに利用されている技術です。本書は、現在までの音声認識技術の発展経緯を学びながら、深層学習を用いた最新の音声認識システムを実装できるようになることを目的としています。まず手法の目的やアルゴリズムの概要を解説し、続いて数式レベルでの詳説、最後にソースコード付きで実装という流れで解説しています。特に手法の概要については「そもそもその手法は何を目的として生み出されたのか」という経緯と、「なぜその手法は前述の目的を達成できるのか」について直感的に理解できるよう工夫しています。本書は中級者以上に向けた、特定の技術分野のアルゴリズムの紹介と、それを実装したコードを解説する、より技術的・実践的な「機械学習実践シリーズ」です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 近年、画像生成技術は急速な進化を遂げ、特に2022年の「Stable Diffusion」公開以降、テキストから画像を生成するAIが広く普及しています。本書はこの革新的な技術の基礎から応用までを網羅し、読者が画像生成を深く理解することを目的としています。第1章では画像生成の概要を学びます。同時に技術の急速な発展に伴う倫理的な課題やリスクについても考察します。第2章では画像生成の基盤となる深層学習の基礎を、現代の主流であるTransformerモデルに焦点を当てて解説します。第3章では生成モデルの概念と、画像生成を飛躍的に進歩させた拡散モデルの基礎理論を解説します。第4章では拡散モデルの進化形である潜在拡散モデルとStable Diffusionについて解説します。第5章では拡散モデルをもとに、画像生成にとどまらないさまざまな応用について紹介します。第6章では画像生成技術の今と未来を考察します。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 近年の技術の発展により、画像認識技術はますます身近になっています。スマホの顔認証やオンライン会議での人物と背景を認識して背景をぼかすなどをはじめ、画像認識技術ははさまざまな場面において人々の生活をサポートしています。本書では画像認識について実践的に学べるように、Pythonを使った実装を示しています。また画像認識の基礎については簡単に触れるにとどめ、最新の画像認識手法について紙幅を割き、多くの部分で深層学習の実装について学ぶことができる構成になっています。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで効果検証の実務を学ぼう! この本は、効果検証を実務で行いたい方に向けた入門書です。 実務応用しやすい3つの分析手法(A/Bテスト・Difference in Differences (DID)・Regression Discontinuity Design (RDD))について、現場で実際にぶつかりやすい課題をミニストーリーなどで指摘しながら、その対応策や考えかたを示し、Pythonで実装していきます。 とくにA/Bテストについては多くの紙面を割き、複数のデザインパターンや分析手法を紹介します。 また、DIDとRDDについても、ミニストーリーなどを交えて適用できる条件を具体的に例示しつつ、間違った分析結果を算出してしまわないよう丁寧に解説を行います。 本書では、全体をとおして、ビジネスの現場で必要とされる知識と理論的な基礎との乖離に着目し、その乖離を埋めるような説明を心がけました。あくまで入門書であるため理論的な説明は控えめになっていますが、参考文献やブックガイドから、より専門的な論文や書籍にアクセスできるようにしています。 本書を読了することで、基本的な効果検証の手法を理解し、Pythonで実装できるようになります。さらに、陥りやすいアンチパターンや、効果検証を通じて組織に貢献するための考えかたなど、データ分析の実務者に必要とされる知見も身につきます。 謝辞/目次 1章 はじめに:いまなお隔たりがある効果検証の実務と理論 1.1 効果検証とはなにか? 1.1.1 本書のねらい:基礎と実務を紐づける 1.1.2 本書の特徴 1.1.3 効果検証の各手法の特性と使いかた 1.1.4 効果検証の目的:意思決定と探索的分析 1.2 本書の構成 1.3 想定する読者 1.4 サンプルコード 2章 A/Bテストを用いてクリーンに効果検証を行う 2.1 Prelude 2.1.1 太郎くんの分析の再現 2.2 施策と効果 2.2.1 基本的な用語の確認 2.2.2 施策効果と反実仮想 2.3 バイアス 2.3.1 バイアスを含んだ分析の例:ユーザーの性質 2.3.2 バイアスを含んだ分析の例:時系列 2.3.3 バイアスを含む分析手法の負のループ 2.4 A/Bテストの基本的な発想 2.4.1 ランダムな施策割当によるバイアスの排除 2.4.2 施策効果のポテンシャルアウトカムフレームワークによる表現 2.5 A/Bテストのデザイン 2.5.1 A/Bテストの設計 2.5.2 データ収集 2.5.3 収集したデータの分析と評価 2.6 PythonによるA/Bテストデータの分析の実装 2.7 A/Bテストのアンチパターン 3章 A/Bテストを用いて実務制約内で効果検証を行う 3.1 実務におけるA/Bテストの課題 3.2 A/Aテスト:A/Bテストの信頼性を担保する 3.2.1 A/Bテストは頻繁に「失敗」する 3.2.2 A/Bテストの失敗は2種類のケースに大別できる 3.2.3 A/Aテスト 3.2.4 A/Aテストのリプレイ 3.3 柔軟なA/Bテストのデザイン 3.3.1 クラスターA/Bテスト 3.3.2 層化A/Bテスト 3.3.3 A/Bテストにおける処置と割り当ての不一致 3.4 効率的な分析:共変量のコントロール 3.5 施策効果の異質性:どこで効果があるのか知る 3.5.1 セグメントごとにサブサンプルに分割する 3.5.2 セグメントの交差項を入れて分析を行う 4章 Difference in Differencesを用いて効果検証を行う 4.1 DID(差分の差法):施策実施前後の違いを捉える 4.1.1 施策をとりまく4つの状況とよくある分析の仮定 4.1.2 DIDの基本的な発想 4.1.3 DIDの発想に基づいた施策効果分析の実装 4.2 DIDを用いた実務的な施策効果検証 4.2.1 パネルデータ 4.2.2 分析方法 4.2.3 DIDによる施策効果分析の実装:文言変化の効果を調べる 4.3 2期間以上のデータをDIDで分析する 4.3.1 時間を通じて施策効果は変わりうる 4.3.2 分析方法 4.3.3 DIDによる施策効果分析の実装:イベントスタディのケース 4.4 パラレルトレンド仮定と検証 4.4.1 パラレルトレンド仮定の検証とは? 