曽我部東馬の作品一覧 「曽我部東馬」の「強化学習アルゴリズム入門 「平均」からはじめる基礎と応用」「Pythonによる異常検知」ほか、ユーザーレビューをお届けします! 作者をフォローする フォローすると、この作者の新刊が配信された際に、お知らせします。
作品一覧 1~2件目 / 2件<<<1・・・・・・・・・>>> 新着順 新着順 人気順 評価高い順 価格安い順 価格高い順 Pythonによる異常検知 - IT・コンピュータ / 言語・プログラミング 1巻3,520円 (税込) ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習による異常検知の基本と応用がわかる! 本書では、機械学習による異常検知のしくみを、誤差関数に着目して解説します。読者が新しい異常検知システムを自ら構築できるようになることを最終目標とし、機械学習アルゴリズムの基本から解説していきます。 機械学習について誤差関数を中心に理解を深めることによって「外れ値とはなにか」「閾値はどのように設定すればよいか」といった異常検知における基本が自然と理解できます。そういった基礎から入りつつ、時系列データを分析する際の手法と注意点(第3章)や、深層学習を用いた応用例(第4章)といった内容まで踏み込み、最終的には自ら異常検知システムを構築できるよう導きます。 機械学習の各アルゴリズムの説明や例題などには、Pythonのコードが付いています。 自分でプログラムを実行しながら学べる入門書です。 <本書の特徴> ・誤差関数を中心に機械学習の原理を理解することで、異常検知の基本が自然と理解できます。 ・基本だけでなく、時系列データに対する異常検知の考えかた(第3章)や、深層学習による応用(第4章)を学ぶことができます。 ・Pythonのコード付きなので、手を動かしながら学習することができます。 第0章 機械学習と異常検知 第1章 機械学習と統計解析の基本モデル 第2章 非時系列データにおける異常検知 第3章 時系列データにおける異常検知 第4章 深層学習による異常検知 試し読み フォロー 強化学習アルゴリズム入門 「平均」からはじめる基礎と応用 3.0 IT・コンピュータ / 全般 1巻3,300円 (税込) ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「平均」という観点から強化学習の基本が理解できる! AlphaGoがプロ棋士を破った2016年以降、強化学習や深層強化学習はさまざまな分野から注目を集めています。しかし、専門書では難解な専門用語や数式が多用されるため、初学者にとってはハードルが高い状態が続いていました。 本書は、そのハードルの高さを解消することを目的に制作されました。平均という初歩的な数学を使うことで、「価値」「探索」「マルコフ性」といった強化学習の基本をわかりやすく解説します。 また、各アルゴリズムについては、「多腕バンディット問題」および「グリッドワールド問題」のいずれかを用いて、比較しやすい状態で解説します。そのため、各アルゴリズムの特徴や差異がわかりやすくなっています。さらに、中核的なアルゴリズムについては、PythonとMATLABの2種類のコードを、オーム社と著者のWebサイト、およびGithubで配布します。配布コードを実行することで、「原理→数式→プログラム」という一連の流れを直感的に把握できます。 【本書の特徴】 ・難解な強化学習の原理を、中高生にもなじみ深い「平均値の計算」という観点からわかりやすく解説します。 ・さまざまなアルゴリズムを、共通する例題を用いて特徴がわかりやすいように比較します。 ・PythonとMATLAB、2種類のコードを配布します。 ※Pythonのバージョンは3です。 第1章 平均から学ぶ強化学習の基本概念 第2章 各アルゴリズムの特徴と応用 第3章 関数近似手法 第4章 深層強化学習の原理と手法 試し読み フォロー 1~2件目 / 2件<<<1・・・・・・・・・>>> 曽我部東馬の詳細検索へ
ユーザーレビュー 一覧 >> 強化学習アルゴリズム入門 「平均」からはじめる基礎と応用 IT・コンピュータ / 全般 3.0 (1) カート 試し読み Posted by ブクログ 「平均」で強化学習を解説するという本。 丁寧な解説だが私にはちょっととっつくにくかった。 コード例を回し、別の本でわからない箇所をこの本に戻ってきたら分かるというのもあるかも。 0 2020年10月24日