言語・プログラミング作品一覧
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 エンジニアの基礎体力を身につける 本書はPythonを用い、ITエンジニアが身につけておくべき王道のアルゴリズムを手を動かしながら学べる入門書です。 教育機関で16年教鞭をとり、公式アプリ2000万DL超の開発実績を持つ廣瀬豪氏が、教育者・プログラマーとしての経験を生かし、データ構造とアルゴリズムの学習が「一生モノの財産になる」という視点で解説します。スタック、キュー、リスト、木、グラフなどデータ構造の基本から、サーチ、ソート、ハッシュといった王道アルゴリズムを厳選しつつ、ユークリッドの互除法、文字列探索、最短経路問題、フラクタル図形の描画、マンデルブロー集合などワンランク上の知識・技術まで網羅します。 サンプルプログラムは手入力しやすい短めのコードを108個用意し、すべての行に1行ずつコメントを付けて読解しやすいように工夫しています。また、ゲームクリエイターという肩書を持つ著者ならではの教材として、「アルゴリズムの見える化」という類書にはない楽しい要素を盛り込んでいる点もポイントです。 資格試験、就職試験に挑む方、大学や専門学校で情報処理を学ぶ方など、プログラミングの力を伸ばしたいすべての方におすすめです。
-
-※PDF版をご希望の方は Gihyo Digital Publishing (https://gihyo.jp/dp/ebook/2022/978-4-297-13233-0)も合わせてご覧ください。 本書籍は,Pythonによる衛星データ解析に興味がある初学者に向けた入門書となっています。学校の情報の授業等で利用する際の副教材になることを意識し,衛星データだけでなくデータサイエンスの基礎的な内容も含めました。学校で地球環境やご自身が住んでいる地域がどのように変化しているか調べたい方はもちろんのこと,衛星データを使って何かビジネスを始めたい方にも読んでいただきたいと思っています。従来のデータサイエンスの教材の場合には身近なデータを利用することが難しかった中で,衛星データであれば身近な地域のデータを利用して解析することができます。少しのプログラミング変更で解析対象地域を変えることができるようになっているので,関心のある地域の変化についてぜひ調べてみてください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 一冊に、AIと数学とアルゴリズムの基本を濃縮! Pythonの深層学習フレームワークを自作! 社会の中で日々存在感を増している「AI」と「数学」と「アルゴリズム」。その基本を180ページに詰め込んだのが本ムックです。 バブルソートのような基本的なアルゴリズムから、手書き数字認識もできる深層学習フレームワークの自作、AIで使われる数学の基礎である線形代数、そして経済学のアルゴリズムであるゲーム理論まで、様々な話題を扱っています。 もちろん、単に解説するだけではなく、Pythonで動くコード付き!動かしながら、深く学ぶことができます。 ≪目次≫ 第1章 絶対に知っておきたいアルゴリズム10選 その1 基礎から機械学習まで厳選した10個のアルゴリズムを Pythonによる実装とともに解説! 第2章 絶対に知っておきたいアルゴリズム10選 その2 3つのテーマで厳選した10個のアルゴリズムを Pythonによる実装とともに解説! 第3章 自分で作るPython深層学習フレームワーク Python+NumPyでフレームワークを完全自作! 深層学習の原理がよくわかる! 第4章 Pythonで線形代数を学ぼう AI&データサイエンスで使う数学の基礎! 第5章 Pythonで学ぶ「ゲーム理論」 人間関係をプログラミングできる! 第6章 プログラミング時代の数学との付き合い方
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 近年、画像生成技術は急速な進化を遂げ、特に2022年の「Stable Diffusion」公開以降、テキストから画像を生成するAIが広く普及しています。本書はこの革新的な技術の基礎から応用までを網羅し、読者が画像生成を深く理解することを目的としています。第1章では画像生成の概要を学びます。同時に技術の急速な発展に伴う倫理的な課題やリスクについても考察します。第2章では画像生成の基盤となる深層学習の基礎を、現代の主流であるTransformerモデルに焦点を当てて解説します。第3章では生成モデルの概念と、画像生成を飛躍的に進歩させた拡散モデルの基礎理論を解説します。第4章では拡散モデルの進化形である潜在拡散モデルとStable Diffusionについて解説します。第5章では拡散モデルをもとに、画像生成にとどまらないさまざまな応用について紹介します。第6章では画像生成技術の今と未来を考察します。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 近年の技術の発展により、画像認識技術はますます身近になっています。スマホの顔認証やオンライン会議での人物と背景を認識して背景をぼかすなどをはじめ、画像認識技術ははさまざまな場面において人々の生活をサポートしています。本書では画像認識について実践的に学べるように、Pythonを使った実装を示しています。また画像認識の基礎については簡単に触れるにとどめ、最新の画像認識手法について紙幅を割き、多くの部分で深層学習の実装について学ぶことができる構成になっています。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで効果検証の実務を学ぼう! この本は、効果検証を実務で行いたい方に向けた入門書です。 実務応用しやすい3つの分析手法(A/Bテスト・Difference in Differences (DID)・Regression Discontinuity Design (RDD))について、現場で実際にぶつかりやすい課題をミニストーリーなどで指摘しながら、その対応策や考えかたを示し、Pythonで実装していきます。 とくにA/Bテストについては多くの紙面を割き、複数のデザインパターンや分析手法を紹介します。 また、DIDとRDDについても、ミニストーリーなどを交えて適用できる条件を具体的に例示しつつ、間違った分析結果を算出してしまわないよう丁寧に解説を行います。 本書では、全体をとおして、ビジネスの現場で必要とされる知識と理論的な基礎との乖離に着目し、その乖離を埋めるような説明を心がけました。あくまで入門書であるため理論的な説明は控えめになっていますが、参考文献やブックガイドから、より専門的な論文や書籍にアクセスできるようにしています。 本書を読了することで、基本的な効果検証の手法を理解し、Pythonで実装できるようになります。さらに、陥りやすいアンチパターンや、効果検証を通じて組織に貢献するための考えかたなど、データ分析の実務者に必要とされる知見も身につきます。 謝辞/目次 1章 はじめに:いまなお隔たりがある効果検証の実務と理論 1.1 効果検証とはなにか? 1.1.1 本書のねらい:基礎と実務を紐づける 1.1.2 本書の特徴 1.1.3 効果検証の各手法の特性と使いかた 1.1.4 効果検証の目的:意思決定と探索的分析 1.2 本書の構成 1.3 想定する読者 1.4 サンプルコード 2章 A/Bテストを用いてクリーンに効果検証を行う 2.1 Prelude 2.1.1 太郎くんの分析の再現 2.2 施策と効果 2.2.1 基本的な用語の確認 2.2.2 施策効果と反実仮想 2.3 バイアス 2.3.1 バイアスを含んだ分析の例:ユーザーの性質 2.3.2 バイアスを含んだ分析の例:時系列 2.3.3 バイアスを含む分析手法の負のループ 2.4 A/Bテストの基本的な発想 2.4.1 ランダムな施策割当によるバイアスの排除 2.4.2 施策効果のポテンシャルアウトカムフレームワークによる表現 2.5 A/Bテストのデザイン 2.5.1 A/Bテストの設計 2.5.2 データ収集 2.5.3 収集したデータの分析と評価 2.6 PythonによるA/Bテストデータの分析の実装 2.7 A/Bテストのアンチパターン 3章 A/Bテストを用いて実務制約内で効果検証を行う 3.1 実務におけるA/Bテストの課題 3.2 A/Aテスト:A/Bテストの信頼性を担保する 3.2.1 A/Bテストは頻繁に「失敗」する 3.2.2 A/Bテストの失敗は2種類のケースに大別できる 3.2.3 A/Aテスト 3.2.4 A/Aテストのリプレイ 3.3 柔軟なA/Bテストのデザイン 3.3.1 クラスターA/Bテスト 3.3.2 層化A/Bテスト 3.3.3 A/Bテストにおける処置と割り当ての不一致 3.4 効率的な分析:共変量のコントロール 3.5 施策効果の異質性:どこで効果があるのか知る 3.5.1 セグメントごとにサブサンプルに分割する 3.5.2 セグメントの交差項を入れて分析を行う 4章 Difference in Differencesを用いて効果検証を行う 4.1 DID(差分の差法):施策実施前後の違いを捉える 4.1.1 施策をとりまく4つの状況とよくある分析の仮定 4.1.2 DIDの基本的な発想 4.1.3 DIDの発想に基づいた施策効果分析の実装 4.2 DIDを用いた実務的な施策効果検証 4.2.1 パネルデータ 4.2.2 分析方法 4.2.3 DIDによる施策効果分析の実装:文言変化の効果を調べる 4.3 2期間以上のデータをDIDで分析する 4.3.1 時間を通じて施策効果は変わりうる 4.3.2 分析方法 4.3.3 DIDによる施策効果分析の実装:イベントスタディのケース 4.4 パラレルトレンド仮定と検証 4.4.1 パラレルトレンド仮定の検証とは? 4.4.2 プレトレンドテスト 4.5 複数回の施策を行った場合にDIDによる分析は適用できるか? 5章 Regression Discontinuity Designを用いて効果検証を行う 5.1 RDDを適用できるシチュエーション 5.1.1 クーポン配布施策:クーポンの効果は本当に大きいのか? 5.1.2 閾値によって実施するかどうか決める施策の効果を評価する 5.2 RDDの仮定と推定 5.2.1 RDDの直感的な説明 5.2.2 RDDにおける施策効果 5.2.3 Sharp RDDの推定 5.2.4 rdrobustを用いたSharpRDDの実装 5.2.5 RDDの仮定が成り立たないケースとその検証法 5.2.6 McCraryの検定の実装 5.2.7 共変量のバランステストの実装 5.3 Fuzzy RDD:処置確率が閾値によって不連続に変化する場合のRDD 5.3.1 rdrobustを用いたFuzzy RDDの推定 5.4 内的妥当性と外的妥当性:我々はなにを推定しているのか? 5.5 bunchingの難しさ 5.5.1 操作が発生している例:所得税控除制度 5.5.2 bunchingの推定ステップと2つのケース 6章 おわりに:実務における課題と展望 6.1 これまでの振り返りと実務プロセスに合わせた分析手法の選択 6.2 分析プロセスの“不”可能性 6.3 データ分析実務者の役割 6.3.1 闇落ちするデータサイエンティスト 6.3.2 専門知識で意思決定を支える 6.4 効果検証の実務者のためのブックガイド 6.4.1 施策効果検証の発想を理解する 6.4.2 効果検証の発展的なトピックを学ぶ 6.4.3 計量経済学を学ぶ 6.4.4 実務として効果検証を実践する 著者・監修者略歴/参考文献/索引
-
-PyQの大人気コンテンツ書籍化第2弾 Pythonで数理最適化と問題解決手法を学んでみよう! 【本書の背景】 今日、数理最適化は、生産計画の最適化や勤務シフト表の作成、効率的なリソース配分の計画など幅広い分野で使われています。しかし、その理論的な深さや応用範囲の広さから、初学者が挫折感を覚えることも多いです(「はじめに」より抜粋)。 【本書の内容】 理論や詳細な内容を最小限に抑えて、Pythonのコードを動かしながら最適化を体験できるようにしました。さらに、簡単な確認問題を解くことで、理解度を確認しながら読み進められるように構成しました。(「はじめに」より抜粋)。 【PyQ(パイキュー)とは】 株式会社ビープラウドが運営する、ブラウザだけで学べるオンラインPython学習サービス。 【学習環境】 実行環境:PyQ、または、PC上のJupyterLab 利用言語:Python 3.11 利用ライブラリ:mip(1.15.0)、mip-tool(0.3.2)、pandas(2.1.3)、JupyterLab(4.0.9)、 Matplotlib(3.8.2) 【対象読者】 ・数理最適化を使って、社会や身近な問題解決に活かしたいという方 ・数理最適化を勉強したけど身につかず挫折した方 【前提知識】 ・高校数学のベクトルの知識 ・Pythonの文法知識 【目次】 Prologue PyQでPythonや数理最適化を学ぶ 第0章 本書の使い方 第1章 数理最適化による問題解決 第2章 数理モデルって何だろう 第3章 Pythonで数理モデルを作ろう 第4章 たくさんの変数はベクトルで 第5章 混合整数最適化って何だろう 第6章 Python-MIPのクラス 第7章 問題解決ってどうやるの? 第8章 輸送費を減らしたい 第9章 もっと食べたくなる献立を 第10章 お酒をわけよう 第11章 シフト表を作りたい 第12章 pandasで数理モデルを作ろう 第13章 pandasで再モデル化 【著者プロフィール】 ・株式会社ビープラウド ・PyQチーム ・斎藤 努(さいとう・つとむ) 株式会社ビープラウドにてPyQなどを担当。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonを使って線形代数学を見える化して学ぼう! 本書は、大学初年次に学ぶ基礎数学科目の一つであり、具体的なところでは機械学習やコンピュータグラフィックス、ゲームプログラミングなどの基礎となる線形代数を、Pythonを使って学ぶものです。 線形代数は、微分・積分とならび基礎的な数学の一つですが、ふつうに勉強するとベクトル・行列計算が面倒くさく、また定義や概念が多く抽象的な表現も多いため、なかなか理解しづらい学問といえます。 そこで本書は、Pythonによるプログラミングを用いて以下の工夫を施すことで、よりわかりやすく、またビジュアルにベクトルを見るなどの体験を通して、線形代数を学べるようにまとめました。 1)2次元平面や3次元空間のベクトルを視覚的に表現する 2)関数をグラフ化することで、ベクトル計算の意味を理解しやすくする 3)面倒なベクトルや行列の計算をプログラミングで表現する 4)手計算では不可能な高次の線形計算を、具体的なデータ(音や画像)を用いて表現する 5)通常の教科書の演習問題レベルの計算問題をプログラミングによる数式処理で求める 改訂にあたり、全体を見直すとともに、この4年間で変化したPython環境の見直し、カラー画像・3D・動画およびサウンドを閲覧できるQRコードの配置、第9章・第10章の練習問題の追加などを行いました。 本書が、読者の線形代数学のより一層の理解の一助となれば幸いです。 第1章 数学の基礎とPythonによる表現 第2章 線形空間と線形写像 第3章 基底と次元 第4章 行列 第5章 行列の基本変形と不変量 第6章 内積とフーリエ展開 第7章 固有値と対角化 第8章 ジョルダン標準形とスペクトル 第9章 力学系 第10章 線形代数の応用と発展