4.4.2 プレトレンドテスト 4.5 複数回の施策を行った場合にDIDによる分析は適用できるか? 5章 Regression Discontinuity Designを用いて効果検証を行う 5.1 RDDを適用できるシチュエーション 5.1.1 クーポン配布施策:クーポンの効果は本当に大きいのか? 5.1.2 閾値によって実施するかどうか決める施策の効果を評価する 5.2 RDDの仮定と推定 5.2.1 RDDの直感的な説明 5.2.2 RDDにおける施策効果 5.2.3 Sharp RDDの推定 5.2.4 rdrobustを用いたSharpRDDの実装 5.2.5 RDDの仮定が成り立たないケースとその検証法 5.2.6 McCraryの検定の実装 5.2.7 共変量のバランステストの実装 5.3 Fuzzy RDD:処置確率が閾値によって不連続に変化する場合のRDD 5.3.1 rdrobustを用いたFuzzy RDDの推定 5.4 内的妥当性と外的妥当性:我々はなにを推定しているのか? 5.5 bunchingの難しさ 5.5.1 操作が発生している例:所得税控除制度 5.5.2 bunchingの推定ステップと2つのケース 6章 おわりに:実務における課題と展望 6.1 これまでの振り返りと実務プロセスに合わせた分析手法の選択 6.2 分析プロセスの“不”可能性 6.3 データ分析実務者の役割 6.3.1 闇落ちするデータサイエンティスト 6.3.2 専門知識で意思決定を支える 6.4 効果検証の実務者のためのブックガイド 6.4.1 施策効果検証の発想を理解する 6.4.2 効果検証の発展的なトピックを学ぶ 6.4.3 計量経済学を学ぶ 6.4.4 実務として効果検証を実践する 著者・監修者略歴/参考文献/索引
-
-PyQの大人気コンテンツ書籍化第2弾 Pythonで数理最適化と問題解決手法を学んでみよう! 【本書の背景】 今日、数理最適化は、生産計画の最適化や勤務シフト表の作成、効率的なリソース配分の計画など幅広い分野で使われています。しかし、その理論的な深さや応用範囲の広さから、初学者が挫折感を覚えることも多いです(「はじめに」より抜粋)。 【本書の内容】 理論や詳細な内容を最小限に抑えて、Pythonのコードを動かしながら最適化を体験できるようにしました。さらに、簡単な確認問題を解くことで、理解度を確認しながら読み進められるように構成しました。(「はじめに」より抜粋)。 【PyQ(パイキュー)とは】 株式会社ビープラウドが運営する、ブラウザだけで学べるオンラインPython学習サービス。 【学習環境】 実行環境:PyQ、または、PC上のJupyterLab 利用言語:Python 3.11 利用ライブラリ:mip(1.15.0)、mip-tool(0.3.2)、pandas(2.1.3)、JupyterLab(4.0.9)、 Matplotlib(3.8.2) 【対象読者】 ・数理最適化を使って、社会や身近な問題解決に活かしたいという方 ・数理最適化を勉強したけど身につかず挫折した方 【前提知識】 ・高校数学のベクトルの知識 ・Pythonの文法知識 【目次】 Prologue PyQでPythonや数理最適化を学ぶ 第0章 本書の使い方 第1章 数理最適化による問題解決 第2章 数理モデルって何だろう 第3章 Pythonで数理モデルを作ろう 第4章 たくさんの変数はベクトルで 第5章 混合整数最適化って何だろう 第6章 Python-MIPのクラス 第7章 問題解決ってどうやるの? 第8章 輸送費を減らしたい 第9章 もっと食べたくなる献立を 第10章 お酒をわけよう 第11章 シフト表を作りたい 第12章 pandasで数理モデルを作ろう 第13章 pandasで再モデル化 【著者プロフィール】 ・株式会社ビープラウド ・PyQチーム ・斎藤 努(さいとう・つとむ) 株式会社ビープラウドにてPyQなどを担当。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonを使って線形代数学を見える化して学ぼう! 本書は、大学初年次に学ぶ基礎数学科目の一つであり、具体的なところでは機械学習やコンピュータグラフィックス、ゲームプログラミングなどの基礎となる線形代数を、Pythonを使って学ぶものです。 線形代数は、微分・積分とならび基礎的な数学の一つですが、ふつうに勉強するとベクトル・行列計算が面倒くさく、また定義や概念が多く抽象的な表現も多いため、なかなか理解しづらい学問といえます。 そこで本書は、Pythonによるプログラミングを用いて以下の工夫を施すことで、よりわかりやすく、またビジュアルにベクトルを見るなどの体験を通して、線形代数を学べるようにまとめました。 1)2次元平面や3次元空間のベクトルを視覚的に表現する 2)関数をグラフ化することで、ベクトル計算の意味を理解しやすくする 3)面倒なベクトルや行列の計算をプログラミングで表現する 4)手計算では不可能な高次の線形計算を、具体的なデータ(音や画像)を用いて表現する 5)通常の教科書の演習問題レベルの計算問題をプログラミングによる数式処理で求める 改訂にあたり、全体を見直すとともに、この4年間で変化したPython環境の見直し、カラー画像・3D・動画およびサウンドを閲覧できるQRコードの配置、第9章・第10章の練習問題の追加などを行いました。 本書が、読者の線形代数学のより一層の理解の一助となれば幸いです。 第1章 数学の基礎とPythonによる表現 第2章 線形空間と線形写像 第3章 基底と次元 第4章 行列 第5章 行列の基本変形と不変量 第6章 内積とフーリエ展開 第7章 固有値と対角化 第8章 ジョルダン標準形とスペクトル 第9章 力学系 第10章 線形代数の応用と発展
-
