木田悠歩の作品一覧 「木田悠歩」の「Pythonではじめるベイズ機械学習入門」ほか、ユーザーレビューをお届けします! 作者をフォローする フォローすると、この作者の新刊が配信された際に、お知らせします。
作品一覧 1~1件目 / 1件<<<1・・・・・・・・・>>> 新着順 新着順 人気順 評価高い順 価格安い順 価格高い順 値引きあり Pythonではじめるベイズ機械学習入門 4.0 IT・コンピュータ / 言語・プログラミング 1巻1,540円 (税込) ★確率的プログラミング言語がすぐに使える!★ ・Pythonでのコーディングを前提に、PyMC3、Pyro、NumPyro、TFP、GPyTorchをカバー。 ・回帰モデルの基本から潜在変数モデル・深層学習モデルまでを幅広く解説。 【主な内容】 第1章 ベイジアンモデリングとは 1.1 データ解析とコンピュータ 1.2 ベイジアンモデリングの基礎 1.3 代表的な確率分布 1.4 近似推論手法 第2章 確率的プログラミング言語(PPL) 2.1 ベイジアンモデリングとPPL 2.2 自動微分・最適化アルゴリズム 2.3 PyMC3の概要 2.4 Pyroの概要 2.5 NumPyroの概要 2.6 TensorFlow Probabilityの概要 2.7 GPyTorchの概要 第3章 回帰モデル 3.1 線形回帰モデル:線形単回帰モデル 3.2 線形回帰モデル:線形重回帰モデル 3.3 一般化線形モデル:ポアソン回帰モデル 3.4 一般化線形モデル:ロジスティック回帰モデル 3.5 階層ベイズモデル 3.6 ガウス過程回帰モデル:ガウス尤度 3.7 ガウス過程回帰モデル:尤度の一般化 第4章 潜在変数モデル 4.1 混合ガウスモデル 4.2 行列分解モデル 4.3 状態空間モデル 4.4 隠れマルコフモデル 4.5 トピックモデル 4.6 ガウス過程潜在変数モデル 第5章 深層学習モデル 5.1 ニューラルネットワーク回帰モデル 5.2 変分自己符号化器 5.3 PixelCNN 5.4 深層ガウス過程 5.5 正規化流 試し読み フォロー 1~1件目 / 1件<<<1・・・・・・・・・>>> 木田悠歩の詳細検索へ
ユーザーレビュー 一覧 >> Pythonではじめるベイズ機械学習入門 IT・コンピュータ / 言語・プログラミング 4.0 (2) カート 試し読み Posted by ブクログ 扱っている範囲は須山『機械学習スタートアップシリーズ ベイズ推論による機械学習入門』に近く,PyMC3,Pyro,NumPyro,TFP,GPyTorchを用いた実装に特化した教科書。 以前はMartin『Pythonによるベイズ統計モデリング: PyMCでのデータ分析実践ガイド』を用いていたが,古いところもある。本書も賞味期限は長くはないだろうが,当分はこれをメインに学習する予定。 0 2022年10月18日 Pythonではじめるベイズ機械学習入門 IT・コンピュータ / 言語・プログラミング 4.0 (2) カート 試し読み Posted by ブクログ ベイズ推論について一通りわかっている人がPythonでの実装方法を知るために読む本。後半は少し高度な内容になる。理論も必要最低限のことしか書かれていないので他の本(あるいは原論文)を見る必要がある。須山氏の過去の2冊の書籍で理論を盤石にしてから読むと良いかもしれない。 0 2022年08月15日