-
4.0本書はPythonによる自然言語処理、あるいはテキストマイニングの初歩について解説したものです。 テキストマイニングとは、テキストをコンピュータで探索(マイニング)する技術の総称です。ここで「テキスト」とは、小説や論文、あるいは新聞や雑誌の記事にとどまらず、インターネット上のブログ、あるいはSNSに投稿された文章など、およそ人間の言葉で書かれたものを指します。 Pythonの基本からテキスト分析の手順、形態素解析器の導入、さまざまな分析手法についてわかりやすく解説しています。また、本書の最後に、ディープラーニングを使ったテキストマイニング事例についても紹介します。 なお、本書の一部については解説動画が用意されています。
-
-本書はプログラマーにとって必要不可欠な「データ構造とアルゴリズム」を学ぶための入門書です。データ構造とアルゴリズムに関する知識は、ソフトウェア開発の基盤であるとともに、問題解決能力を高める重要な要素でもあります。その知識をPythonという親しみやすいプログラミング言語を使って丁寧に解説します。 プログラミングやコンピュータサイエンスの世界で広く学ばれる定番のアルゴリズムを中心に取り上げました。それに加え、知識を広げていただけるように、本書独自のアルゴリズムも複数、掲載しています。 Pythonの基本を学んだ後に、データ構造とアルゴリズムを学習するように構成していますので、初心者の方も安心して学習を始められます。すでにプログラミングの経験がある方は、興味のある項目を選んで学ぶことができます。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 AIの基本を、Pythonでやさしく学んで楽しもう! 本書は、AI(人工知能)技術の基本を、自然言語処理と音声処理をとおしてわかりやすく解説した入門書です。アルゴリズムを平易に解説し、Pythonによるプログラミング例を紹介。さらに、自然言語処理や音声処理への応用例を取り上げ、実践しながらAI技術の基本が理解できるようになります。 第1章 人工無脳から人工知能へ 第2章 文字を処理する テキスト処理の技術 第3章 自然言語処理の技術 第4章 音声処理の技術 第5章 知識表現 第6章 学習 第7章 深層学習 第8章 対話エージェントの構成 第9章 人工無脳から人工人格へ 付録
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 文理を問わないすべての大学生が身に着けるべきデータサイエンスの基礎を,Pythonを使った演習を行いながら実践的に学べる教科書です。数学的なバックグラウンドが無くても,概要を理解しながら飽きずに進めることができる内容です。数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベル)に準拠。大学,大学院の講義で教科書として使用しやすいよう,全14章で構成しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、Pythonを使ったプログラミングの基礎を初心者向けにわかりやすく解説した入門書です。プログラミングに必要な知識を体系的に習得しながら、基本的なアルゴリズムの理解やその実装方法を学べます。Google Colaboratory(Colab)の環境を活用することで、すぐに学習を始められます。また、「情報」の教科書以上に詳しくPythonプログラミングやアルゴリズムについて説明しており、「情報」の次のステップにもぴったりな内容です。 本書の目的は、初心者が将来の学びや応用につながるPythonの基礎的な知識とスキルを固めること、そしてアルゴリズムやプログラムのデザインを学び、自分でプログラムを作成する力を養うことです。プログラム作成では、複雑な問題を小分けに整理して進める構成を採用し、初学者でも無理なく実践できるよう配慮しています。重要なポイントで設計やアルゴリズムの意味を考える場面を設けることで、理解を深めながら、自力で設計・作成する能力を確実に身につけられる構成となっています。 対象読者はプログラミング初心者で、特に次の層に焦点を当てています。高校生にとっては学校の教科「情報」の内容をさらに深く学び、実践的なプログラミングスキルを習得できる内容です。大学生や社会人には、研究や業務で活用できるプログラミングの基本を学び、「データサイエンス」「AI(人工知能)」「業務自動化」といった分野へ進む足掛かりになる内容です。1人で学べる丁寧な解説が魅力となっており、幅広い層の初学者に自信を持ってプログラミングを始めるきっかけを提供する1冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 流体力学の数値計算法とPythonによるシミュレーションの考え方が正しく理解できる。 本書は、学生、企業の若手技術者の皆様が、自ら流体力学の数値計算法とPythonによるシミュレーションの考え方を一から学べる書籍です。 流体現象の基礎を学びながら、Pythonによるそのコーディングを紹介する構成としています。Pythonとコンピュータの技術革新は急激に進んでおり、現在ではストレスを感じることなく、Pythonで各種シミュレーションが容易に実施できる環境が生まれています。 これからの研究者、技術者にとって必読の1冊です。 序章 Pythonによるプログラミングの準備 第1章 離散化の考え方 第2章 1次元スカラー移流方程式 第3章 スカラー方程式における時間積分法 第4章 拡散方程式 第5章 システム方程式の解法 その1(方程式の理解) 第6章 システム方程式の解法 その2(実践的な計算法) 第7章 システム方程式における時間積分法 第8章 複雑形状への対応 第9章 実際の課題への対応
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 見込み客、土日の需要、商品リコメンド… 営業、マーケティングが劇的に変わる 業務に本当に役立つ“儲かるAI”を自分で作る! 業務に本当に役立つ“儲かるAI”を作るには、「業務目線」と「技術目線」の両方が必要です。業務の課題を認識し、どう改善するかという「業務目線」が必要なのは従来システムと同じですが、AIの構築ではさらに業務の課題が本当に AIで解決できるのか、AIのどの処理方式なら適用できそうかという「技術目線」が不可欠なのです。 本書のPython実習で学ぶことで、「AIの目利きができる技術目線」を獲得し、自分でもAIを作れるようになります。 ◆数学なしでアルゴリズム選びもチューニングもわかる ◆現場目線でAIの最適化までできる ◆ブラウザだけで試せるPython実習(Google Colab) ◆XGBoost、Prophetなど話題のAI技術を活用 ◆全PythonコードをGoogle Colab用のNotebook形式で用意 <機械学習のための Python入門講座>つき! 1章 業務と機械学習プロジェクト 2章 機械学習モデルの処理パターン 3章 機械学習モデルの開発手順 4章 機械学習モデル開発の重要ポイント 5章 業務要件と処理パターン 6章 AIプロジェクトを成功させる上流工程のツボ
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 膨大なデータを扱うときに基本となる知識が統計解析です。本書はこれから統計解析を学びたいと考える方に向けて,プログラミングの力を借りて実際にデータを確認することで,直感的な理解を促します。プログラミング言語にはPythonを利用します。Pythonで統計解析を解説するメリットはいくつかあります。Python自体がシンプルで可読性が高い上に逐次実行できるため初心者でも理解しやすいと言えます。これ以外にも,Pythonは統計解析に関するライブラリが充実しており,複雑な計算やグラフの描画がかんたんにできます。また,Pythonは汎用的な言語ですので,システムの中にシームレスに組み込むことができます。本書によって統計解析を学習することで,Pythonのデータ解析スキルもあわせて習得できるでしょう。
-
-※PDF版をご希望の方は Gihyo Digital Publishing (https://gihyo.jp/dp/ebook/2022/978-4-297-12780-0)も合わせてご覧ください。 近年注目を浴びる人工知能は微分をはじめとした数学の計算に基づいています。また,新型コロナウィルス感染の予測では微分方程式が利用されています。微分積分は,多くの方が学ぶ意義がある学問なのですが,複雑な計算や数式が原因で学習に挫折した方も少なくありません。そこでPythonの出番です。 本書はこれから微分積分を学びたいと考える方や学び直したい方に向けて,Pythonの力を借りて視覚的にデータを確認することで,直感的な理解を促します。複雑な計算とグラフの描画はPythonにまかせ,Pythonが出力する結果とグラフを読み解くことに注力します。数学のエッセンスを理解して活用するために,コンピューターを使用した数学の学習は効率的な学習方法とも言えます。 「とりあえずPythonに計算させてみよう」と,軽い気持ちで数学の学習を開始してみましょう。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データサイエンスを実応用するための基本を押さえる データエンジニアリングは、データサイエンスを現実に意味のある形に使えるようにし、実装・運用できるようにすることを指します。 データサイエンスを機器や分析に実応用するためには、Pythonスクリプトの高速化の知識や、センサ信号の取得、アクチュエータ制御に必須となる通信、インタフェース駆動といった外部デバイスとのデータアクセスの基本と応用についてのスキルの修得が必要となります。本書は、これらのデータをエンジニアリングするための入門的な知識を解説するものです。 1編 基礎編 1.データエンジニアリングとは 2.コンピュータ工学の基礎 3.Intel CPUの工夫 4.デバイスデータアクセスの基礎 2編 高速化 1.少しの工夫で速くなる 2.NumPyの使用 3.C/C++モジュールを呼ぶ 4.マルチプロセス 5.Pythonのコンパイル 6.GPUの使用 3編 デバイスデータアクセス 1.IoT実現化に必要な機能 2.USBを用いたデータ転送 3.Bluetoothを用いたデータ転送 4.有線LANとWi-Fiを用いたデータ転送 5.センサ信号処理と制御の例
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ■ 膨大なデータを実際に分析する紙上ハンズオンセミナー □ データ分析の全プロセスを始めから終わりまで実体験できる! データ分析やデータサイエンスに興味がある、あるいは業務でデータ分析を実際にやらなければならない――。きっと、そういう人なら基礎的な統計や分析、データサイエンスはの入門書はひと通り目を通したことと思います。おそらくは並行してプログラミングも勉強しているという人も多いでしょう。そうした基礎を学んだところで、こう思ってはいませんか? 「さて、データ分析ってどうやるの?」 本書は実務としてのデータ分析について、データの取得から段階を踏みながら、どのようにデータの特徴や傾向を読み取るのか、具体的なやり方をハンズオン形式で解説します。取り上げるデータ、分析のためのプログラミング環境は、誰でも利用できるものばかり。本書に従ってデータ分析を進めていけば、分析プロセスはこう進めていけばいいのかというリアルな手順が身につきます。 本書が対象にするのは、ビジネスパーソンです。自社の次の戦略をベテラン社員のカンに頼って立案するのではなく、科学的な手法でデータを分析し、根拠のある戦略立案に役立てたいと考えている、現場のビジネスパーソンが対象です。そのためにデータ分析の目的、分析結果の活用まで考慮し、ビジネスの中でデータ分析をどのように生かせばいいのかについても解説しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonでデータ分析と機械学習を実践します。豊富なライブラリを使って統計学に基づいた統計分析ができるので、Pythonに慣れ親しんだ人は、データ分析も機械学習もまとめて効率的に学ぶことができます。
-
4.0本書では理論と実践のどちらにもフォーカスを当てAIや機械学習について「ある程度、中身を知って使える」を目指す入門書です。 Twitter APIや国の統計データなど、生のデータを使い、遊んでいるような感覚で理解が進む1冊です。 ■「はじめに」より抜粋 本書は、AIや機械学習について、「何だかよくわからないけどすごいもの」という理解から、「ある程度、中身を知っていて使える」にアップデートしたい人(もしくは、アップデートしなければいけなくなってしまった人)に向けた、導入となる最初の1冊になることを目指しています。 本書では、理論と実践、両方を抑えています。まず、なるべく数式を使わずに、直感的な理解ができるように機械学習の理論について解説します。「遊んで学ぶ」というタイトルの通り、理論の勉強も楽しめるように、具体例や図を多く使っています。しかし、だからといって不正確にならないように繊細な注意を払いながら、ギリギリまで噛み砕いて説明を行っています。 その後、よく使われるデータセットではなく、「APIで自由に取得できる、さまざまな企業が提供しているデータ」「国が提供している統計データ」などの生のデータを使い、実際に分析を行います。 本書は、実際にデータを取得するところからスタートすることで、「データの量を増やしたら結果はどうなるのだろう?」「このデータを可視化してみたらどうなるのだろう?」「変数を変えてみたらどうなるのだろう?」と、まるでデータを使って遊んでいるような感覚で理解が進むことを狙っています。 なお、データ分析を行うにあたり、多くの人は、RもしくはPythonというプログラミング言語を使います。どちらも、データ分析やデータ整形、そして可視化を行うのに有効なライブラリが多数存在しているため、非常に人気です。本書では、Pythonを用いて実装コードを記述しています。ただし、Rを使いたい人も進められるように、RとPython両方のコードを、Github上にて公開しています。ぜひ、参考にしてください。
-