4.0本書はPythonによる自然言語処理、あるいはテキストマイニングの初歩について解説したものです。 テキストマイニングとは、テキストをコンピュータで探索(マイニング)する技術の総称です。ここで「テキスト」とは、小説や論文、あるいは新聞や雑誌の記事にとどまらず、インターネット上のブログ、あるいはSNSに投稿された文章など、およそ人間の言葉で書かれたものを指します。 Pythonの基本からテキスト分析の手順、形態素解析器の導入、さまざまな分析手法についてわかりやすく解説しています。また、本書の最後に、ディープラーニングを使ったテキストマイニング事例についても紹介します。 なお、本書の一部については解説動画が用意されています。
-
-本書はプログラマーにとって必要不可欠な「データ構造とアルゴリズム」を学ぶための入門書です。データ構造とアルゴリズムに関する知識は、ソフトウェア開発の基盤であるとともに、問題解決能力を高める重要な要素でもあります。その知識をPythonという親しみやすいプログラミング言語を使って丁寧に解説します。 プログラミングやコンピュータサイエンスの世界で広く学ばれる定番のアルゴリズムを中心に取り上げました。それに加え、知識を広げていただけるように、本書独自のアルゴリズムも複数、掲載しています。 Pythonの基本を学んだ後に、データ構造とアルゴリズムを学習するように構成していますので、初心者の方も安心して学習を始められます。すでにプログラミングの経験がある方は、興味のある項目を選んで学ぶことができます。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで機械学習に必要な統計解析を学べる!! 機械学習を使いこなすには、確率・統計に根ざしたデータ解析の基礎理論の理解が不可欠です。そこで本書は、Pythonの簡単な使い方から確率・統計の基礎、統計モデルによる機械学習を解説します。 第I部 Pythonによる計算 第1章 Pythonの初歩 第2章 確率の計算 第II部 統計解析の基礎 第3章 機械学習の問題設定 第4章 統計的精度の評価 第5章 データの整理と特徴抽出 第6章 統計モデルによる学習 第7章 仮説検定 第III部 機械学習の方法 第8章 回帰分析の基礎 第9章 クラスタリング 第10章 サポートベクトルマシン 第11章 スパース学習 第12章 決定木とアンサンブル学習 第13章 ガウス過程モデル 第14章 密度比推定 付録A ベンチマークデータ A.1 UCI Machine Learning Repository A.2 mlbench A.3 datasets 参考文献 Python索引 用語索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 さまざまな関係性の構造をPythonで分析する! ネットワーク分析は、さまざまな「関係性」を分析する学問です。 構造をモデル化することで、ネットワークという言葉から想像しやすいWebやSNSの分析だけでなく、たとえば感染症の伝搬経路を見つけたり、未来の人間関係を予測したりすることが可能です。マーケティングなどの現場でも使用されています。 本書では、ネットワーク構造をもつデータをPythonで分析するための基礎知識を習得できます。 分析には、Google Colaboratory(クラウド上で使用できるJupyter Notebook環境。Colabとも呼ばれる)を用います。ブラウザ上で動くColabは環境構築が不要なため、すぐに実際にコードを試すことができます。また、可視化ツールとしてNetworkXを使用し、さまざまなネットワークをグラフとして視覚的に把握できます。 実際にColabで動かせるプログラムと、そのプログラムによって出力されたグラフを数多く例示しているため、実際にColabでコードを実行しながら理解を深めることができます。 データサイエンスを学ぶ学生はもちろん、企業の広報・企画・マーケティング担当者など、顧客の購買行動やソーシャルネットワークの分析などが必要になった社会人にも役立つ一冊です。 第1章 分析できる環境を用意する-ツールや言語の把握 第2章 ネットワーク分析の流れを知る-小説の人間関係を紐解く 第3章 必要な用語を学ぶ-ネットワークの基礎知識 第4章 中心を見つける-さまざまな中心性 第5章 経路を見つける-ネットワークの探索 第6章 グループを見つける-分割と抽出 第7章 似たネットワークを作る-モデル化 第8章 似た頂点を見つける-将来の構造予測 第9章 病気や口コミの広がりをモデル化する-感染、情報伝搬 第10章 ネットワークを俯瞰する-可視化による分析 第11章 リファレンス
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 AIの基本を、Pythonでやさしく学んで楽しもう! 本書は、AI(人工知能)技術の基本を、自然言語処理と音声処理をとおしてわかりやすく解説した入門書です。アルゴリズムを平易に解説し、Pythonによるプログラミング例を紹介。さらに、自然言語処理や音声処理への応用例を取り上げ、実践しながらAI技術の基本が理解できるようになります。 第1章 人工無脳から人工知能へ 第2章 文字を処理する テキスト処理の技術 第3章 自然言語処理の技術 第4章 音声処理の技術 第5章 知識表現 第6章 学習 第7章 深層学習 第8章 対話エージェントの構成 第9章 人工無脳から人工人格へ 付録
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 文理を問わないすべての大学生が身に着けるべきデータサイエンスの基礎を,Pythonを使った演習を行いながら実践的に学べる教科書です。数学的なバックグラウンドが無くても,概要を理解しながら飽きずに進めることができる内容です。数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル)に準拠。大学,大学院の講義で教科書として使用しやすいよう,全14章で構成しています。
-
