検索結果
-
-1巻2,178円 (税込)Software Designで完売御礼の特集号,ITエンジニアと線形代数,ITエンジニアと微分積分,ITエンジニアと数学の各特集記事を再編集しまとめました。各記事,それぞれ筆者が再検討し修正,場合によって加筆をしております。内容はほぼ高校から大学の教養課程の数学と,Pythonを使ったプログラミングが中心。しかし,Deep Learnningや機械学習,人工知能の基礎を学ぶことができます。ITと数学の組み合わせはとてもパワフルです。他にも十分に応用できる基礎を本書で得てください!
-
4.5※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 講義+実習のワークショップ形式で、会話bot「pybot」を作りながら楽しく学べる「はじめてでも挫折しない」Pythonの入門書を作りました。なぜそうするのかを知りたい、仕組みが知りたい、応用できる基礎を身に付けたい、そんな読者のさまざまな要望に応える新しい教本です。講義パートの図解をまじえた解説で仕組みについて理解したあと、実習パートで実際に手を動かしながらプログラムを書いていきます。少しずつ新しいことを学びながら進み、プログラムに機能を追加していくので、いま自分は何をやっているのかを、ちゃんと理解しながら進められます。もし、つまずいても安心です。短いレッスンを積み重ねた構成なので、少し戻って再確認することもしやすくなっています。また、本書で学ぶサンプルプログラムのコードは、サポートページからダウンロードできるので安心です。ぜひ本書でPythonのプログラミングの楽しさを実感してください!
-
-1巻2,398円 (税込)月刊誌『Software Design』の特集や単発企画で評判の良い、機械学習とPython関連の記事を再編纂。機械学習・深層学習に取り組んでいる開発現場のITエンジニアが自身で試して学んだことが記事のベースになっており、いま押さえておくべき技術を習得する足がかりとして最適です。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 講義+実習のワークショップ形式で、 会話bot「pybot」を作りながら楽しく学べる 「はじめてでも挫折しない」Pythonの入門書です。 なぜそうするのかを知りたい、 仕組みが知りたい、 応用できる基礎を身に付けたい、 そんな読者のさまざまな要望に応える新しい教本です。 講義パートの図解をまじえた解説で仕組みについて理解したあと、 実習パートで実際に手を動かしながらプログラムを書いていきます。 少しずつ新しいことを学びながら進み、プログラムに機能を追加していくので、 いま自分は何をやっているのかを、ちゃんと理解しながら進められます。 もし、つまずいても安心です。 短いレッスンを積み重ねた構成なので、 少し戻って再確認することもしやすくしています。 また、本書で学ぶサンプルプログラムのコードは、 サポートページからダウンロードできるので安心です。 ぜひ本書でPythonのプログラミングの楽しさを実感してください!
-
3.3ビッグデータ分析をきっかけとして「機械学習」に注目が集まり,ビジネス利用への検討がはじまっています。しかし,実際に「機械学習」を理解しているエンジニアや分析担当者は少なく,うまく活用できていないのが現実です。「機械学習」を利用するにはアルゴリズムの理解,プログラミング技術,ビジネス知識などが必要になってきます。本書では,第1部で機械学習のアルゴリズムやビジネスへの応用方法,流行の深層学習などに触れ,第2部ではPythonを用いた機械学習,画像認識,推薦エンジンなど,サンプルコードをもとに手を動かして試すことができます。機械学習分野で先頭を走る著者陣が,面白く,わかりやすい解説でお届けします。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 講義+実習のワークショップ形式で、 チャットボットを作りながら楽しく学べる 「はじめてでも挫折しない」Pythonの入門書です。 なぜそうするのかを知りたい、 仕組みが知りたい、 応用できる基礎を身に付けたい、 そんな読者のさまざまな要望に応える新しい教本です。 講義パートの図解をまじえた解説で仕組みについて理解したあと、 実習パートで実際に手を動かしながらプログラムを書いていきます。 少しずつ新しいことを学びながら進み、プログラムに機能を追加していくので、 いま自分は何をやっているのかを、ちゃんと理解しながら進められます。 もし、つまずいても安心です。 短いレッスンを積み重ねた構成なので、 少し戻って再確認することもしやすくしています。 また、本書で学ぶサンプルプログラムのコードは、 サポートページからダウンロードできるので安心です。 ぜひ本書でPythonのプログラミングの楽しさを実感してください!