-本書は著者による前著『Python3で学ぶ!プログラミングはじめの一歩』を理解した読者に最適な続編です。前作の「実践的な学習」のスタイルを継承しながら、今回はWebアプリケーション開発に特化した内容となっています。Pythonやプログラミングの基礎を扱っている前著に続き、本書ではWebアプリケーションの設計原理、関連する技術スタック、そしてその運用メカニズムについて具体的に解説しています。 本書では、Webアプリケーションの基本から高度な概念まで、全体的な理解を得ることができます。一歩一歩確実にスキルを積み上げたい方、次のレベルのWebアプリケーション開発者を目指す方におすすめです。
-
-Pythonプログラマなら身につけたい玄人技 本書は、Dan Bader, "Python Tricks The Book: A Buffet of Awesome Python Features"dbader.org,の翻訳書です。 【本書の内容】あらゆる場面で活躍するプログラミング言語、Python。本書はそんなPythonをマスターし、日々のプログラミングに活用したい熱心な方々のための1冊です。 入門書を一通り終えた駆け出しプログラマには、Pythonの機能や特徴をより深く、また他言語から新たにPython習得を目論むベテランには、コードの書き方の差異を、リスト内包や文字列フォーマットなど、さまざまなサンプルを元に教授してくれます。 著者のDan Baderは、Twitterでのアウトプットに端を発する、いわゆるTips紹介の延長線上で、この本を執筆しました。そのため、各種Tipsに対するさまざまなフィードバックと、よりよく伝えるためのアイデアが盛り込まれ、結果、Pythonをより深く知り、より良いコードを書くための知識が集積された書籍となりました。 つまり本書は、もっとすごいPython開発者になりたいあなたを、強力にサポートする1冊です。 【本書のポイント】・短いサンプルでPythonの一番すばらしい点を学べる・Pythonならではの、すばらしい機能をビュッフェ形式で学べる・Pythonプログラミングへの理解促進 【読者が得られること】・よりよいPythonプログラマとしての知見・効率的で実践的なPythonプログラミング・コードをよりパイソニックなものにするためのノウハウ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonでスクレイピングを体験してみよう! 【スクレイピングとは】 機械学習やデータ分析になくてはならない「データ」。 このようなデータは、インターネット上に膨大にありますが、Pythonを使えば効率よくデータ収集できます。 こうした手法を「スクレイピング」といいます。 サイト自体もオープンデータ化が進んでおり、データを集めやすい環境が整ってきています。 【Python2年生について】 「Python2年生」シリーズは、「Python1年生」を読み終えた方を対象とした入門書です。 ある程度、技術的なことを盛り込み、本書で扱う技術について身に着けてもらいます。 【ターゲット】 ・ネット上からデータ収集を行う初心者 ・データ分析の手前の初心者 【本書の売り】 ヤギ博士&フタバちゃんと一緒に、インターネットからのファイルのダウンロード方法、 HTML解析の方法、いろいろなデータの読み書き、 APIの使い方といったデータ収集と便利なライブラリを利用した簡単な可視化手法を解説する書籍です。 また最終的にデータ収集を自動化する方法も簡単に解説します。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 待望の第2版 登場 スクレイピングの世界に飛び込もう! 【本書の背景】 機械学習やデータ分析になくてはならない「データ」。このようなデータはインターネット上に膨大にありますが、Pythonを使えば効率よくデータ収集できます。こうした手法を「スクレイピング」といいます。サイト自体もオープンデータ化が進んでおり、データを集めやすい環境が整ってきています。 【本書の概要】 ヤギ博士&フタバちゃんと一緒に、インターネットからのファイルのダウンロード方法やHTMLの解析方法、いろいろなデータの読み書きの方法、APIを使ったデータ収集方法を解説します。さらにライブラリを利用したデータの見える化の方法も解説します。 【第2版のポイント】 ・Python 3.12対応 ・各種ライブラリのアップデート ・利用オープンデータなどのアップデート 【Python2年生について】 「Python2年生」シリーズは「Python1年生」を読み終えた方を対象とした入門書です。ある程度、技術的なことを盛り込んでいますので、スキルアップにつながります。 【対象読者】 ・ネット上からデータ収集を行う初心者 ・データ分析の手前の初心者 【本書のポイント】 ・対話形式で解説し、イラストを交えながら基礎知識を解説します。 ・平易なサンプルを用意していますので、安心してプログラムを体験できます。 【目次】 第1章 Pythonでデータをダウンロード 第2章 HTMLを解析しよう 第3章 表データを読み書きしよう 第4章 オープンデータを分析してみよう 第5章 Web APIでデータを収集しよう 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコンBASICマガジン』(電波新聞社)の時代からゲームを作り続けて、現在はコンテンツ制作や執筆活動を行い、関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。近著に『ChatGPTプログラミング1年生』、『Python3年生 ディープラーニングのしくみ』、『Python2年生 デスクトップアプリ開発のしくみ』、『Python1年生 第2版』、『Python3年生 機械学習のしくみ』、『Python2年生 データ分析のしくみ』、『Java1年生』(いずれも翔泳社)、『ゲーム作りで楽しく学ぶ オブジェクト指向のきほん』(マイナビ出版)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 Pythonで デスクトップアプリ開発を 体験してみよう! 【初心者でもできる!デスクトップアプリ開発を一緒に体験しよう】 Pythonの基礎知識はあるけど、 「アプリ開発って初心者には難しそう」 「プログラムで何か残るものを作ってみたい」 と思っていませんか? 本書はそうした方に向けて、初心者にも簡単に作れる方法を使ってデスクトップアプリ開発の基本をやさしく解説します。スマホアプリ、Webアプリに比べて、手軽に取り組めますので挫折することなく学習できます。本書を読んだあとは、スマホアプリやWebアプリ開発に挑戦してみてください。 【Python2年生について】 「Python2年生」は、「Python1年生」を読み終えた方を対象とした入門書です。ある程度、技術的なことを盛り込み、本書で扱う技術について身につけてもらいます。 『Python2年生 スクレイピングのしくみ』(ISBN:9784798161914) 『Python2年生 データ分析のしくみ』(ISBN:9784798164960) も刊行されています。 【対象読者】 デスクトップアプリの作り方を知りたい初心者 【本書のポイント】 ヤギ博士&フタバちゃんと一緒に、デスクトップアプリ開発の考え方から丁寧に解説。デスクトップアプリ開発をする時に必要な前提知識からはじまり、デスクトップアプリ作りの基本、応用的なデスクトップアプリ、そしてゲームアプリ開発まで解説します。 【著者プロフィール】 森 巧尚(もり・よしなお) アプリの開発や、技術書や電子工作マガジンなどでの執筆活動。関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、プログラミングスクールコプリ講師など、プログラミングに関する幅広い活動を行っている。近著に、『Python1年生 第2版』、『Python3年生機械学習のしくみ』、『Python2年生 スクレイピングのしくみ』、『Python2年生 データ分析のしくみ』、『Java1年生』、『動かして学ぶ!Vue.js開発入門』(いずれも翔泳社)、『楽しく学ぶ アルゴリズムとプログラミングの図鑑』(マイナビ出版)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonでデータ分析を体験してみよう! 【データ分析を一緒に体験しよう】 スクレイピングなどで集めた大量のデータ。 どうやって分析してたらよいか、困っていませんか? 「数式があって難しそう」 「プログラムも大変そう」 と思っている方も多いはず。 本書は、そうした方に向けて、サンプルを元にやさしく データ分析の方法を解説しています。 【Python2年生について】 「Python2年生」は、「Python1年生」を読み終えた方を対象とした入門書です。 ある程度、技術的なことを盛り込み、本書で扱う技術について身に着けてもらいます。 『Python2年生 スクレイピングのしくみ』(ISBN:9784798161914)も刊行されています。 【対象読者】 ・データの分析方法を知りたい初心者 【本書のポイント】 ヤギ博士&フタバちゃんと一緒に、データ分析の考え方から丁寧に解説。 データを分析する時に必要な前処理の方法や、データの集まりの見方、 データを見やすいグラフにする方法、データの分布の見方、予測の立て方を 解説する書籍です。 【著者プロフィール】 森 巧尚(もり・よしなお) アプリの開発や、技術書や電子工作マガジンなどでの執筆活動。関西学院大学非常勤講師、 関西学院高等部非常勤講師、成安造形大学非常勤講師、プログラミングスクールコプリ講師など、 プログラミングに関する幅広い活動を行っている。 近著に『Python1年生』、『Python2年生 スクレイピングのしくみ』、 『Java1年生』(いずれも翔泳社)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 待望の第2版 登場! Pythonでデータ分析を体験してみよう! 【本書の背景】 Pythonにはデータ分析に便利なライブラリがたくさん用意されています。そのため、スクレイピングなどで集めた大量のデータ分析する際に、Pythonを利用する方が増えてきています。 【本書の概要】 ヤギ博士&フタバちゃんと一緒に、データ分析の考え方から丁寧に解説。データを分析する時に必要な前処理の方法や、データの集まりの見方、データを見やすいグラフにする方法、データの分布の見方、予測の立て方を解説します。 【第2版のポイント】 ・Anaconda、Google Colab Notebookのアップデート ・各種ライブラリのアップデート 【Python2年生について】 「Python2年生」シリーズは『Python1年生』を読み終えた方を対象とした入門書です。ある程度、技術的なことを盛り込んでいますので、スキルアップにつながります。 【対象読者】 ・データ分析の手法を知りたい初心者 ・データの可視化や予測方法を知りたい初心者 【本書のポイント】 ・対話形式で解説し、イラストを交えながら基礎知識を解説します。 ・平易なサンプルを用意していますので、安心してプログラムを体験できます。 【目次】 第1章 データ分析って何? 第2章 集めたデータは前処理が必要 第3章 データの集まりをひとことでいうと?:代表値 第4章 図で特徴をイメージしよう:グラフ 第5章 これって普通なこと? 珍しいこと?:正規分布 第6章 関係から予測しよう:回帰分析 【著者プロフィール】 森 巧尚(もり・よしなお) 『マイコン BASICマガジン』(電波新聞社)の時代からゲームを作り続けて、現在はコンテンツ制作や執筆活動を行い、関西学院大学非常勤講師、関西学院高等部非常勤講師、成安造形大学非常勤講師、大阪芸術大学非常勤講師、プログラミングスクールコプリ講師などを行っている。近著に、『Python2年生 スクレイピングのしくみ 第2版』『ChatGPTプログラミング1年生』、『Python3年生 ディープラーニングのしくみ』、『Python2年生 デスクトップアプリ開発のしくみ』、『Python1年生 第2版』、『Python3年生 機械学習のしくみ』、『Java1年生』、『動かして学ぶ!Vue.js開発入門』(いずれも翔泳社)などがある。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-最新環境に対応した第3版の登場! データ分析エンジニア必携の 基本技術を習得できる 【本書の概要】 本書はデータ分析エンジニアに必要な 以下の基礎技術について サンプルを交えながら丁寧に解説します。 ・データの取得・加工 ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 【第3版のポイント】 ・Pythonデータ分析試験の主教材に指定 ・Python 3.13に対応 ・各種ライブラリの最新版への対応 【本書で学べること】 ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装方法 【対象読者】 データ分析エンジニアを目指す方 【目次】 第1章 データ分析エンジニアの役割 第2章 Pythonと環境 第3章 数学の基礎 第4章 ライブラリによる分析の実践 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-読者の声に応えて第2版の登場! データ分析エンジニアに必要な 基本技術をしっかり習得できる 【本書の概要】 本書はデータ分析エンジニアに必要な 以下の基礎技術を丁寧に解説しています。 ・データの取得・加工 ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 【第2版のポイント】 ・Python 3.10対応 ・よりわかりやすい解説 ・Pythonデータ分析試験の主教材に指定 【本書で学べること】 ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装方法 【対象読者】 データ分析エンジニアを目指す方 【目次】 第1章 データ分析エンジニアの役割 第2章 Pythonと環境 第3章 数学の基礎 第4章 ライブラリによる分析の実践 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 どう考えれば、よいプログラムを作れるのかの解 データサイエンス時代の今、データ構造とアルゴリズムのセオリーを身に付けるのはデータ処理を行う多数のエンジニアにとって大切なことです。本書は、データ構造とアルゴリズムの普遍的な基礎を、Pythonによるプログラミングの実践を通して丁寧に解説するものです。 ※プログラム開発やデータサイエンスを視野に、主要なアルゴリズムをPythonで実装し、データの動きと該当コードを対比させ、しっかりと解説をしています。 ※例題で使用したサンプルプログラムをオーム社ホームページよりダウンロードできます。アルゴリズムの実際をすぐに体感できます。。 第1章 アルゴリズムをはじめる前に 第2章 準備 第3章 データ構造 第4章 ソートアルゴリズム 第5章 探索アルゴリズム 第6章 木構造 第7章 グラフアルゴリズム 第8章 その他の有用なアルゴリズム