3.5※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 プログラミング言語のPythonを学びながら、プログラムでコンピューターがどうやって動いているかの基本から理解できるプログラミング入門書籍です。 プログラミング言語も、私たちが読み書きする日本語や英語と同じ言語です。言語の習得と同じように、まずはPythonのプログラムを読むところからはじめ、動かして動作を確認し、少し書き換えてコンピューターの動作がどう変わるかを体験しながら学んでいきます。 そして、コンピューターの動作の基本は、数と計算の考え方です。世の中の「ものごと」を数に置き換える考え方が身につけば、プログラミングがみるみる上達していきます。 サンプルのプログラムは、GoogleのColaboratoryを使って、パソコンだけでなくタブレットやスマートフォンでも動かして体験できます。 本書で、コンピューターが動く基本がしっかり理解できれば、プログラミングが楽しくなり、みるみる上達していけます。 ※カバー画像が異なる場合があります。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、Pythonを使ったプログラミングの基礎を初心者向けにわかりやすく解説した入門書です。プログラミングに必要な知識を体系的に習得しながら、基本的なアルゴリズムの理解やその実装方法を学べます。Google Colaboratory(Colab)の環境を活用することで、すぐに学習を始められます。また、「情報」の教科書以上に詳しくPythonプログラミングやアルゴリズムについて説明しており、「情報」の次のステップにもぴったりな内容です。 本書の目的は、初心者が将来の学びや応用につながるPythonの基礎的な知識とスキルを固めること、そしてアルゴリズムやプログラムのデザインを学び、自分でプログラムを作成する力を養うことです。プログラム作成では、複雑な問題を小分けに整理して進める構成を採用し、初学者でも無理なく実践できるよう配慮しています。重要なポイントで設計やアルゴリズムの意味を考える場面を設けることで、理解を深めながら、自力で設計・作成する能力を確実に身につけられる構成となっています。 対象読者はプログラミング初心者で、特に次の層に焦点を当てています。高校生にとっては学校の教科「情報」の内容をさらに深く学び、実践的なプログラミングスキルを習得できる内容です。大学生や社会人には、研究や業務で活用できるプログラミングの基本を学び、「データサイエンス」「AI(人工知能)」「業務自動化」といった分野へ進む足掛かりになる内容です。1人で学べる丁寧な解説が魅力となっており、幅広い層の初学者に自信を持ってプログラミングを始めるきっかけを提供する1冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 流体力学の数値計算法とPythonによるシミュレーションの考え方が正しく理解できる。 本書は、学生、企業の若手技術者の皆様が、自ら流体力学の数値計算法とPythonによるシミュレーションの考え方を一から学べる書籍です。 流体現象の基礎を学びながら、Pythonによるそのコーディングを紹介する構成としています。Pythonとコンピュータの技術革新は急激に進んでおり、現在ではストレスを感じることなく、Pythonで各種シミュレーションが容易に実施できる環境が生まれています。 これからの研究者、技術者にとって必読の1冊です。 序章 Pythonによるプログラミングの準備 第1章 離散化の考え方 第2章 1次元スカラー移流方程式 第3章 スカラー方程式における時間積分法 第4章 拡散方程式 第5章 システム方程式の解法 その1(方程式の理解) 第6章 システム方程式の解法 その2(実践的な計算法) 第7章 システム方程式における時間積分法 第8章 複雑形状への対応 第9章 実際の課題への対応
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 見込み客、土日の需要、商品リコメンド… 営業、マーケティングが劇的に変わる 業務に本当に役立つ“儲かるAI”を自分で作る! 業務に本当に役立つ“儲かるAI”を作るには、「業務目線」と「技術目線」の両方が必要です。業務の課題を認識し、どう改善するかという「業務目線」が必要なのは従来システムと同じですが、AIの構築ではさらに業務の課題が本当に AIで解決できるのか、AIのどの処理方式なら適用できそうかという「技術目線」が不可欠なのです。 本書のPython実習で学ぶことで、「AIの目利きができる技術目線」を獲得し、自分でもAIを作れるようになります。 ◆数学なしでアルゴリズム選びもチューニングもわかる ◆現場目線でAIの最適化までできる ◆ブラウザだけで試せるPython実習(Google Colab) ◆XGBoost、Prophetなど話題のAI技術を活用 ◆全PythonコードをGoogle Colab用のNotebook形式で用意 <機械学習のための Python入門講座>つき! 1章 業務と機械学習プロジェクト 2章 機械学習モデルの処理パターン 3章 機械学習モデルの開発手順 4章 機械学習モデル開発の重要ポイント 5章 業務要件と処理パターン 6章 AIプロジェクトを成功させる上流工程のツボ
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 膨大なデータを扱うときに基本となる知識が統計解析です。本書はこれから統計解析を学びたいと考える方に向けて,プログラミングの力を借りて実際にデータを確認することで,直感的な理解を促します。プログラミング言語にはPythonを利用します。Pythonで統計解析を解説するメリットはいくつかあります。Python自体がシンプルで可読性が高い上に逐次実行できるため初心者でも理解しやすいと言えます。これ以外にも,Pythonは統計解析に関するライブラリが充実しており,複雑な計算やグラフの描画がかんたんにできます。また,Pythonは汎用的な言語ですので,システムの中にシームレスに組み込むことができます。本書によって統計解析を学習することで,Pythonのデータ解析スキルもあわせて習得できるでしょう。
-