-
4.5Pythonの技術を基礎からやさしく解説した、入門書の決定版! 本書は「はじめてプログラミングを学ぶ人」に向け、Pythonのスタンダードな知識を 習得することを目標としています。基本をしっかり理解し、身につけられるよう、 必要最低限の知識を丁寧に解説しています。 前版を見直し、プログラミング以前に初学者がつまずきやすかったCUIの操作解説を充実させ、 プログラムの動きを終えるよう、コードの入力内容と実行結果を一目でわかるようにしました。 また、前版刊行後に普及した「型ヒント」の章を新たに設けています。 ※本書の内容は、2021年10月にリリースされたPython 3.10に基づいています。 将来、機械学習に取り組もうと思っている方は、まずは本書でPythonプログラミングを はじめてみましょう。 【目次】 第1章 Pythonの紹介 第2章 Pythonを自分のPCで動かそう 第3章 Pythonでプログラムを動かそう 第4章 型とメソッド 第5章 条件分岐 第6章 リスト型と繰り返し処理 第7章 辞書型 第8章 関数 第9章 エラーと例外 第10章 型ヒント 第11章 スクリプト、モジュール、パッケージ 第12章 Webスクレイピング 第13章 ファイル操作 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.2Pythonのスタンダードがわかる。 わかりやすさを追求した本格的な入門書! 本書はPythonの入門書です。Pythonはコンパイルのいらない 軽量なプログラミング言語です。その手軽さや文法の学びやすさが 人気であり、入門者がはじめてプログラミングを行なうのに最適な 言語として注目されています。 この書籍は、はじめてプログラミングを学ぶ人に向けています。 入門者がつまづく箇所を事前に募集したプログラミングがはじめての レビューアーと追求し、プログラミングの「なぜ」を解決できるよう わかりやすさを重視した解説をしています。 この書籍で、インストールから応用まで、Pythonでデータを 扱うための基礎がたのしく身につけることができます! 【本書の特長】 本書はPythonで本当に使われることに特化しており、 「せっかく覚えたのにこの機能全然使わない」ということが ありません。 入門者でもスラスラとPythonを学ぶことができます。 また、一番つまづきやすい環境構築は図を使いながら、 丁寧に解説しているので、安心してプログラミングの学習を 始めることができます。 【対応環境】 本書はWindows、MacOSの両方で解説をしています。また、Pythonの バージョンは執筆時では最新のPython 3.6.1で解説しています。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
3.5現代社会を支える根幹技術をPythonで! Pythonプログラミングのスキルアップにも最適! 名著『Pythonスタートブック』の著者である辻真吾氏が書き下ろす至極の入門書! ソートやグラフ構造など基本的な内容から、乱択アルゴリズムや数論、ブロックチェーンの仕組みなどの幅広い話題までを解説。コードはWeb公開( https://github.com/tsjshg/pyalgdata)。 【データサイエンス入門シリーズ】 第2期として、以下の2点を刊行! 『統計モデルと推測』松井秀俊・小泉和之(著)竹村彰通(編) 『Pythonで学ぶアルゴリズムとデータ構造』辻真吾(著)下平英寿(編) 【「巻頭言」より抜粋】 文部科学省は「数理及びデータサイエンスに係る教育強化拠点」6 大学(北海道大学、東京大学、滋賀大学、京都大学、大阪大学、九州大学)を選定し、拠点校は「数理・データサイエンス教育強化拠点コンソーシアム」を設立して、全国の大学に向けたデータサイエンス教育の指針や教育コンテンツの作成をおこなっています。 本シリーズは、コンソーシアムのカリキュラム分科会が作成したデータサイエンスに関するスキルセットに準拠した標準的な教科書シリーズを目指して編集されました。またコンソーシアムの教材分科会委員の先生方には各巻の原稿を読んでいただき、貴重なコメントをいただきました。 データサイエンスは、従来からの統計学とデータサイエンスに必要な情報学の二つの分野を基礎としますが、データサイエンスの教育のためには、データという共通点からこれらの二つの分野を融合的に扱うことが必要です。