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習による異常検知の基本と応用がわかる! 本書では、機械学習による異常検知のしくみを、誤差関数に着目して解説します。読者が新しい異常検知システムを自ら構築できるようになることを最終目標とし、機械学習アルゴリズムの基本から解説していきます。 機械学習について誤差関数を中心に理解を深めることによって「外れ値とはなにか」「閾値はどのように設定すればよいか」といった異常検知における基本が自然と理解できます。そういった基礎から入りつつ、時系列データを分析する際の手法と注意点(第3章)や、深層学習を用いた応用例(第4章)といった内容まで踏み込み、最終的には自ら異常検知システムを構築できるよう導きます。 機械学習の各アルゴリズムの説明や例題などには、Pythonのコードが付いています。 自分でプログラムを実行しながら学べる入門書です。 <本書の特徴> ・誤差関数を中心に機械学習の原理を理解することで、異常検知の基本が自然と理解できます。 ・基本だけでなく、時系列データに対する異常検知の考えかた(第3章)や、深層学習による応用(第4章)を学ぶことができます。 ・Pythonのコード付きなので、手を動かしながら学習することができます。 第0章 機械学習と異常検知 第1章 機械学習と統計解析の基本モデル 第2章 非時系列データにおける異常検知 第3章 時系列データにおける異常検知 第4章 深層学習による異常検知
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 医用画像診断支援の分野では人工知能が組み込まれたAI-PACS(画像保管管理システム)の普及が期待されています。こうした状況の中でPythonはその学びやすさと、また画像処理や人工知能のためのパッケージが多く提供されていることから、今後ますます、簡単な実験から臨床研究などへ幅広く使用されていくことが予想されます。 本書では、深層学習の基礎的な内容、Pythonの基礎はおさえたうえで、医用画像応用に特化して、最新のデータセットやライブラリを使用して画像解析、診断への適用などの基礎的な内容をわかりやすく解説するものです。改訂にあたって、医用画像の標準規格であるDICOMの最新版の取扱いを解説するとともに、生成AIの適用・応用についてもふれています。 第1章 開発環境を構築する 第2章 Pythonプログラミングの基本を学ぶ 第3章 DICOM画像の表示と基本画像処理 第4章 画像管理とDICOM応用処理 第5章 Pythonを使った人工知能の前処理を学ぶ 第6章 Pythonを使った人工知能の基本を理解する 第7章 人工知能開発の実践 第8章 医用画像処理における生成AI活用
-
4.0匿名加工医療データの登場により、医療保険開発や健康管理アプリ開発などの自由度が高まりました。それと同時に、開発者はこれまでの分析方法を適用していいのかという戸惑いを持ち、また分析者は時に急遽、分析担当としてアサインされ、期限のある中でデータに慣れて分析手法を学び、結果を出すことが求められます。本書では医療データを手元のPCで擬似生成し、生成した擬似データを分析しながらPythonに慣れ、分析手法を身に着けていただくことを目的にしています。 医療データを分析する上で、統計学以外に「疫学」「医療統計学」「線形代数学」の知識が必要となります。しかしこれらの専門書は医療データ分析の範囲を大きく超えます。企画している書籍は、1つの学問体系を説明する学術書ではなく、分析手法を網羅するような一般的な内容でもありません。この書籍は「いかにして医療データ(生物データ)からイベント(死亡・疾病等)の起こりやすさを推定するか」をテーマとして、様々な知識体系からアプローチし、得られた分析結果の妥当性を検証していく実用書です。
-
-本書は、スクレイピングによるデータ収集、データを表示するダッシュボードの作成、PythonによるExcelの操作などについて、入門者向けに解説しています。 スクレイピングとは、Webサイトから情報を自動的に取得する技術のことを指します。通常、人がWebブラウザを使って手動で行う情報収集をプログラムによって自動化するものです。これにより、大量のデータを効率的に集めることができます。 なお、Python自体については、ある程度の知識があることを前提としています。もし、Pythonをまったく学習していない場合は、Webサイトや書籍などを用いて、先にPythonを簡単に学習することをお勧めします。 本書は、Python環境の構築方法、コードエディタとして用いるVisual Studio Codeのインストール方法、Python in Excelの利用方法などの解説を掲載しているため、環境の導入を問題なく行えます。 また、各ライブラリの基本的な使い方から始め、スクレイピングによるWebサイトのデータ収集、データを用いたダッシュボードの作成、データを用いたExcelファイルの作成などの具体例も解説しています。
-
-Webデータの巡回収集と解析を すべて自動で処理しよう 【背景】 企業においてデータ分析の需要が多くなってきているなか、 企業のデータ分析の現場において、 Webから様々なデータを集める「クローラー(クローリング)」と 集めたデータの解析を行う「スクレイピング」のニーズが 非常に高まってきています。 【対象読者】 ・データの収集、解析などの仕事を請け負うプログラマー ・クローラー開発を請け負うエンジニア 【本書の特徴】 本書は、データ収集・解析などの仕事を請け負うプログラマーや、 クローラー開発を請け負う分析会社のエンジニアに向けて、 クローラーの開発手法から実際のクローリングおよび スクレイピング手法ついて解説した入門書です。 本書ではデータ分析の現場でニーズの高まってきているPythonを利用して、 クローラー開発から始まり、クローリング、スクレイピングの基本から応用手法、 そして運用までそれぞれの開発が直面する場面に沿って丁寧に解説します。 最終章では目的別のクローラー開発手法を解説しています。 【対象OSとPythonのバージョンについて】 ・OS:macOS Sierra(10.2.x) ・Python:3.6.2 【目次】 Part1 基本編 Chapter 1 クローラーとスクレイピングを体験する Chapter 2 クローラーを設計する Chapter 3 クローラーおよびスクレイピングの開発環境の準備とPythonの基本 Chapter 4 スクレイピングの基本 Part2 応用編 Chapter 5 クローラーの設計・開発(応用編) Chapter 6 スクレイピングの開発(応用編) Chapter 7 クローラーで集めたデータを利用する Chapter 8 クローラーの保守・運用 Chapter 9 目的別クローラー&スクレイピング開発手法 Appendix クローラー&スクレイピングに役立つライブラリ ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 時系列データを上手く活用し、ビジネス成果を生み出す!! 時系列データを上手く調理することは、これらの問に何かしら解を与えることができます。特に予測モデルを上手く活用すると、過去を振り返り、未来を予測し、現在すべきことを導きだし、成果へと繋げることができます。いくら高精度な予測モデルを手にしても、どう活用すべきかわからないと成果は生まれません。そこで本書ではどのように扱うかを、実際のデータを用いて、使い方を重点的に解説していきます。時系列分析の多くの書籍は数式等を用いて解説していますが、実務的な運用には理論よりもPython等コードで実践していくことが重要です。 なお、事例として以下を取り上げます。 ・モニタリング指標の異常検知によるキャンペーン評価(自動車ディーラー) ・モニタリング指標の異常検知と要因探索(小売りチェーン) ・売上予測モデルを活用したデータドリブン販促(小売りチェーン) ・離反予測モデルによる離反対策ルールの策定(食品・法人向けビジネス) ・チャーンマネジメントのための離反時期予測(携帯電話サービス) ・LTVマネジメントのためのLTV予測(ECサイト) ・広告・販促効果を見える化し最適化するマーケティング・ミックス・モデリング(スポーツジム) 第1章 ビジネスにおける時系列データ活用 1.1 ビジネス現場は時系列データで溢れている 1.2 ビジネス時系列データでよくある7つの活用事例 1.3 2種類の時系列データ 1 1.4 よく目にする7つの時系列特徴量 1.5 時系列特徴量付きテーブルデータ 第2章 Pythonのデータ分析環境の設定(JupyterLab) 2.1 Pythonのインストール 2.2 Python以外のインストール 2.3 利用するライブラリー(パッケージ)のインストール 第3章 時系列予測モデル構築・超入門 3.1 時系列データを使った予測モデル構築の流れ 3.2 時系列データの特徴把握と前処理 3.3 時系列の予測モデルを構築してみよう 3.4 季節成分が複数ある場合の予測モデル 3.5 多変量時系列データの特徴把握と因果探索 第4章 時系列データを使ったビジネス成果の上げ方 4.1 データでビジネス成果を上げる「データ活用ストーリー」 4.2 時系列データの異常検知 4.3 時系列データの要因探索 4.4 時系列データの将来予測 第5章 時系列データを活用したビジネス事例 5.1 モニタリング指標の異常検知によるキャンペーン評価(自動車ディーラー) 5.2 モニタリング指標の異常検知と要因探索(小売りチェーン) 5.3 売上予測モデルを活用したデータドリブン販促(小売りチェーン) 5.4 離反予測モデルによる離反対策ルールの策定(食品・法人向けビジネス) 5.5 チャーンマネジメントのための離反時期予測(携帯電話サービス) 5.6 LTVマネジメントのためのLTV予測(ECサイト) 5.7 広告と販促効果を見える化し最適化するマーケティングミックスモデリング(スポーツジム)
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 時系列予測の基礎からディープラーニングによる大規模な予測まで 本書は、データサイエンティストがPythonによる時系列予測をマスターすることを目的として書かれています。数式は必要最小限に抑え、ステップバイステップで丁寧に説明していきます。統計学的モデルや機械学習モデル・ディープラーニングを使った予測、自動予測ライブラリProphetを紹介します。 Manning「Time Series Forecasting in Python」の翻訳企画 第1部 歳月人を待たず 第1章 時系列予測 第2章 単純な未来予測 第3章 ランダムウォーク 第2部 統計学的モデルによる予測 第4章 移動平均プロセスのモデル化 第5章 自己回帰プロセスのモデル化 第6章 複雑な時系列のモデル化 第7章 非定常時系列の予測 第8章 季節性の考慮 第9章 モデルへの外部変数の追加 第10章 複数の時系列の予測 第11章 キャップストーン:オーストラリアの抗糖尿病薬処方数の予測 第3部 ディープラーニングによる大規模な予測 第12章 時系列予測のためのディープラーニング 第13章 ディープラーニングのためのデータウィンドウとベースラインの作成 第14章 ディープラーニングの手ほどき 第15章 LSTMで過去を記憶する 第16章 CNNを使った時系列のフィルタリング 第17章 予測を使ってさらに予測を行う 第18章 キャップストーン:家庭の電力消費量の予測 第4部 大規模な予測の自動化 第19章 Prophetを使った時系列予測の自動化 第20章 キャップストーン:カナダでのステーキ肉の月間平均小売価格の予測 第21章 さらなる高みを目指して 付録 インストール手順 Marco Peixeiro (マルコ・ ペイシェイロ) :カナダ マギル大学(McGill University)卒。 カナダ最大手の銀行の1つNational Bank of Canadaでシニアデータサイエンティストを務めている。独学のサイエンティストであるMarco は、この業界で仕事を見つけて働くために必要な知識が何かをよく理解している。実践から学ぶことを信条とし、Medium のブログ、freeCodeCamp でのデータサイエンスの短期集中講座、Udemy の講座でも同じアプローチを取っている。本書のテーマを扱ったUdemyのオンライン講座 https://www.udemy.com/course/applied-time-series-analysis-in-python/ が好評で、その内容が書籍化された。Marco のデータサイエンスに関する記事はMedium でさらにチェックできる(https://medium.com/@marcopeixeiro)。ブログでも、最初に理論を提示し、次に実践的なプロジェクトに取り組むという同じアプローチを取っている。 株式会社クイープ :1995 年、米国サンフランシスコに設立。コンピュータシステムの開発、ローカライズ、コンサルティングを手がけている。2001年に日本法人を設立。主な訳書に『The Kaggle Workbook』『The Kaggle Book』『実践XAI』(インプレス)、『なっとく!機械学習』『なっとく!関数型プログラミング』『実践マイクロサービスAPI』(翔泳社)、『Python によるディープラーニング』(マイナビ出版)などがある。 http://www.quipu.co.jp ※この商品は固定レイアウト型の電子書籍です。 ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。 ※お使いの端末で無料サンプルをお試しいただいた上でのご購入をお願いいたします。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonを使って制御工学を学ぶための入門書 本書は,各所でわかりやすく,かつ,実用的と好評をいただいているPythonを使って制御工学を学ぶための入門書の改訂版です. 「使ってみる,やってみる」を通して,制御工学を体感することができます. よりわかりやすさを追求して構成を見直し・追記したほか,ライブラリの最新版に合わせてPythonコードを修正しています. これから制御工学に携わる方々にとって必読の書です. 第1章 制御とは 第2章 Pythonの基礎 第3章 制御のためのモデル 第4章 制御対象の振る舞い 第5章 閉ループ系に注目した制御系設計 第6章 開ループ系に注目した制御系設計 第7章 アドバンストな制御系設計 付録 数学とプログラムの補足