-※PDF版をご希望の方は Gihyo Digital Publishing (https://gihyo.jp/dp/ebook/2022/978-4-297-12780-0)も合わせてご覧ください。 近年注目を浴びる人工知能は微分をはじめとした数学の計算に基づいています。また,新型コロナウィルス感染の予測では微分方程式が利用されています。微分積分は,多くの方が学ぶ意義がある学問なのですが,複雑な計算や数式が原因で学習に挫折した方も少なくありません。そこでPythonの出番です。 本書はこれから微分積分を学びたいと考える方や学び直したい方に向けて,Pythonの力を借りて視覚的にデータを確認することで,直感的な理解を促します。複雑な計算とグラフの描画はPythonにまかせ,Pythonが出力する結果とグラフを読み解くことに注力します。数学のエッセンスを理解して活用するために,コンピューターを使用した数学の学習は効率的な学習方法とも言えます。 「とりあえずPythonに計算させてみよう」と,軽い気持ちで数学の学習を開始してみましょう。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データサイエンスを実応用するための基本を押さえる データエンジニアリングは、データサイエンスを現実に意味のある形に使えるようにし、実装・運用できるようにすることを指します。 データサイエンスを機器や分析に実応用するためには、Pythonスクリプトの高速化の知識や、センサ信号の取得、アクチュエータ制御に必須となる通信、インタフェース駆動といった外部デバイスとのデータアクセスの基本と応用についてのスキルの修得が必要となります。本書は、これらのデータをエンジニアリングするための入門的な知識を解説するものです。 1編 基礎編 1.データエンジニアリングとは 2.コンピュータ工学の基礎 3.Intel CPUの工夫 4.デバイスデータアクセスの基礎 2編 高速化 1.少しの工夫で速くなる 2.NumPyの使用 3.C/C++モジュールを呼ぶ 4.マルチプロセス 5.Pythonのコンパイル 6.GPUの使用 3編 デバイスデータアクセス 1.IoT実現化に必要な機能 2.USBを用いたデータ転送 3.Bluetoothを用いたデータ転送 4.有線LANとWi-Fiを用いたデータ転送 5.センサ信号処理と制御の例
-
4.0「データサイエンス」という言葉だけ聞くと、複雑な数式や高度で高価なソフトウェアパッケージが必要と考えるかもしれません。ところが近年では、「R」や本書で紹介する「Python」など、データ分析に適した様々なオープンソースのソフトウェアやプログラミング言語が公開されており、必要な知識さえあれば誰でも簡単に高度な分析を行う環境が整ってきています。 本書はIT エンジニアの読者を対象とし、データサイエンスの入門としてPython を使用してデータ集計や機械学習などのデータ分析手法を習得することを目的としています。 効率的なデータ分析を実践し、自らのサービスにフィードハックを加えたいエンジニアにとって、必読の一冊になっています。 Numpy(ナムパイ)、Pandas(パンダス)といったPython独自の便利なライブラリを短時間で習得できます。 ・著者プロフィール 東京工業大学 大学院 生命理工学研究科を卒業し、バイオ・インフォマティクスを学ぶ。現在は機械学習を用いたサービスのシステム設計や様々なサービスのデータ分析に従事している。趣味は家庭菜園であり、自宅のベランダは様々な植物で占拠されている(別な意味でもサイエンティスト)。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ■ 膨大なデータを実際に分析する紙上ハンズオンセミナー □ データ分析の全プロセスを始めから終わりまで実体験できる! データ分析やデータサイエンスに興味がある、あるいは業務でデータ分析を実際にやらなければならない――。きっと、そういう人なら基礎的な統計や分析、データサイエンスはの入門書はひと通り目を通したことと思います。おそらくは並行してプログラミングも勉強しているという人も多いでしょう。そうした基礎を学んだところで、こう思ってはいませんか? 「さて、データ分析ってどうやるの?」 本書は実務としてのデータ分析について、データの取得から段階を踏みながら、どのようにデータの特徴や傾向を読み取るのか、具体的なやり方をハンズオン形式で解説します。取り上げるデータ、分析のためのプログラミング環境は、誰でも利用できるものばかり。本書に従ってデータ分析を進めていけば、分析プロセスはこう進めていけばいいのかというリアルな手順が身につきます。 本書が対象にするのは、ビジネスパーソンです。自社の次の戦略をベテラン社員のカンに頼って立案するのではなく、科学的な手法でデータを分析し、根拠のある戦略立案に役立てたいと考えている、現場のビジネスパーソンが対象です。そのためにデータ分析の目的、分析結果の活用まで考慮し、ビジネスの中でデータ分析をどのように生かせばいいのかについても解説しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonでデータ分析と機械学習を実践します。豊富なライブラリを使って統計学に基づいた統計分析ができるので、Pythonに慣れ親しんだ人は、データ分析も機械学習もまとめて効率的に学ぶことができます。
-
4.0本書では理論と実践のどちらにもフォーカスを当てAIや機械学習について「ある程度、中身を知って使える」を目指す入門書です。 Twitter APIや国の統計データなど、生のデータを使い、遊んでいるような感覚で理解が進む1冊です。 ■「はじめに」より抜粋 本書は、AIや機械学習について、「何だかよくわからないけどすごいもの」という理解から、「ある程度、中身を知っていて使える」にアップデートしたい人(もしくは、アップデートしなければいけなくなってしまった人)に向けた、導入となる最初の1冊になることを目指しています。 本書では、理論と実践、両方を抑えています。まず、なるべく数式を使わずに、直感的な理解ができるように機械学習の理論について解説します。「遊んで学ぶ」というタイトルの通り、理論の勉強も楽しめるように、具体例や図を多く使っています。しかし、だからといって不正確にならないように繊細な注意を払いながら、ギリギリまで噛み砕いて説明を行っています。 その後、よく使われるデータセットではなく、「APIで自由に取得できる、さまざまな企業が提供しているデータ」「国が提供している統計データ」などの生のデータを使い、実際に分析を行います。 