作品一覧

  • Python意思決定の数理入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 さまざまな意思決定の数理や現象をPythonで体験して学ぼう!  本書は,数理的に扱える意思決定の基礎を,Pythonを用いたシミュレーションや分析によって実際に試しながら学ぶものです.  アンカリング効果の評価法,ベイズ推定に基づいた信憑性の変化,エージェントや強化学習を適用した意思決定,不完備情報ゲーム,集団の意思決定などを解説しています.  本書では,意思決定のモデルの立て方,意思の測定分析などの説明に重点を置き,計算やシミュレーションの詳細な説明よりはPythonによる実行に基づいて学ぶ体験学習のかたちをとります.また,すべてのプログラムはJupyter Notebook形式で配布し,読者の手もとで実行ができるようにしています. 第1章 はじめに 第2章 戦略の微分方程式モデル 第3章 基礎的な意思決定の数理的扱い 第4章 ゲーム理論の基礎 第5章 意思決定のための OR の基礎 第6章 組合せ最適化による意思決定 第7章 マルチエージェントベースモデリングによる意思決定 第8章 強化学習による意思決定 第9章 不確定性を含むゲームでの意思決定 第10章 集団の意思決定 第11章 意思決定とメカニズム・デザインの視点 索引
  • Pythonデータエンジニアリング入門 高速化とデバイスデータアクセスの基本と応用
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データサイエンスを実応用するための基本を押さえる  データエンジニアリングは、データサイエンスを現実に意味のある形に使えるようにし、実装・運用できるようにすることを指します。  データサイエンスを機器や分析に実応用するためには、Pythonスクリプトの高速化の知識や、センサ信号の取得、アクチュエータ制御に必須となる通信、インタフェース駆動といった外部デバイスとのデータアクセスの基本と応用についてのスキルの修得が必要となります。本書は、これらのデータをエンジニアリングするための入門的な知識を解説するものです。 1編 基礎編 1.データエンジニアリングとは 2.コンピュータ工学の基礎 3.Intel CPUの工夫 4.デバイスデータアクセスの基礎 2編 高速化 1.少しの工夫で速くなる 2.NumPyの使用 3.C/C++モジュールを呼ぶ 4.マルチプロセス 5.Pythonのコンパイル 6.GPUの使用 3編 デバイスデータアクセス 1.IoT実現化に必要な機能 2.USBを用いたデータ転送 3.Bluetoothを用いたデータ転送 4.有線LANとWi-Fiを用いたデータ転送 5.センサ信号処理と制御の例

新規会員限定 70%OFFクーポンプレゼント!