この点で本シリーズは、これまでの統計学やコンピュータ科学の個々の教科書とは性格を異にしており、ビッグデータの時代にふさわしい内容を提供します。本シリーズが全国の大学で活用されることを期待いたします。 ――編集委員長 竹村彰通(滋賀大学データサイエンス学部学部長、教授) 【推薦の言葉】 データサイエンスの教育の場や実践の場で利用されることを強く意識して、動機付け、題材選び、説明の仕方、例題選びが工夫されており、従来の教科書とは異なりデータサイエンス向けの入門書となっている。 ――北川源四郎(東京大学特任教授、元統計数理研究所所長) 国を挙げて先端IT人材の育成を迅速に進める必要があり、本シリーズはまさにこの目的に合致しています。本シリーズが、初学者にとって信頼できる案内人となることを期待します。 ――杉山将(理化学研究所革新知能統合研究センターセンター長、東京大学教授)
-
3.3データ分析,Web 開発などをはじめ,さまざまな場面で利用されるPython。本書は,これからPython エンジニアになる/なりたい人のための,Pythonによる開発に業務として取り組むために必要な知識と心構え,開発の流れ,事前に準備しておきたい環境の用意などを1 冊にまとめた書籍です。Python 3系による開発の基本,文法はもちろん,スクレイピング,データ分析,Web 開発など,現在開発の現場で求められている知識と開発の流れを学ぶことができます。
-
-1巻2,728円 (税込)Pythonの入門書を終えたみなさん,こんな悩みはありませんか? 「ここから何を勉強すればいいんだろう」 「Pythonの機能はどういう場面で役に立つんだろう」 本書はそうした方々のために,Software Designで過去好評を博した特集の中からPythonに関する記事を再収録したベストセレクションです。 第1章~第4章ではPythonの概要や始め方をあらためて紹介し,実用上押さえておきたいライブラリの使い方やエラー処理のポイントを解説します。さらに,第5章~第7章ではPythonの定番の使い道のうち,「自動化スクリプト」「テキスト処理」「統計学」の3点を取り上げます。 Pythonの入門書と専門書のすきまを埋めるガイドブックです!
-
3.2データ分析エンジニアに求められる技術の基礎が最短で身に付く ビッグデータの時代といわれ始めて数年が経過しました。 デバイスの進化により多くの情報がデジタル化され、 それらのデータを活用しようとデータ分析エンジニアに注目が集まっています。 この書籍では、データ分析において、 デファクトスタンダードになりつつあるプログラミング言語Pythonを活用し、 データ分析エンジニアになるための基礎を身に付けることができます。 書籍ではデータ分析エンジニアになるために必須となる技術を身につけていきます。 ・データの入手や加工などのハンドリング ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 本書で学べること ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装 対象読者 データ分析エンジニアを目指す方 目次(抜粋) 第1章 データ分析とは 第2章 Pythonと環境 第3章 数学の基礎 第4章 ツールの基礎 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.3GoogleなどのWebサービスで人気のスクリプト言語「Python」は,現在の言語に共通する,美しく模範的なプログラミングの学習に最適な言語です。本書は,プログラミングの知識がゼロの方でも理解できる,いちばん簡単なPythonの学習書です。プログラミングの基本の基本から,データ型を駆使した本格プログラムまで,豊富なイラストとサンプルを使って,Pythonならではのプログラミングのノウハウを楽しく解説します。
-
4.0好評の「いちばんやさしいPythonの学習書」が約8年ぶりにリニューアル! プログラミングの知識がゼロの方でも理解できるイラストやサンプル満載のわかりやすい解説はそのままに,最新のPython 3に完全対応。さらに,プログラミングの応用編としてWebアプリケーション作成やデータ分析の基本も解説しています。プログラミングの基本の基本から,データ型を駆使した本格プログラムまで,Pythonならではのプログラミングを楽しく解説します!