本書は、実際にデータを取得するところからスタートすることで、「データの量を増やしたら結果はどうなるのだろう?」「このデータを可視化してみたらどうなるのだろう?」「変数を変えてみたらどうなるのだろう?」と、まるでデータを使って遊んでいるような感覚で理解が進むことを狙っています。 なお、データ分析を行うにあたり、多くの人は、RもしくはPythonというプログラミング言語を使います。どちらも、データ分析やデータ整形、そして可視化を行うのに有効なライブラリが多数存在しているため、非常に人気です。本書では、Pythonを用いて実装コードを記述しています。ただし、Rを使いたい人も進められるように、RとPython両方のコードを、Github上にて公開しています。ぜひ、参考にしてください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習による異常検知と系列データ解析を実例をもとに学ぶ 本書は、現在産業界で注目されている、機械学習による ・機器の振動データに対する異常検知 ・系列データ(例として睡眠系列データ)に対する解析 を解説したものです。 業務や研究開発に必要だが機械学習については素人という方でも実践できるように、本書前半では、基本的な識別器・予測器のPythonによる実装例・使い方を解説しています。後半では、実問題への適用例を著者の研究経験をもとに解説しています。 第1章 機械学習とは何か 第2章 基本的な識別器・予測器 第3章 機器の振動データに対する異常検知 第4章 系列データの解析
-
-本書は著者による前著『Python3で学ぶ!プログラミングはじめの一歩』を理解した読者に最適な続編です。前作の「実践的な学習」のスタイルを継承しながら、今回はWebアプリケーション開発に特化した内容となっています。Pythonやプログラミングの基礎を扱っている前著に続き、本書ではWebアプリケーションの設計原理、関連する技術スタック、そしてその運用メカニズムについて具体的に解説しています。 本書では、Webアプリケーションの基本から高度な概念まで、全体的な理解を得ることができます。一歩一歩確実にスキルを積み上げたい方、次のレベルのWebアプリケーション開発者を目指す方におすすめです。
-
-本書ではWebスクレイピングを、PythonとScrapyフレームワークを利用して行うことをソースコードとともに解説します。Webサイトには多くの情報があり、ブラウザの利用だけでも取得できます。しかし、Webサイトを閲覧するという行為が能動的であり手間と時間を使うことになります。本書はPythonを使って普通のサイトからWebスクレイピングをはじめ、少しづつ難易度を高めていく実践的な内容です。
-
-Pythonプログラマなら身につけたい玄人技 本書は、Dan Bader, "Python Tricks The Book: A Buffet of Awesome Python Features"dbader.org,の翻訳書です。 【本書の内容】あらゆる場面で活躍するプログラミング言語、Python。本書はそんなPythonをマスターし、日々のプログラミングに活用したい熱心な方々のための1冊です。 入門書を一通り終えた駆け出しプログラマには、Pythonの機能や特徴をより深く、また他言語から新たにPython習得を目論むベテランには、コードの書き方の差異を、リスト内包や文字列フォーマットなど、さまざまなサンプルを元に教授してくれます。 著者のDan Baderは、Twitterでのアウトプットに端を発する、いわゆるTips紹介の延長線上で、この本を執筆しました。そのため、各種Tipsに対するさまざまなフィードバックと、よりよく伝えるためのアイデアが盛り込まれ、結果、Pythonをより深く知り、より良いコードを書くための知識が集積された書籍となりました。 つまり本書は、もっとすごいPython開発者になりたいあなたを、強力にサポートする1冊です。 【本書のポイント】・短いサンプルでPythonの一番すばらしい点を学べる・Pythonならではの、すばらしい機能をビュッフェ形式で学べる・Pythonプログラミングへの理解促進 【読者が得られること】・よりよいPythonプログラマとしての知見・効率的で実践的なPythonプログラミング・コードをよりパイソニックなものにするためのノウハウ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonでスクレイピングを体験してみよう! 【スクレイピングとは】 機械学習やデータ分析になくてはならない「データ」。 このようなデータは、インターネット上に膨大にありますが、Pythonを使えば効率よくデータ収集できます。 こうした手法を「スクレイピング」といいます。 サイト自体もオープンデータ化が進んでおり、データを集めやすい環境が整ってきています。 【Python2年生について】 「Python2年生」シリーズは、「Python1年生」を読み終えた方を対象とした入門書です。 ある程度、技術的なことを盛り込み、本書で扱う技術について身に着けてもらいます。 【ターゲット】 ・ネット上からデータ収集を行う初心者 ・データ分析の手前の初心者 【本書の売り】 ヤギ博士&フタバちゃんと一緒に、インターネットからのファイルのダウンロード方法、 HTML解析の方法、いろいろなデータの読み書き、 APIの使い方といったデータ収集と便利なライブラリを利用した簡単な可視化手法を解説する書籍です。 また最終的にデータ収集を自動化する方法も簡単に解説します。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 待望の第2版 登場 スクレイピングの世界に飛び込もう! 【本書の背景】 機械学習やデータ分析になくてはならない「データ」。このようなデータはインターネット上に膨大にありますが、Pythonを使えば効率よくデータ収集できます。こうした手法を「スクレイピング」といいます。サイト自体もオープンデータ化が進んでおり、データを集めやすい環境が整ってきています。 【本書の概要】 ヤギ博士&フタバちゃんと一緒に、インターネットからのファイルのダウンロード方法やHTMLの解析方法、いろいろなデータの読み書きの方法、APIを使ったデータ収集方法を解説します。さらにライブラリを利用したデータの見える化の方法も解説します。 