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonによるネットワークプログラミング入門書! 本書は、Pythonによる実装を前提として、ソケットプログラミングに必要な知識をわかりやすく解説する入門書です。TCP/IPやソケットの原理を説明したのち、Pythonでソケットを実装する基礎的方法を示していきます。さらに、Python固有の機能を用いたプログラミング例(モジュールを利用したサーバ実装など)を紹介します。 ダウンロードできるサンプルプログラムが多数掲載されているので、実際に試しながら読み進めて、知識と技術を身につけてください。 Chapter 1 TCP/IPとソケットの基礎 Chapter 2 Pythonソケットプログラミング Chapter 3 Pythonソケットによるネットワークシステムの構築 Chapter 4 Webシステムに関連するPythonモジュールの活用 Appendix
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 現代エンジニアの必須知識:ディープラーニング技術を身に付けよう! PythonのディープラーニングフレームワークKerasの開発者である筆者が、多くの人々がディープラーニングを活用できるようPythonコーディングを交えながら分かりやすく説明していきます。「ディープラーニングを適用できる課題とはなにか」「限界はどこにあるのか」を実践解説。Keras/TensorFlow 2対応。第1版(2017年)以降の話題やモデル・理論とその実装コードなど、より丁寧に解説し大幅にボリュームアップしています。 ディープラーニングにより自動言語翻訳や画像認識の精度は飛躍的に向上し、現代のソフトウェア開発者にとってその技術の理解と習得は必要不可欠な分野になりつつあります。 機械学習プラットフォームTensorFlowの上で動作するKerasは、Pythonで書かれたディープラーニングのAPIです。数学やデータサイエンスの専門的な知識がなくともディープラーニングを手軽に実装できるようになります。 Keras開発者であるFrançois Cholletは、改訂・増補された本書で、機械学習の初心者と経験者、両者に向けたアドバイスを提供します。直感的な説明とわかりやすいイラスト・例題で理解が深まり、ディープラーニングのアプリケーションを開発するために必要なスキルをすぐに身につけることができます。 ・ディープラーニングの最初の一歩 ・画像分類と画像セグメンテーション ・時系列予測 ・テキスト分類と機械翻訳 ・テキスト生成、画像生成 1章 ディープラーニングとは何か 2章 ニューラルネットワークの数学的要素 3章 KerasとTensorFlow 4章 ニューラルネットワーク入門:分類と回帰 5章 機械学習の基礎 6章 機械学習のユニバーサルワークフロー 7章 Kerasを使いこなす 8章 コンピュータビジョンのためのディープラーニング 9章 コンピュータビジョンのための高度なディープラーニング 10章 時系列のためのディープラーニング 11章 テキストのためのディープラーニング 12章 生成型ディープラーニング 13章 現実世界でのベスト・プラクティス 14章 本書のまとめ
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、ネットワークエンジニアやシステム管理者を対象に、Pythonを用いたネットワークの自動化について解説した実践的な教科書です。 急速なビジネス要件の変化に適応し、企業の迅速な成長と競争力を維持するためには、ネットワーク自動化が不可欠です。現代のネットワークエンジニアやシステム管理者にとって、ネットワーク自動化のスキルは必須となりました。 しかし、Pythonを使用したネットワーク自動化は、プログラミング初心者にとっては理解が難しい場合もあります。そのため、本書では、Pythonの基礎から分かりやすく解説しています。さらに、ネットワーク自動化に役立つライブラリの使い方や、実際のネットワーク機器での応用方法についても詳しく説明しています。 この書籍を通じて、Pythonを用いたネットワーク自動化の基本的なスキルを身につけ、日常的なネットワーク運用の効率化や故障時の対応力向上、セキュリティの精度向上などに役立ててください。 (本書「はじめに」より抜粋・編集) Chapter.1 Python 基礎 1.1 Python の入門知識 1.2 Python のインストール 1.3 Python を使ってみよう 1.4 Python の学習方法 Chapter.2 Python のデータ型とファイル操作 2.1 数値型(int, float) 2.2 文字列型(str) 2.3 バイト型(bytes) 2.4 ファイル操作 Chapter.3 Python のデータ型(コレクション、日時、None、ブール) 3.1 リスト(list)
-
-人工知能(AI)・機械学習と言ったバズワードを見ることは多くなりましたが、まだまだデータ解析のハードルは高いと考えられています。特に機械学習の入門書には高度な理論や前提知識を必要とされることも多く、学習する過程で挫折しまうことが多いようです。 エンジニアのみなさんにとっては、Pythonの便利なツールを用いてデータに実際にふれて、機械学習の面白さや便利さを体験することも良い学習方法の1つです。誤解をおそれずに言えば、目の前のデータをどう扱えば役に立つのか?を理解してからでも理論を学ぶのは遅くはありません。本書では「勉強になった」で終わることなく現場のアプリーケーションを使うための機械学習の基礎を解説します。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonプログラミングの基礎が学べる!! Pythonの基礎、オブジェクト指向の考え方を学びながら、簡単なゲームプログラミングの作成まで行います。全15章でPythonプログラミングを一通り学ぶことができ、章ごとに段階を踏んで学んでいけるものです。まずはPythonの独習書として、プログラミングを学びたい方むけにおすすめです。 はじめに 第0章 プログラミングとは 第1部 アクションゲームの作成演習 第1章 Python の実行環境 第2章 アニメーションの導入 第3章 イベントによる対話的処理 第4章 プログラムの拡張 第2部 オブジェクト指向プログラミング演習 第5章 クラスとモデリング 第6章 集約とポリモーフィズム 第7章 継承、オーバーライド 第8章 リファクタリング 第3部 パズルゲームの作成演習 第9章 MVC による機能の分離 第10章 モジュール化 第11章 探索アルゴリズム 第4部 ライブラリを利用したゲーム作成演習 第12章 ライブラリの利用 第13章 スコープ、実体と参照 第14章 Sprite とGroup 第15章 風船割りゲーム 付録A エラー図鑑 関連資料
-
-本書(原題:Python Algorithms: Mastering Basic Algorithms in the Python Language)はアルゴリズムの分析と設計方法について、Pythonを使って説明します。古典的なアルゴリズムに焦点を絞って解説していますが、基本的なアルゴリズムによる問題解決の方法もしっかり理解できます。 本書はプログラミングとコンピュータサイエンスの最も重要で難しい分野を非常に読みやすい形で解説しています。アルゴリズムの理論とプログラミングの実践の両方をカバーし、理論が実際のPythonプログラムにどのように反映されているかを説明します。また、Pythonに組み込まれている有名なアルゴリズムとデータ構造について説明し、実装と評価について学ぶことができます。 本書で学べること 新しい問題を効率的なアルゴリズムで解ける問題に変換する方法。もしくは、効率的に解けない問題であると示す方法 数学と基本的な実験やベンチマークを使ってアルゴリズムとPythonのプログラムを分析する方法 古典的なアルゴリズムとデータ構造を深く理解し、Pythonでこれらを効率的に実装する方法 新しい問題を解くために新しいアルゴリズムを設計し、実績のある設計原理・設計技法を使って実装する方法 Pythonのハイパフォーマンスコンピューティングを実現する豊富なツールを使って実装を高速化する方法
-
-本書は数値解析手法のひとつである有限要素法をPythonによって実装するための方法の解説書です。 具体的にはPythonを使って、有限要素法のメッシュ作成やソルバ実行や結果の可視化が、ライブラリを使ってできることを目指します。ただし、Pythonの基礎知識や有限要素法の理論の基礎は本書では扱いません。 本書では次のような人を対象としています。 ・Pythonでデータ分析をしていて、Pythonによる有限要素法の実装について興味がある人 ・上記についてフルスクラッチではなく、あくまでライブラリを使いこなしたい人 ・有限要素法の入門書を読んだ人(まったくの初心者は対象外です) ・NumpyやMatplotlibのように、Pythonicに有限要素法解析と可視化をしたい人
-
3.7※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 手軽に学びたい人の味方!人気の絵本シリーズにPython登場! Pythonはコンパイラを使わずに実行できるインタープリタ型の言語でありながら、データ分析など最新のコンピューティングの現場でひろく活用されています。 本書では「プログラミングについて何も知らないこと」を前提に、基本からPythonを解説し、さらにリストや関数といった特徴ある機能を紹介していきます。また、章末でプログラミングサンプルを紹介するなど、実戦的な内容も含まれています。 本書には次のような特長があります。 ・絵を多用し、短い解説で絵本のようにビジュアルに理解することができます ・2ページを単位とした説明、基礎に絞り込んだ内容でスピーディに学習できます ・予備知識は不要。「プログラミングとはなにか」から入門できます ・Pythonの特徴などや実行の仕組みなど、知識として知っておきたい事柄もフォロー ・クラス/オブジェクトの基本も解説。オブジェクト指向の基礎にも入門できます 【翔泳社の「絵本」シリーズのラインナップをアップデート】 翔泳社の「絵本シリーズ」は、豊富なイラストと簡潔な解説でコンピュータ技術に入門できる初心者向けのシリーズです。言語/技術の超初心者や手軽に習得したい方に最適な入門書です。 新しい「絵本シリーズ」では、旧来の分かりやすさ、親しみやすさ、基礎に徹した内容というコンセプトはそのままに、Web/ネットが全盛となった現在のコンピュータ技術の潮流に合わせた解説を心掛けます。『Cの絵本』『Javaの絵本』を皮切りにラインナップを順次刷新、さらに新しい仲間を増やしてラインナップを充実させていきます。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本ムック「Pythonのキホンがわかる本」は、文法からちょっとしたアプリの開発まで、様々な視点でプログラミング言語「Python」の使い方を解説する一冊です。話題の「Python in Excel」についても取り上げています。 また、昨今、Pythonと言えば何と言ってもAIです。第4章ではAIやデータサイエンスでよく使われるライブラリを9個取り上げ、わかりやすく説明しています。 本ムックを通して、ぜひ、Pythonのキホンのマスターを目指しましょう。 ≪目次≫ 第1章 自動化アプリ開発で学ぶPythonの初歩 第2章 ここがスゴイ!! Pythonの機能 徹底解説 第3章 Pythonの“マル”と“バツ” 第4章 Pythonライブラリ図鑑 データサイエンス/機械学習編 第5章 「Python in Excel」使い方指南!! 第6章 Pythonで「3D分子ビューアー」を作る 第7章 Python/Tkinterで実用ソフトを作る
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、工学系基礎教育としてのコンピュータ教育およびプログラミング教育を実現するための教科書です。工学的問題の解決に対するコンピュータやプログラムの利用に抵抗感をなくし、スムーズにコンピュータを使う素養を養うことを目的としています。 プログラミングの基礎は扱いますが、特定のプログラム言語全般を深く学ぶことは目標としません。そのかわり、後で必要となった時に、どのような言語でも容易に学ぶことのできる下地を作ります。 コンピュータは、単純な手続きの積み重ねで処理を実現します。この事実、つまり手続き的処理の理解が本書の第一の目標です。これによりコンピュータとは何なのかが理解でき、コンピュータを道具として利用するための能力が身につきます。 続いて、手続き的記述能力の獲得を目指します。これは平たく言えば、プログラムを書いて利用するための初歩的な能力です。具体的には、プログラム言語の基礎を学ぶと共に、シミュレーションや解析、統計処理等のためのソフトウェアツールを使いこなすための素養を養います。 各章末には演習問題を掲載し、略解を示すことで理解の助けとなるよう配慮しました。 ※本書は、近代科学社より2015年に刊行された『コンピュータ科学とプログラミング入門 ―コンピュータとアルゴリズムの基礎―』のPython版です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 プログラミングをしたことがない人、技術的バックグラウンドをもたない人が、Pythonを使ったデータ分析を身につけて、モノゴトを良くしていく――。米名門ビジネススクールの実践的な授業内容に基づいた、リアルなビジネス現場でデータ分析を役立てる方法をお伝えします。 とにかく手をつけて、 実用的なことをできるだけ早く、 習得しよう! エクセルでは不可能な「膨大なデータ」を用いて 効果的なビジネス戦略を立案するために、 実用に即したサンプルデータを使います (本誌サイトからダウンロードできます)。 MBA、つまり実社会での実務経験があり大学院の修士課程でビジネスを学ぶ人向けの教科書ということで、どれほど高度な内容かと思いきや、プログラミングに興味のある人なら、おそらく高校生だろうが中学生だろうが理解できる、見事な構成と進行で成り立つ本でした。こんなにやさしくて、丁寧で、話に無駄のない先生に出会えた学生は幸せだと思います。読者のみなさんは、まさに本書の幸せな学生というわけです。 「訳者あとがき」より
-