-
-読者の声に応えて第2版の登場! データ分析エンジニアに必要な 基本技術をしっかり習得できる 【本書の概要】 本書はデータ分析エンジニアに必要な 以下の基礎技術を丁寧に解説しています。 ・データの取得・加工 ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 【第2版のポイント】 ・Python 3.10対応 ・よりわかりやすい解説 ・Pythonデータ分析試験の主教材に指定 【本書で学べること】 ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装方法 【対象読者】 データ分析エンジニアを目指す方 【目次】 第1章 データ分析エンジニアの役割 第2章 Pythonと環境 第3章 数学の基礎 第4章 ライブラリによる分析の実践 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-1巻2,860円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆生成AIを大幅加筆し,好評テキストが改訂!◆ ・いますぐ身につけるべき「データサイエンス」「データエンジニアリング」「AI」の基礎知識がここにある! ・「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に完全準拠した公式カラーテキスト! ・カラーで見やすく、練習問題も充実! 【主な内容】 1章 データサイエンス基礎 1.1 データ駆動型社会とデータ分析の進め方 (久野遼平) 1.2 データの記述 (宿久 洋) 1.3 データの可視化 (宿久 洋・久野遼平) 1.4 データ分析の手法 (原 尚幸) 1.5 数学基礎 (清 智也) 2章 データエンジニアリング基礎 2.1 ビッグデータとデータエンジニアリング (内田誠一) 2.2 データ表現、プログラミング基礎、アルゴリズム基礎 (辻 真吾) 2.3 データ収集と加工、データベース (森畑明昌) 2.4 ITセキュリティ (宮地充子) 3章 AI基礎 3.1 AIと社会 (松原 仁) 3.2 機械学習の基礎と予測手法 (赤穂昭太郎) 3.3 深層学習の基礎 (今泉允聡) 3.4 ロボット、認識、言語 (高野 渉) 3.5 生成AI(岡﨑 直観) ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ■□■実践的な基礎が学習しやすい!!■□■ 注目を集めるPython(パイソン)を使った機械学習の、実践的な基礎が学べる解説書です。小さいサンプルプログラム(会話bot)に機能を追加しながら、データ収集→前処理→学習→予測→評価まで、周辺技術も含めた機械学習の全体像が学べます。本書のサンプルプログラムは、すべて本書のサポートページからダウンロードできます。 ■本書はこんな人におすすめ ・Pythonの入門書を読み終えた人 ・Pythonを使った機械学習に触れてみたい人 ・業務で役立つ実践的なノウハウが知りたい人 など ■本書の内容 Chapter 1 機械学習について知ろう Chapter 2 機械学習の開発環境を準備しよう Chapter 3 スクレイピングでデータを収集しよう Chapter 4 日本語の文章を生成しよう Chapter 5 手書き文字を認識しよう Chapter 6 表形式のデータを前処理しよう Chapter 7 データを予測する回帰分析を学ぼう Chapter 8 機械学習の次のステップ
-
-※PDF版をご希望の方は Gihyo Digital Publishing (https://gihyo.jp/dp/ebook/2022/978-4-297-12780-0)も合わせてご覧ください。 近年注目を浴びる人工知能は微分をはじめとした数学の計算に基づいています。また,新型コロナウィルス感染の予測では微分方程式が利用されています。微分積分は,多くの方が学ぶ意義がある学問なのですが,複雑な計算や数式が原因で学習に挫折した方も少なくありません。そこでPythonの出番です。 本書はこれから微分積分を学びたいと考える方や学び直したい方に向けて,Pythonの力を借りて視覚的にデータを確認することで,直感的な理解を促します。複雑な計算とグラフの描画はPythonにまかせ,Pythonが出力する結果とグラフを読み解くことに注力します。数学のエッセンスを理解して活用するために,コンピューターを使用した数学の学習は効率的な学習方法とも言えます。 「とりあえずPythonに計算させてみよう」と,軽い気持ちで数学の学習を開始してみましょう。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 注目を集めるPython(パイソン)を使った機械学習の、実践的な基礎が学べる解説書です。小さいサンプルプログラム(bot)に機能を追加しながらデータ収集から前処理、学習、予測、評価まで周辺技術も含めた機械学習の全体像が学べます。本書のサンプルプログラムは、すべて本書のサポートページからダウンロードできます。本書はこんな人におすすめです。Pythonの入門書を読み終えた人、Pythonを使った機械学習に触れてみたい人、業務で役立つ実践的なノウハウが知りたい人、など。
-