【第2版のポイント】 ・Python 3.12対応 ・各種ライブラリのアップデート ・利用オープンデータなどのアップデート 【Python2年生について】 「Python2年生」シリーズは「Python1年生」を読み終えた方を対象とした入門書です。ある程度、技術的なことを盛り込んでいますので、スキルアップにつながります。 【対象読者】 ・ネット上からデータ収集を行う初心者 ・データ分析の手前の初心者 【本書のポイント】 ・対話形式で解説し、イラストを交えながら基礎知識を解説します。 ・平易なサンプルを用意していますので、安心してプログラムを体験できます。 【目次】 第1章 Pythonでデータをダウンロード 第2章 HTMLを解析しよう 第3章 表データを読み書きしよう 第4章 オープンデータを分析してみよう 第5章 Web APIでデータを収集しよう 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコンBASICマガジン』(電波新聞社)の時代からゲームを作り続けて、現在はコンテンツ制作や執筆活動を行い、関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。近著に『ChatGPTプログラミング1年生』、『Python3年生 ディープラーニングのしくみ』、『Python2年生 デスクトップアプリ開発のしくみ』、『Python1年生 第2版』、『Python3年生 機械学習のしくみ』、『Python2年生 データ分析のしくみ』、『Java1年生』(いずれも翔泳社)、『ゲーム作りで楽しく学ぶ オブジェクト指向のきほん』(マイナビ出版)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 Pythonで デスクトップアプリ開発を 体験してみよう! 【初心者でもできる!デスクトップアプリ開発を一緒に体験しよう】 Pythonの基礎知識はあるけど、 「アプリ開発って初心者には難しそう」 「プログラムで何か残るものを作ってみたい」 と思っていませんか? 本書はそうした方に向けて、初心者にも簡単に作れる方法を使ってデスクトップアプリ開発の基本をやさしく解説します。スマホアプリ、Webアプリに比べて、手軽に取り組めますので挫折することなく学習できます。本書を読んだあとは、スマホアプリやWebアプリ開発に挑戦してみてください。 【Python2年生について】 「Python2年生」は、「Python1年生」を読み終えた方を対象とした入門書です。ある程度、技術的なことを盛り込み、本書で扱う技術について身につけてもらいます。 『Python2年生 スクレイピングのしくみ』(ISBN:9784798161914) 『Python2年生 データ分析のしくみ』(ISBN:9784798164960) も刊行されています。 【対象読者】 デスクトップアプリの作り方を知りたい初心者 【本書のポイント】 ヤギ博士&フタバちゃんと一緒に、デスクトップアプリ開発の考え方から丁寧に解説。デスクトップアプリ開発をする時に必要な前提知識からはじまり、デスクトップアプリ作りの基本、応用的なデスクトップアプリ、そしてゲームアプリ開発まで解説します。 【著者プロフィール】 森 巧尚(もり・よしなお) アプリの開発や、技術書や電子工作マガジンなどでの執筆活動。関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、プログラミングスクールコプリ講師など、プログラミングに関する幅広い活動を行っている。近著に、『Python1年生 第2版』、『Python3年生機械学習のしくみ』、『Python2年生 スクレイピングのしくみ』、『Python2年生 データ分析のしくみ』、『Java1年生』、『動かして学ぶ!Vue.js開発入門』(いずれも翔泳社)、『楽しく学ぶ アルゴリズムとプログラミングの図鑑』(マイナビ出版)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonでデータ分析を体験してみよう! 【データ分析を一緒に体験しよう】 スクレイピングなどで集めた大量のデータ。 どうやって分析してたらよいか、困っていませんか? 「数式があって難しそう」 「プログラムも大変そう」 と思っている方も多いはず。 本書は、そうした方に向けて、サンプルを元にやさしく データ分析の方法を解説しています。 【Python2年生について】 「Python2年生」は、「Python1年生」を読み終えた方を対象とした入門書です。 ある程度、技術的なことを盛り込み、本書で扱う技術について身に着けてもらいます。 『Python2年生 スクレイピングのしくみ』(ISBN:9784798161914)も刊行されています。 【対象読者】 ・データの分析方法を知りたい初心者 【本書のポイント】 ヤギ博士&フタバちゃんと一緒に、データ分析の考え方から丁寧に解説。 データを分析する時に必要な前処理の方法や、データの集まりの見方、 データを見やすいグラフにする方法、データの分布の見方、予測の立て方を 解説する書籍です。 【著者プロフィール】 森 巧尚(もり・よしなお) アプリの開発や、技術書や電子工作マガジンなどでの執筆活動。関西学院大学非常勤講師、 関西学院高等部非常勤講師、成安造形大学非常勤講師、プログラミングスクールコプリ講師など、 プログラミングに関する幅広い活動を行っている。 近著に『Python1年生』、『Python2年生 スクレイピングのしくみ』、 『Java1年生』(いずれも翔泳社)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 待望の第2版 登場! Pythonでデータ分析を体験してみよう! 【本書の背景】 Pythonにはデータ分析に便利なライブラリがたくさん用意されています。そのため、スクレイピングなどで集めた大量のデータ分析する際に、Pythonを利用する方が増えてきています。 【本書の概要】 ヤギ博士&フタバちゃんと一緒に、データ分析の考え方から丁寧に解説。データを分析する時に必要な前処理の方法や、データの集まりの見方、データを見やすいグラフにする方法、データの分布の見方、予測の立て方を解説します。 