-本書ではGCP(Google Cloud Platform)にFlaskアプリをデプロイする方法を詳しく解説します。仮想マシンの立ち上げから始まり、ステップバイステップでデプロイのプロセスを丁寧に説明しています。本書は、PythonでWebアプリケーションを作成したもののデプロイ方法が分からない方、レンタルサーバーにWebサイトを公開する方法は分かるが、アプリケーションのデプロイには不安がある方、そもそもデプロイの概念がよく分からない方にとって理想的なガイドブックです。実際の操作手順に加え、GCPの基本的な使い方から応用まで幅広くカバーしていますので、初心者から中級者まで満足いただける内容となっています。これ一冊でデプロイに対する理解が深まり、実践的なスキルを身につけることができます。
-
-この技術書籍は、Pythonのフレームワーク「Flask」を用いて、Webデザイナーやエンジニアがブラウザ上で請求書を発行できるアプリケーションの作成方法を、わかりやすく段階を追って解説します。読者は公開されているサンプルコードをGitHubからダウンロードし、自分の環境でアプリケーションの動作を確認しながら、Flaskを使ったWebアプリケーション開発の技術を実践的に学べます。Pythonの基本を押さえた後の次のステップとして、またはPythonを使ったWebアプリケーション開発の全体的な理解を深めたい方、さらには請求書発行作業の効率化を目指すフリーランスのWebデザイナーやエンジニアに特にお勧めします。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 CSVはもう捨てた。データの海にいざゆかん! 手軽でイマドキなデータ構造「JSON」を使いこなそう! 「ちょうどいい」データはJSONだ! 「このCSV/TSVファイル、JSONにならん?」と言われたら… QRコード←→JSONデータ 自由自在 私にも「JSONなんてちょろい」と考えていた時期がありました。 だがしかし、この本のJSONはなかなか深いゾ データ構造を制するものがPythonを制する JSON+Python? JSON+QRコード?? JSON+スクレイピング?! JSON+機械学習!! その他にも楽しいテクニックが満載です。
-
-◆データの分析・活用に必要な基本の力を身につける!◆ 本書は、Pythonによるプログラミングの基本とともに、データサイエンス関連のPythonライブラリの基本的な使い方を1冊で学べる入門書です。書籍の前半では、Pythonの基本文法はもちろん、Pythonならではの表現方法や機能についても解説します。また、さまざまな問題解決に必要となる「プログラミング的思考」「データ構造とアルゴリズム」についても取り上げることで、単に便利なライブラリを使えるようになるだけではなく、問題を解決するための本質的な力を身につけられるようにします。書籍の後半では、ここまで学んできたPythonの知識をもとに、Matplotlib/seaborn/NumPy/NLTK/spaCy/Pandas/scikit-learn/BeautifulSoupの使い方を学んでいきます。 ■こんな方におすすめ ・実戦で使えるPythonの知識を身につけたい人 ・データサイエンス関連ライブラリの基本を身につけたい人 ■目次 序章 本書の3つのテーマと構成 第1章 Python文法の基本 第2章 Python流プログラミング 第3章 Pythonの機能を使った各種処理 第4章 ColabTurtleを使ったプログラミング的思考 第5章 データ構造とアルゴリズム 第6章 Matplotlibによる可視化 第7章 seabornによる統計的グラフの作成 第8章 NumPyによる科学技術計算 第9章 NLTKとspaCyを用いた自然言語処理 第10章 Pandasによるデータフレームとデータ操作 第11章 scikit-learnによる機械学習 第12章 BeautifulSoupを用いたWebスクレイピング ■著者プロフィール 河西朝雄:山梨大学工学部電子工学科卒(1974年)。長野県岡谷工業高等学校情報技術科教諭、長野県松本工業高等学校電子工業科教諭を経て、現在は「カサイ.ソフトウエアラボ」代表。著書多数。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【Pythonプログラミングの“入門の入り口”になる教科書!】 本書はプログラミング経験がない方やPC操作に不慣れな方でも無理なく読み進められる、Pythonプログラミングを始めるための“入門の更にその入口”となる教科書。 プログラムを実際に動かしながら学んでいく構成のため、基礎がしっかりと身に付くだけでなく、米国で成功した著者直伝の実践的知識まで習得できる。応用力アップにつながる例題も豊富に掲載。本書掲載のプログラムはすべてウェブから入手できるので、講義や独習にも役立つ。 Python入門者に、最初に手に取ってほしい一冊。
-
-武器としてのPythonをこの1冊で身につける! これから「Python」を学ぼうとしている皆さんは,おそらく,今後ITに関わっていくなかで必要な「スキル」を身をつけたり,自らの力で業務の自動化や効率化を実現したりといった,何らかの目的をもっていることかと思います。 プログラミングの学習は一朝一夕には効果が出ません。ある程度の時間を要することになるかと思いますが,「時間」とそのコントロールの重要性の認識が甘いまま進みはじめると挫折する可能性がとても高くなります。 本書の1章と2章では,そうしたプログラミング学習を行う上での時間管理なども含め,Pythonを学ぶ前の事前知識の習得と準備を行います。 第1部 準備編 Chapter01 Pythonを学びはじめる心構えを整えよう Chapter02 Pythonを学ぶ環境を作ろう 「Python」は比較的簡単に学べる言語とはいえ,学習は長い道のりになります。心構えや準備は,その長い期間の学習活動を継続し,その効果を高めるという視点で重要です。 続いて,3章から6章までは,プログラミング言語Pythonの最初の一歩の基本から,関数やクラスといった部品化のテクニックまでを解説します。実務でPythonを活用する際の土台をしっかりと身につけるパートです。 第2部 文法編 Chapter03 Pythonプログラムの基本を知ろう Chapter04 フロー制御について学ぼう Chapter 05 データの集合について学ぼう Chapter 06 プログラムを部品化しよう 7章から18章までは,クリップボード,ファイルやフォルダ,インターフェース,Excelファイル,QRコード,画像,PDF,スクレイピング,データ処理,グラフといった対象を操作する,実用的で具体的なツールを作りながら,そのために必要なモジュールとその組み立て方について学びます。 第3部 実践編 Chapter 07 Excelにデータを集めるツールを作ろう Chapter 08 Excelレポートを更新するツールを作ろう Chapter 09 Pythonを動かすインターフェースを作ろう Chapter 10 スクレイピングツールを作ろう Chapter 11 ブラウザを操作してスクレイピングをしよう Chapter 12 画像を加工するツールを作ろう Chapter 13 QRコード生成ツールを作ろう Chapter 14 PDFを操作するツールを作ろう Chapter 15 ZIPファイルを展開・圧縮するツールを作ろう Chapter 16 Jupyter Notebookでノートブックを作ろう 本書を通して学習をすることで,皆さんの仕事のいくつかの面倒な業務をPythonに任せられるようになるはずです。また,別の実現したいことがあれば,ご自身で調べながら実現する地力がついていることでしょう。そして,そこから先,データ分析,AI・機械学習,Web開発,IoTなど,無限といってもよい「Python」の世界が広がっています。そこまでは多くの学習の積み重ねが必要ですが,皆さんご自身の働き方やキャリアにとって,「Python」が強力な武器になっていることでしょう。本書をぜひ,そのための最初の足がかりとしてご活用ください。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 PythonはDjangoを始めとしたWebアプリケーションフレームワークが充実しており、非常に使い勝手のよいプログラミング言語です。本書は、Pythonをはじめて学ぶ方向けに、Pythonの基礎からWebアプリの開発、人工知能の一種であるディープラーニングの実装までを楽しくわかりやすく解説します。基本的な文法からブラウザ上で動くブラックジャックゲームの作成、さらに作成したゲームを人工知能にプレイさせる方法まで学べます。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonはシンプルな文法でAI開発ができる優れたプログラミング言語です。いま、機械学習や人工知能ブームを受けて、Python技術者の需要が高まっています。本書は、人工知能を実際に作りながらPythonを基礎から学ぶプログラミングガイドです。基本的なデータ操作から、文字列の処理、プログラムの流れの制御を説明し、かんたんなシミュレーションゲームを作りながらオブジェクト指向を学習し、簡単な人工知能の開発まで解説します!
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、Pythonの基礎から、統合型の開発用フレームワーク「Anaconda」などのツールの使い方、今話題のディープラーニングまで、チャットボットの開発を体験しながら楽しく学ぶPython解説書の決定版です。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonは、パワフルなオブジェクト指向型の言語ですが、文法がシンプルなため、入門者が最初に学ぶプログラミング言語にうってつけです。本書は、Pythonの基礎から、統合型の開発用フレームワーク「Anaconda」などのツールの使い方、今話題のディープラーニングまで、チャットボットの開発を体験しながら楽しく学ぶPython解説書の決定版です。第3版では、最新のWeb API、ライブラリに対応し、画像認識もより高度な手法を追加しました。
-
4.3※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 2015年2月発刊の第2版を全面改訂しました。バージョン管理システムはMercurial/Redmine からGit/GitHub に変更、CI(継続的インテグレーション)ツールはJenkins からCircleCI に変更しています。また、Web開発に限らず、機械学習プロジェクトの開発ノウハウの章を新設しました。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonの実践的ノウハウを知りたいが周囲に聞ける人がいない。チームで開発する方法も知りたい。そんなプログラマーの皆さま、ご安心ください。本書は、Pythonをメインに手がけるビープラウドが社内で蓄積したWeb開発の最新手法を惜しみなく公開します。作業環境の構築から、Webアプリケーションの作り方、課題管理、レビュー、テスト、デプロイの効率化、サーバーのチューニングなどPython開発のプロセスとノウハウが身につきます。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Python開発サイクルを「個人開発」と「チーム開発」の2つの視点から整理し、プロなら知っておきたい実践的ノウハウを学びます
-
-本書は、iOSデバイスの機能を最大限に活用するためのPythonガイドです。iPhoneやiPad上で実行できるPython/Jupyter Notebook環境である「Carnets for Jupyter」から、「Juno」、「Pyto」、「Pythonista」といった多彩なPython環境を駆使し、iPhone/iPadを自在に活用する方法を探求します。
-
-
-
-Pythonには,豊富な標準あるいはサードパーティライブラリ・モジュールがあります。ライブラリに関するドキュメントも充実していますが,初心者にとってはそのボリュームゆえに,まずどんなライブラリを活用できればよいのか,わかりづらい側面があります。ドキュメントは使用頻度の高い・低いに関わらずフラットに記載されており,サードパーティのライブラリについては言及されていません。本書では,「これだけは押さえておきたい」ライブラリとその機能を,標準ライブラリだけでなくサードパーティのものも交え,カテゴリごとに,その活用法を紹介します。バージョンはPython 3.4をメインとします。
-
4.5※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 広大な因果世界を幅広くカバー! 因果推論・因果探索のコード例を多数掲載 原著は米国Amazonでカテゴリーベストセラー(2024/6上旬など) データサイエンティスト、機械学習エンジニアなら知っておきたい 因果的概念、グラフによる理解、因果探索の実践などを解説。 パート1では、関連・介入・反事実、構造的因果モデルなど、 因果推論を構成する基本概念と、グラフ表現を解説。 パート2では、因果推論プロセスの4ステップのほか、 DoWhy/EconMLを使った因果推論の実装などを説明。 パート3では、因果探索の概念、因果分析プロセスでの位置づけ、 gCastle等を使った高度な因果探索の実装を取り上げます。 【章構成】 ■Part1 速習:因果関係 第1章 因果関係に取り組む理由:機械学習があるのに? 第2章 ジューディア・パールと因果のはしご 第3章 回帰、観測、介入 第4章 グラフィカルモデル 第5章 チェーン、フォーク、コライダー ■Part2 因果推論 第6章 ノード、エッジ、統計学的な独立と従属 第7章 4ステップの因果推論プロセス 第8章 因果モデル―仮定と課題 第9章 因果推論と機械学習―マッチングからメタ学習器まで 第10章 因果推論と機械学習―高度な推定器、実験、評価など 第11章 因果推論と機械学習―ディープラーニング、NLPなど ■Part3 因果探索 第12章 因果グラフをいただけますか―因果関係の知識源 第13章 因果探索と機械学習―仮定から応用まで 第14章 因果探索と機械学習―高度なディープラーニングとその先へ 第15章 エピローグ
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonを使ったプログラミングが流行していますが、たんにPythonの文法を知っているだけではPythonプログラミングを理解したことにはなりません。Pythonが重宝されている理由は、「ライブラリ」にあります。ライブラリとは、アプリケーションをプログラミングする際に便利な、「プログラムの部品」です。AIプログラミングのためのライブラリや、データ分析のためのライブラリなど、作成するアプリケーションごとに、さまざまなライブラリがあります。 本書は、そうしたライブラリを活用して、どのようなことができるのかを体験する入門者向けの本です。Pythonを便利に使うために、ライブラリを活用しましょう!
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 Pythonプログラミングスキルを上げる 厳選問題に挑戦! 自走できる力を身につけよう 【本書の概要】 本書は大人気のオンライン学習サービス「paizaラーニング」の「レベルアップ問題集」を元にした問題集です。基本的な実装スキルに値するCランク獲得の各種メニューや「paizaの森 練習問題コンテスト過去問題」「プログラミング筋トレドリル」等の学習コンテンツ(言語はともにPython)から厳選した問題を101問ピックアップしています。また各問題には解答だけでなく丁寧な解説もついていますので、問題を解きながら自身のPythonプログラミングのスキルアップにつなげることができます。 【本書の特徴】 ・paizaラーニングの人気の問題を掲載 ・単なる問題集でおわらない丁寧な解説 ・101問におよぶ厳選した問題の数々 【本書の対象読者】 ・プログラミングスキルを向上させたい方 ・Pythonの基礎的な問題を解いて自身のスキルの確認をしたい方 ・プログラマーを目指している初心者の方 【本書の目次】 Chapter1 基本文法 Chapter2 繰り返し処理[入門] Chapter3 分岐処理[入門] Chapter4 文字列の操作 Chapter5 リストの操作 Chapter6 繰り返し処理×分岐処理 Chapter7 多重ループによる処理 Chapter8 プログラミングの筋トレメニュー 【著者】 paiza株式会社 「異能をのばせ。」をコンセプトに、ITエンジニアに特化した転職・就職・学習プラットフォーム事業を運営している会社。 リブロワークス 「ニッポンの IT を本で支える !」をコンセプトに、主に IT 書籍の企画、編集、デザインを手がけるプロダクション。SE出身のスタッフも多い。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 “脱Excel”で実務力アップ! Pythonは、データ分析にぴったりのプログラミング言語です。なぜなら、Pythonには、数値計算やデータ集計、グラフ描画などの様々なライブラリが用意されているからです。 まずは、「Anaconda」というPythonプログラミング環境を構築します。Anacondaに同梱されている様々なPythonライブラリの中から、数値計算ライブラリの「NumPy」、データの加工・集計を効率化するライブラリの「pandas」、グラフ描画ライブラリの「Matplotlib」を使ってみます。 データ分析を行うには、統計学の基礎を知っておく必要があります。統計学の概念を理解し、記述統計や推測統計のプログラムをPythonで実装します。 さらに、データ分析の手法として、機械学習のアルゴリズムを知っておくとよいでしょう。大量のデータを扱うには、SQLの知識も必要です。 基礎知識を身につけたら、実践的なデータ分析プログラミングに挑戦します。企業の財務情報を分析するプログラムや、検索エンジンのプログラムを作ります。 本ムックを活用して、Pythonでのデータ分析プログラミングを習得し、実務力を向上させましょう! ≪目次≫ 第1章 「Anaconda」開発環境構築ガイド 第2章 Python数値計算ライブラリ「NumPy」入門 第3章 Pythonライブラリ徹底攻略 第4章 11個のキーワードで学ぶ統計学入門 第5章 Pythonで学ぶ統計 記述統計編/推測統計編 第6章 機械学習アルゴリズム事始め 第7章 データサイエンス時代のSQL 第8章 Pythonで理解する財務分析 第9章 「Elasticsearch」と「kibana」で検索エンジン開発とデータ分析
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 日本語テキスト解析処理を快速プログラミング! 単語/文書の分類、機械翻訳などを実装。 自然言語処理は、検索エンジン、自動要約、機械翻訳、音声認識などで利用される技術です。 PyTorchでは、特にTransformersというBERT系モデルを提供することで、 より簡単にBERTを利用できるようになっています。 本書では、自然言語処理で特に重要なディープラーニング技術である word2vec、LSTM、seq2seq、そしてBERTを取り上げます。 まず第1章でPyTorchの基本を説明します。そのあと各技術の考え方を説明し、 PyTorchを使ったそれぞれのプログラミング手法を解説します。 それらのプログラミングでは、以下のことなどを目的にしています。 ・単語や文書の類似度を測る ・文章内の単語の品詞を分類する ・日英の機械翻訳を実行する ・文書を分類する ・質問/回答タスクを実行する 【本書の構成】 第1章 PyTorchの基礎 第2章 word2vecによる分散表現 ~単語をベクトルで表現~ 第3章 LSTMによる時系列データ解析 ~文を単語の系列として解析~ 第4章 seq2seqモデルによる機械翻訳 ~ある系列を別の系列に変換~ 第5章 事前学習済みモデルBERTの活用 ~タスクに応じてモデルを調整~ 付録A プログラミング環境の構築(Windows) 付録B 本書で解説した主要プログラム集 ※本書の内容はPython/PyTorch/機械学習の基本事項を 理解されていることを前提としています。
-
4.01巻3,982円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ディープラーニングの重要な基礎概念と、PyTorchを用いたディープラーニングの実装方法について、細部まで掘り下げて解説。限られたデータでニューラルネットワークを訓練する方法、訓練済みモデルのデプロイ方法など『ディープラーニング・プロジェクトのベストプラクティス』を提示します。 ・ディープラーニングのメカニズムを解説 ・Jupyter Notebook上でサンプルコードを実行 ・PyTorchを用いたモデル訓練の実施 ・実データを使用するプロジェクトをベースに実践的解説 ・本番環境へのさまざまなモデルデプロイ方法 PyTorchで実際にどのように組み込まれて実現されているのか、細部まで掘り下げた解説をしていますのでディープラーニングの活用を目指している開発者や詳しく知りたい方におすすめです。 Manning Publications『Deep Learning with PyTorch』の翻訳書 第1部 PyTorchの基礎 第1章 ディープラーニングとPyTorchの概要 第2章 訓練済みモデルの利用方法 第3章 PyTorchにおけるテンソルの扱い方 第4章 さまざまなデータをPyTorchテンソルで表現する方法 第5章 ディープラーニングの学習メカニズム 第6章 ニューラルネットワーク入門 第7章 画像分類モデルの構築 第8章 畳み込み(Convolution) 第2部 ディープラーニングの実践プロジェクト:肺がんの早期発見 第9章 肺がん早期発見プロジェクトの解説 第10章 LUNAデータをPyTorchデータセットに変換 第11章 結節候補を画像分類するモデルの構築 第12章 評価指標とデータ拡張を用いたモデルの改善 第13章 セグメンテーションを用いた結節の発見 第14章 結節・腫瘍解析システムの全体を構築 第3部 デプロイメント(Deployment) 第15章 本番環境にモデルをデプロイする方法
-
-本書では、PyTorchを使い、実際の製品やサービスの開発時に役に立つ手法を紹介するようにしています。 本書で紹介する「AI開発」では、必ずしもすべての章で、ニューラルネットワークの構造(ニューロン同士の接続の仕方)を一から新しく作成するようなことはしませんが、TorchVisionやTorchHubにある学習済みのモデルやGitHub上で公開されているコードなども、積極的に採用するようにしています。 本書では、章によって、異なるAIを開発しますが、その際には、公開されているモデルをそのまま流用して「広義のAI」のみを作成したり、あるいは公開済みのモデルを転移学習・ファインチューニングしたりと、その都度、もっとも近道であると思われるスキームを利用して、「AI開発」を行います。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 PyTorchは動的計算グラフ(define by run)を採用した、Pythonプログラムと同じ感覚でニューラルネットワークを構築できる深層学習フレームワークです。本書は、深層学習の基礎をすでに習得したエンジニアが、より難しいタスクへ挑戦するためにPyTorchの開発環境構築から、畳み込み/リカレント/GAN/物体検出まで実装方法を実際にサンプルを作りながら学べる入門書です。データ分析ツールJupyter Notebookに対応しています。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 PyTorchで物体検出アルゴリズムを実装しよう! 本書は、PyTorchを利用して、物体検出のアルゴリズムと実装方法を解説する書籍です。 ・ PyTorch(パイトーチ)とは? 2018年にFacebook が発表した、ディープラーニングのフレームワークです。世界的にユーザーが多く、GitHubで公開されるディープラーニングのプログラムもPyTorchで作られたものが多数存在します。 ・ 物体検出とは? 画像認識の一分野で、画像から特定の物体の位置と、その物体のカテゴリ(クラスタ)を検出する技術です。 ディープラーニングは当初、物体の識別において従来手法を大きく上回る精度を出したことから注目されました(例:2012年の画像認識コンテストILSVRC)。ただし物体識別自体はどちらかといえば要素技術であるため、そのまま現実のシステムに応用することは多くありません。実際に必要とされるものは、多くの場合、物体識別を発展させた物体検出です。自動運転・外観検査・医療分野の画像診断など、どれも物体識別ではなく物体検出の技術が使われています。 本書は、PyTorchの使いかたを習得することと、物体検出の各種アルゴリズムを理解して自力でプログラムを作れるようになることを目的とします。前半はPyTorchについて解説し、後半は物体検出の代表的なアルゴリズムを解説しながら、PyTorchでの実装例を示します。 <本書の特徴> ・PyTorchを使って物体検出アルゴリズムを実装できるようになります。 ・Pythonによるサンプルコードを例示&配布し、自分で手を動かしながら理解を深められます。 第1章 PyTorch によるプログラミング 第2章 物体検出アルゴリズムSSDの実装 第3章 SSDに関連した話題
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Turbo PascalとSun Pascalをとりあげた誰にでもわかるプログラミングの入門書。
-
3.0※PDF版をご希望の方は Gihyo Digital Publishing (https://gihyo.jp/dp/ebook/2022/978-4-297-12680-3)も合わせてご覧ください。 さまざまな問題を解決するためには,適切なアルゴリズムを判断したり,ときには自分で生み出したりできる力が必要です。そして,自在に使いこなせるようになるためには,知識をためるだけではなく実践してみることも大切です。 本書では,「テンパズル」「数独」「4×4オセロ」といったさまざまなパズルのソルバーを実装することで,楽しく効率的にアルゴリズムの設計力が磨けます。各アルゴリズムの概要は,図解でしっかり解説。数学的解法といった発展的な内容も盛り込みました。競技プログラミングに挑戦したい方の第一歩としてもお勧めの1冊です。
-
-サーバーやネットワーク機器などの構築・管理の自動化に注目が集まっています。Puppetは構成管理ツールの中でも歴史が古く,実績があるツールです。Puppetは,専用言語でマニフェスト(システムのあるべき状態)を記述するため,その習得コストがかかるものの,開発と運用管理の担当者が異なることが多い日本に適したツールと言えます。本書はPuppetの基本から利用事例・ベストプラクティスまで,経験豊富な著者が蓄積したノウハウをあますことなく,かつわかりやすくまとめています。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Puppeteerは、Node.jsで動く最新のWebブラウザ自動化ライブラリで、データ収集やWeb開発、動作テストの効率化などに使われます。Google製のライブラリなので、Chromeとの相性は抜群です。本書は、Puppeteerの実行環境の構築から、スクレイピングとWeb操作の自動化を実現するプログラミング、デバッグまでを解説した入門書です。Node.jsとJavaScriptの入門書としても使えます。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 RPAにChatGPTを加えた 業務自動化ボットシステムを構築しよう! 【本書の背景】 RPAの世界にもChatGPTを利用する流れが起こっています。RPAの自動化処理にAIが加わることで、よりユーザーにとって便利な処理が可能となります。 【本書の概要】 Power Automate for desktopとChatGPTを組み合わせた自動化処理システムの開発手法を丁寧に解説します。具体的にはPower Automate for desktopからOpenAI APIを使ったAIへの質問と応答から始まり、AIと会話を行うチャットボットを作成して共通化し、複数のフローから利用する方法を紹介します。さらに共通チャットボットを利用して、業務効率化を行う特化型ボットの作成手法について解説します。 【作成するボット】 ・チャットボット ・アシスタントボット ・ノンプログラミングボット ・データゲットボット 【対象読者】 ・RPAとAIを組み合わせたボットを作成したいエンジニア ・RPAの開発技術を向上させたいエンジニア 【利用するソフトウェア/サービス】 Power Automate for desktop:個人のMicrosoftアカウント OpenAI API:GPT-4o mini 【本書で得られること】 ・フロー開発や設計技法が身につく ・RPAとAIを組み合わせた開発手法がわかる 【目次】 CH1 ChatGPTの基礎知識 CH2 Power Automate for desktopの基礎知識 CH3 Power Automate for desktopとAIの連携方法 CH4 AIと会話を続けるフローの開発 CH5 チャットボットを共通化する CH6 アシスタントボットの開発 CH7 ノンプログラミングボットの開発 CH8 データゲットボットの開発 CH9 ChatGPTとPower Automate for desktopの拡張と進化 【著者プロフィール】 株式会社完全自動化研究所 小佐井 宏之 福岡県出身。京都工芸繊維大学同大学院修士課程修了。まだPCが珍しかった中学の頃、プログラミングを独習。みんなが自由で豊かに暮らす未来を確信していた。あれから30年。逆に多くの人がPCに時間を奪われている現状はナンセンスだと感じる。業務完全自動化の恩恵を多くの人に届け、無意味なPC作業から解放し日本を元気にしたい。株式会社完全自動化研究所代表取締役社長。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-Power Automate for desktopで 煩わしい業務を自動化しよう 【本書の概要】 Power Automate for desktopはマイクロソフト社が提供している注目のRPAソフトウェアです。 定型的なパソコン作業をプログラミングせずに自動化することができます。 本書は、Power Automate for desktopを一度は触れたことがある方や、 特定の作業を自動化したい方に向けて、 業務の自動化テクニックをTIPS形式でまとめた書籍です。 実務に即した数々の自動化手法や本格的な手法まで丁寧に解説しています。 【対象読者】 ・Power Automate for desktopを一度は触れたことのある方 ・業務を自動化するテクニックを手早く身に付けたい方 ・業務の自動化を始めたい非エンジニアの方 【本書の自動化処理の一例】 ・Webサイトにログインしてメニューを操作する ・Webページのテキストボックスに入力する ・メールを受信して内容を読み取る 【本書の主な特徴】 ・ニーズの高い自動化テクニックをピックアップ ・節末で関連項目を参照 ・自動化フローのサンプル付き 【目次】 Chapter1 Power Automate for desktopの基本を理解しよう Chapter2 デスクトップの自動操作テクニック8選 Chapter3 業務成果に直結する!Excel操作テクニック11選 Chapter4 超高速化!Webサイトを使った業務の時短テクニック7選 Chapter5 今日から使える!メールを操作する3つのテクニック Chapter6 制御フローを使いこなそう Chapter7 超実践的なテクニックを身に付ける Chapter8 ExcelとWebサイトを操作する本格的なフローに挑戦しよう Chapter9 実践的な業務自動化に使える2つのアイデア 【著者プロフィール】 株式会社完全自動化研究所 代表取締役社長 小佐井 宏之(こさい・ひろゆき) 福岡県出身。京都工芸繊維大学同大学院修士課程修了。 業務完全自動化の恩恵を多くの人に届け、無意味なPC作業から解放し 日本を元気にしたい。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.0Power Automate(旧称Microsoft Flow)はマイクロソフトが提供するクラウドサービスMicrosoft 365(旧称Office 365)で利用できる機能の1つで、アプリやサービスを連携して自動化するためのワークフローをオンライン上で作成できます。Excelの関数が使えるスキルがあれば、プログラミングの専門知識がなくても画面上の部品をつなげていくだけで定型業務を自動化できるため、ノーコード開発・ローコード開発の流行とともに大変注目を集めています。 本書は、Power Automateを使ったワークフローの作成方法と、ワークフロー内で関数を使ってさまざまな処理を行う方法を、基礎から詳しく説明します。本書を読むことで、Power Automateを使って次のようなワークフローを作成できるようになります。 ・Outlookコネクタを利用したメール作業の自動化 ・ExcelコネクタとWordコネクタによるドキュメント作成 ・[承認]コネクタを利用した社内稟議フローの作成 ・Teams上でやり取りを行う勤怠管理システムの作成 ・Formsで入力した情報を元にしたMicrosoft 365ユーザーの自動登録 ・デスクトップ用Power Automateで行うRPAとワークフローの融合 ・Microsoft Dataverseを利用した複数サービスからのデータの統一 ・[HTTP要求の受信時]トリガーで作成する外部サービス連携なBot ・オンプレミスデータゲートウェイでオンプレミス/クラウド連携