【第2版のポイント】 ・Anaconda、Google Colab Notebookのアップデート ・各種ライブラリのアップデート 【Python2年生について】 「Python2年生」シリーズは『Python1年生』を読み終えた方を対象とした入門書です。ある程度、技術的なことを盛り込んでいますので、スキルアップにつながります。 【対象読者】 ・データ分析の手法を知りたい初心者 ・データの可視化や予測方法を知りたい初心者 【本書のポイント】 ・対話形式で解説し、イラストを交えながら基礎知識を解説します。 ・平易なサンプルを用意していますので、安心してプログラムを体験できます。 【目次】 第1章 データ分析って何? 第2章 集めたデータは前処理が必要 第3章 データの集まりをひとことでいうと?:代表値 第4章 図で特徴をイメージしよう:グラフ 第5章 これって普通なこと? 珍しいこと?:正規分布 第6章 関係から予測しよう:回帰分析 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコン BASICマガジン』(電波新聞社)の時代からゲームを作り続けて、現在はコンテンツ制作や執筆活動を行い、関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。近著に、『Python2年生 スクレイピングのしくみ 第2版』『ChatGPTプログラミング1年生』、『Python3年生 ディープラーニングのしくみ』、『Python2年生 デスクトップアプリ開発のしくみ』、『Python1年生 第2版』、『Python3年生 機械学習のしくみ』、『Java1年生』、『動かして学ぶ!Vue.js開発入門』(いずれも翔泳社)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-最新環境に対応した第3版の登場! データ分析エンジニア必携の 基本技術を習得できる 【本書の概要】 本書はデータ分析エンジニアに必要な 以下の基礎技術について サンプルを交えながら丁寧に解説します。 ・データの取得・加工 ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 【第3版のポイント】 ・Pythonデータ分析試験の主教材に指定 ・Python 3.13に対応 ・各種ライブラリの最新版への対応 【本書で学べること】 ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装方法 【対象読者】 データ分析エンジニアを目指す方 【目次】 第1章 データ分析エンジニアの役割 第2章 Pythonと環境 第3章 数学の基礎 第4章 ライブラリによる分析の実践 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-読者の声に応えて第2版の登場! データ分析エンジニアに必要な 基本技術をしっかり習得できる 【本書の概要】 本書はデータ分析エンジニアに必要な 以下の基礎技術を丁寧に解説しています。 ・データの取得・加工 ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 【第2版のポイント】 ・Python 3.10対応 ・よりわかりやすい解説 ・Pythonデータ分析試験の主教材に指定 【本書で学べること】 ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装方法 【対象読者】 データ分析エンジニアを目指す方 【目次】 第1章 データ分析エンジニアの役割 第2章 Pythonと環境 第3章 数学の基礎 第4章 ライブラリによる分析の実践 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 どう考えれば、よいプログラムを作れるのかの解 データサイエンス時代の今、データ構造とアルゴリズムのセオリーを身に付けるのはデータ処理を行う多数のエンジニアにとって大切なことです。本書は、データ構造とアルゴリズムの普遍的な基礎を、Pythonによるプログラミングの実践を通して丁寧に解説するものです。 ※プログラム開発やデータサイエンスを視野に、主要なアルゴリズムをPythonで実装し、データの動きと該当コードを対比させ、しっかりと解説をしています。 ※例題で使用したサンプルプログラムをオーム社ホームページよりダウンロードできます。アルゴリズムの実際をすぐに体感できます。。 第1章 アルゴリズムをはじめる前に 第2章 準備 第3章 データ構造 第4章 ソートアルゴリズム 第5章 探索アルゴリズム 第6章 木構造 第7章 グラフアルゴリズム 第8章 その他の有用なアルゴリズム
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習による異常検知の基本と応用がわかる! 本書では、機械学習による異常検知のしくみを、誤差関数に着目して解説します。読者が新しい異常検知システムを自ら構築できるようになることを最終目標とし、機械学習アルゴリズムの基本から解説していきます。 機械学習について誤差関数を中心に理解を深めることによって「外れ値とはなにか」「閾値はどのように設定すればよいか」といった異常検知における基本が自然と理解できます。そういった基礎から入りつつ、時系列データを分析する際の手法と注意点(第3章)や、深層学習を用いた応用例(第4章)といった内容まで踏み込み、最終的には自ら異常検知システムを構築できるよう導きます。 機械学習の各アルゴリズムの説明や例題などには、Pythonのコードが付いています。 自分でプログラムを実行しながら学べる入門書です。 <本書の特徴> ・誤差関数を中心に機械学習の原理を理解することで、異常検知の基本が自然と理解できます。 ・基本だけでなく、時系列データに対する異常検知の考えかた(第3章)や、深層学習による応用(第4章)を学ぶことができます。 ・Pythonのコード付きなので、手を動かしながら学習することができます。 第0章 機械学習と異常検知 第1章 機械学習と統計解析の基本モデル 第2章 非時系列データにおける異常検知 第3章 時系列データにおける異常検知 第4章 深層学習による異常検知