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ■「基本」「活用」「応用」の3部構成で確実に身に付く 本書は「基本編」「応用編」「活用編」の3部構成となっており、Power Automateの基礎から便利なテクニックまで習得できるようになっています。 「基本編」では特徴や仕組み、基本操作を解説しています。簡単なクラウドフローを作成しながら操作や機能が学べるようになっており、基本編を通読することでPower Automateを使いこなす上で必須となる基礎知識が身に付きます。続く「活用編」では、上司の承認を伴う業務やファイルの変換、データの転記など、利用頻度の高いクラウドフローを解説しています。実務に活用しやすいのはもちろんのこと、設定のポイントや注意点などが具体例を通じて分かります。そして「応用編」では、「変数」「式」「JSON」といった一歩進んだテクニックや、エラーに備えた処理、クラウドフローの共有方法などを解説しています。より多くの業務を自動化するためのスキルや、作成した自動処理を社内で運用していくためのノウハウが身に付きます。 ▼本書で作成する自動処理の一例 ・Formsのアンケート回答をTeamsに投稿 ・特定のキーワードに関するニュースを定期的にチームに投稿 ・上司の承認を含む申請業務を自動化 ・OneDriveにあるファイルをPDFに一括変換 ・Excelファイルの内容をSharePointリストに転記 ・問い合わせの内容に応じて異なる担当者にメールを送信
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ■ この1冊で両方のツールを使いこなせるようになれる! パソコンで仕事を効率化――。といっても、実はたくさんの手作業があるのがパソコンでの作業です。これをまとめて自動化する手段として注目されているのがPower AutomateとPythonです。 でも、どっちを使えばいいの?という疑問もごもっとも。それぞれ特徴があり、どちらが優れていると決められるものではありません。ケースバイケースなので、どちらを覚えるのがいいとは言い切れず……。それならどちらも使えるようになってしまえばいいのでは? 本書では、さまざまな職場でありがちな、かつさまざまな業務に共通する6つのミッションを取り上げ、それを解決していきます。Webアプリケーションとの連携プログラムもカバーしました。それに加えて、より利便性を要求する4つの追加ミッションも用意しました。合計10のミッションを自動化するPower AutomateとPythonのプログラミングを通じて、仕事上の面倒な手作業をコンピューターにやらせるための処理の作り方、それをプログラムにする勘所を身につけることができます。その結果、Power AutomateとPython、どちらかではなく、両方を使いこなせるビジネスパーソンになれるのです。 「Power Automateは使ってはみたけど、Pythonにも興味があって……」という人や、「Pythonは使えるようになったものの、Power Automateはどんなもんなんだろう」という人に本書はお薦め。そしてもちろん「Power AutomateとPython、どちらから始めたらいいんだろう」という人にもピッタリ! 両方いっぺんに始めてしまいましょう。
-
-本書はマイクロソフトのAzureクラウド環境において、アプリケーションの構築、運用、管理という各フェーズにおいてPowerShellを使用する際に必要不可欠な知識の詳細を書き記した一冊です。 本書には現実的で実践的な例をあげ、そのスクリプティング処理の方法を詰め込んでいます。 扱う範囲も、Azure上での仮想ネットワークとVPN、Azureストレージの設定とメンテナンス、Azure HDInsightを使ったApache HadoopクラスタやAzure SQLデータベースの配備、設定、管理などなど。 日々の作業に必要となる、これら広範囲なトピックを、理解しやすい解説とともに紹介し、それらの意味や解決法、そして自動化のための手段を提供します。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「Microsoft Power BI」は、「BI(ビジネス・インテリジェンス)ツール」としてマイクロソフトから提供されている製品で、大量のデータ抽出や結合が容易にできます。「大量のデータを迅速に処理したい」「さまざまな指標でデータを分析したい」「プロジェクトのメンバーと情報を共有したい」――こうしたニーズに応えるためのツールです。これまでExcelを使ってきた「データ分析」業務をより本格的に行うには、Power BIを活用するのが最適。これからの時代、必須のビジネスツールといえます。Excelと似た概念で操作も比較的簡単ですが、いざ触ろうとすると、どこから手を付けてよいものか、迷う人も多いはず。そんな取っ付きにくさもあるPower BIを、本書は丁寧に解説します。本書の中で扱うサンプルは無料でダウンロード可能。まずは、無料で提供されている「Power BI Desktop」を入手し、本書の説明に沿ってサンプルのデータをいじってみましょう。Power BIの勘所が身に付き、データ分析業務に習熟することができるはずです。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 PyQの人気コンテンツが書籍化!データサイエンス力を試してみよう! 【本書の背景】 今日、Pythonを取り巻くデータサイエンスの実務の中で、pandasは欠かすことのできないライブラリーです。pandasには豊富な機能が用意されていますが、実務で使いこなすためには自分の頭で考え、手を動かして試行錯誤することが重要です。また、他の人が書いたコードを読むことで「そんな効率の良い書き方、知らなかった!」といった新たな気づきが得られることもあります(「はじめに」より抜粋)。 【本書の内容】 pandasを使ったプログラミングの腕試しができるように、9つのトピックについて全部で51個の問題を用意しました。各問題にはメインとなる模範解答以外にも「別解」を用意し、なるべくいろいろな考え方に触れられるよう構成しています(「はじめに」より抜粋)。 【PyQ(パイキュー)とは】 株式会社ビープラウドが運営するブラウザだけで学べるオンライン学習サービス。 【本書の問題の一例】 ・最小と最大を抽出するには ・条件で行を絞り込むには ・文字列を日付時刻に変換するには 【学習環境】 実行環境:PyQ、Jupyter Lab 利用言語:Python 3.11 利用ライブラリ:pandas:1.5.2、JupyterLab:3.5.1、Matplotlib:3.6.2 【対象読者】 ・Pythonとpandasの基本的な操作を学んだ入門者 ・pandasでもっと効率的な書き方を知りたい・知識を広げたい方 【前提知識】 ・Pythonの基本的な文法 ・pandasおよびNumPyの基本的な使い方 【目次】 第0章 本書の使い方 第1章 pandasの基礎知識 第2章 データを入出力しよう 第3章 データの概要を確認しよう 第4章 データを部分的に参照しよう 第5章 データを変形しよう 第6章 データを加工・演算しよう 第7章 データをグループ化しよう 第8章 文字列を操作しよう 第9章 日付時刻型のデータを操作しよう 第10章 テーブル表示を見やすくしよう 【著者プロフィール】 株式会社ビープラウド PyQチーム 斎藤 努(さいとう・つとむ) 株式会社ビープラウドにてPyQなどを担当。 古木 友子(ふるき・ともこ) 株式会社ビープラウドにて分析業務などを担当。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 <データサイエンス/データ分析の基本技術を体系的に網羅!> <pandasの威力を実感! 効率的なデータ操作と可視化を実践できる> データ分析や機械学習を利用する現場では、データを取り込み、変換/整備する必要があります。 そうしたデータの取り込みや前処理から始め、データ解析をスムーズに進めるための Pythonライブラリとして、pandasが用意されています。 本書では、pandasなどを使ったデータ分析全体の基本手法を体系的・網羅的にカバー。 巻末の付録では、Python環境のインストールや文法などPythonの基本事項も確認できます。 初中級レベルの方がコードを試しながら理解を深めたり、おぼろげな知識について 確認したりすることで、基礎技術の定着やスキルアップが図れる一冊になっています。 「データクリーニング/前処理に慣れてから、モデリングを解説! 解釈しやすい形にデータセットを変更できる」 ※本書は『Pandas for Everyone, 2nd Edition』の翻訳書です。 ■本書の「序文」から抜粋 pandasを使うと、Pythonによるデータ分析が理解しやすくなり、 組織的で保守が可能なデータセットを作ることができ、 しかも(最も重要なことですが)整然としたデータセットが得られます。
-
3.0すべてのRユーザに向けた決定版です。本書はR言語の仕様をはじめ,データハンドリングやデータ可視化など基本的な操作方法を解説します。続いて,クラスタリング,クラス分類・回帰,時系列回帰などのデータ分析方法について解説し,応用として,レポーティング,Webアプリケーション化の方法,高速化の方法など,R言語にまつわるトピックを網羅した1冊です。
-
-最新のバージョン(C# 8.0/Visual Studio 2019)に対応した「パーフェクトC#」の改訂4版になります。近年,Visual Studioはmac版の登場もあり,Windows,mac OS,LinuxなどのOSを意識しない開発やクラウドベースの開発へと移行しています。そこで本書も,従来のアプリ開発とは別に,.NET Coreをベースとしたクロスプラットフォーム開発などの最新の開発事情も解説してます。
-
-「パーフェクトPython」の改訂版。前版はPython 3.2/3.3系をベースに構成されていたこともあり,最新のバージョン(Python 3.8)に変更に加え、新たに型ヒントやasynioによるコルーチンを利用したプログラミングの解説、Webクローリング・スクレイピングのライブラリなども紹介をしています。Pythonの言語仕様や思想、実際に直面する問題の解決から幅広いサードパーティ製のライブラリまでこれ一冊でPythonの知識が身に付きます。
-
-Rustは2015年に1.0がリリースされた比較的新しい言語ですが,メモリの安全性が保障されていながら,C++並みの高速性があるという点でC/C++の代替えとして注目されています。近年,グーグルがAndroid OSの開発言語にマイクロソフトがWindowsの開発にRustを採用したことにより,今後の主流言語の1つとしてRustの可能性を感じているエンジニアも増えてきています。そこで本書籍は仕事で利用するエンジニアに向け,Rustの言語仕様からエラー処理/パッケージ管理/メモリ管理といったRust独特の解説,各種開発方法まで現場で必用となる知識を1冊にまとめました。Rust 1.66対応。
-
4.0
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「かんたんIT基礎講座」シリーズのPerl入門書で,2011年発売の「ゼロからわかるPerl言語超入門」の改訂版にあたります。Perlをテーマに,プログラミングの技術をゼロから身につけられます。作例として簡単なゲームを作るなど,楽しみながら学習できる内容にもなっています。また,各章末には練習問題を用意しており,解答集も付属しています。独習用のテキストにはもちろん,授業や講座などのテキストとしてもお勧めです。
-
-【一歩先に進みたいiOSアプリ開発者必見!】 本書は、あるテーマに沿ってDelegate、CallBack、KVO、RxSwift/RxCocoa、それぞれのパターンでコードを実装しそれぞれの実装を比較してRxSwiftの書き方について学びます。RxSwiftの動向をキャッチアップし、一歩先に進みたいiOSアプリ開発初心者のための一冊です。 〈本書の対象読者〉 ・SwiftによるiOSアプリの開発経験が少しだけある(3ヶ月から1年未満) ・RxSwiftライブラリーを使った開発をしたことがない、またはほんの少しだけある
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、『必要な数学だけでわかる ニューラルネットワークの理論と実装』に続く姉妹書です。「必要な数学だけでわかる」という書名どおり、ディープラーニングに必要な数学だけに光を当て、できるだけ短時間でディープラーニングのアルゴリズムを理解することを目的としました。前著であつかった機械学習の基礎部分は飛ばして、ニューラルネットワークの構築から解説。手書き文字の認識や高難度のイヌとネコの認識にも挑戦します。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 この本はニューラルネットワークに必要な数学だけを解説するのではなく、必要な数学の知識をもとに作り上げたアルゴリズムをそのままプログラムに置き換えることを目的としています。いわばニューラルネットワークを含む機械学習全般で使われている数学的な考え方を身に付けることで、プログラム上の「ブラックボックス」をなくし、機械学習のためのアルゴリズムをそのままソースコードに落とし込む力を習得することが最大の目標です。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書では、SharePoint Server 2013およびSharePoint Online(Office 365)のサイトカスタマイズとソリューション/アプリの開発方法を豊富な画面でわかりやすく解説しています。WebブラウザーやSharePoint Designer、Visual Studio、Officeアプリを利用して、サイトのデザイン変更や機能追加、リボンやメニューのコマンドの表示/非表示、ワークフローの作成、ファームソリューション/サンドボックスソリューション/SharePoint用アプリ、Accessアプリの開発などについて説明します。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Power Appsはマイクロソフト社が提供するクラウドサービスで、Power Platformというローコードプラットフォームに含まれるサービスの1つです。コーディングを必要とせず、あらかじめ用意された部品(コントロール)をPowerPointのように画面上に配置し、Excelのように数式を用いて動作を設定しながらアプリ作成が行えます。業務のデジタル化・効率化への関心が高まるなか、Power Appsへの注目もますます高まっています。 本書は、Power Appsを使って業務アプリを作成する方法や、作成したアプリの共有・管理、Power Automate、SharePoint、Teamsとの連携に関する内容をまとめた解説書です。アプリ作成に使用するデータソース(Excelファイル)はダウンロードできるので、本書の手順を実際に操作しながら読み進むことができます。 本書は『ひと目でわかるPowerApps ノンコーディングでのビジネスアプリ作成入門』(2018年)、『ひと目でわかるPowerApps ローコードで作成するビジネスアプリ入門 改訂新版』(2020年)に続く第3版になります。今回の改訂では以前よりも有償ライセンスでの利用ニーズが増加したことを反映し、Microsoft Dataverseを含めた利用方法、およびモデル駆動型アプリについて大幅に加筆しました。その一方でこれまで同様、Microsoft 365ライセンスでの利用ニーズも大きいため、SharePointおよびTeamsとの連携についても扱っています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、Visual C# 2017で、SQL Server 2017を使用したWeb-DBシステムを構築するための基本を学ぶことができます。 Visual C# 2017の最新技術と本格的なWeb-DBシステムの開発手法を、網羅的にわかりやすく習得できるようにまとめています。 Web-DBシステムの開発手順、Visual C# 2017の言語技術、Visual Studioの統合開発環境の使い方、SQL Serverデータベースとのやり取り、AJAXの利用方法、IISの設定方法など、Web-DBシステムを構築するために必要となる基本的な開発手法をサンプルファイルを操作しながら自然に習得できます。 また、システムの設計、開発、配布、運用の工程に沿った形で構成されているため、これからWeb-DBシステムの開発に携わろうと考えている初心者の方であっても、業務システム開発の一連の流れにあわせたポイントをしっかりと学習することもできます。