3.8※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 機械学習アルゴリズムの違いが見てわかる! 「機械学習アルゴリズムは種類が多く、複雑で何をしているのかわかりにくい」と思ったこと、ありませんか?本書は、そのような機械学習アルゴリズムをオールカラーの図を用いながら解説をした機械学習の入門書です。 いままで複雑でわかりにくかった機械学習アルゴリズムが図を通してわかりやすく解説をしています。アルゴリズムごとに項目を立てているので、どのアルゴリズムがどのような仕組みで動いているのか比較をしやすくしています。 これから機械学習を勉強する方だけでなく、実際に機械学習を業務で使用している方にも新しい気付きを得られるのでお勧めの1冊です。 【本書の特徴】 ・複雑な機械学習アルゴリズムの仕組みを1冊で学べる ・オールカラーで機械学習の図をたくさん掲載 ・各アルゴリズム毎にScikit-Learnを使用したコードを記載しているので、見るだけでなく試すこともできる ・仕組みだけでなく、実際の使い方や注意点もわかる 【本書で紹介するアルゴリズム】 01 線形回帰 02 正則化 03 ロジスティック回帰 04 サポートベクトルマシン 05 サポートベクトルマシン(カーネル法) 06 ナイーブベイズ 07 ランダムフォレスト 08 ニューラルネットワーク 09 kNN 10 PCA 11 LSA 12 NMF 13 LDA 14 k-means 15 混合ガウス 16 LLE 17 t-SNE ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-Pythonでプログラムを作成するときに役立つ機能とライブラリを網羅した,実践的なレシピ集です。本書を使いこなして,Pythonプログラマーとして大きなステップアップが図りましょう。 本書では,Pythonが提供する,環境構築,コーディング規約,言語仕様,オブジェクト指向をサポートするクラス,型をアノテーションとして付けられる型ヒントなどに関する実践で役立つ機能を幅広く網羅しています。さらに標準ライブラリとよく使われるサードパーティライブラリとして,テキスト処理,数値処理,日付・時刻処理,データ型,アルゴリズム,ファイルとディレクトリへのアクセス,データ圧縮・アーカイブ・永続化,特定データフォーマットやインターネット上データの扱い,HTMLの扱い,テスト,デバッグ,暗号,並行処理・並列処理までの活用法を紹介します。よくある使い方,よくあるエラーや周辺知識なども加えられており,プログラミングのヒントが満載です。
-
-最新環境に対応した第3版の登場! データ分析エンジニア必携の 基本技術を習得できる 【本書の概要】 本書はデータ分析エンジニアに必要な 以下の基礎技術について サンプルを交えながら丁寧に解説します。 ・データの取得・加工 ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 【第3版のポイント】 ・Pythonデータ分析試験の主教材に指定 ・Python 3.13に対応 ・各種ライブラリの最新版への対応 【本書で学べること】 ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装方法 【対象読者】 データ分析エンジニアを目指す方 【目次】 第1章 データ分析エンジニアの役割 第2章 Pythonと環境 第3章 数学の基礎 第4章 ライブラリによる分析の実践 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-本書は,Pythonエンジニアとしてのスキルアップを目指す人のための,Python 3の本格的な学習書として執筆されました。Pythonの基本文法,オブジェクト指向,データ構造やコーディング手法,例外処理,標準ライブラリなど,データサイエンスやWebアプリのエンジニアとして必須となるPythonプログラミングの知識やテクニックを,実際に手を動かしながら学べる一冊になっています。「Python 3エンジニア認定基礎試験」を実施している「Pythonエンジニア育成推進協会」が監修しているので,試験を受験する方のための副読本としても役立ちます!
-
-Pythonには,豊富な標準あるいはサードパーティライブラリ・モジュールがあります。ライブラリに関するドキュメントも充実していますが,初心者にとってはそのボリュームゆえに,まずどんなライブラリを活用できればよいのか,わかりづらい側面があります。ドキュメントは使用頻度の高い・低いに関わらずフラットに記載されており,サードパーティのライブラリについては言及されていません。本書では,「これだけは押さえておきたい」ライブラリとその機能を,標準ライブラリだけでなくサードパーティのものも交え,カテゴリごとに,その活用法を紹介します。バージョンはPython 3.4をメインとします。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 膨大なデータを扱うときに基本となる知識が統計解析です。本書はこれから統計解析を学びたいと考える方に向けて,プログラミングの力を借りて実際にデータを確認することで,直感的な理解を促します。プログラミング言語にはPythonを利用します。Pythonで統計解析を解説するメリットはいくつかあります。Python自体がシンプルで可読性が高い上に逐次実行できるため初心者でも理解しやすいと言えます。これ以外にも,Pythonは統計解析に関するライブラリが充実しており,複雑な計算やグラフの描画がかんたんにできます。また,Pythonは汎用的な言語ですので,システムの中にシームレスに組み込むことができます。本書によって統計解析を学習することで,Pythonのデータ解析スキルもあわせて習得できるでしょう。
-
-●データの加工や分析の実践スキルを身につけよう 本書は、Pythonやpandasの基礎を身につけた方が、データ分析を行ううえで知っておきたい「データ分析の実務で使うノウハウ」をまとめた書籍です。 さまざまな種類のデータの読み込みから加工、可視化、データの評価、pandasやNumPyの活用方法など、Pythonを使ってデータを加工し分析する方法を詳しく学べます。データ加工のレシピやデータ分析に必要な数学の知識についても学べます。 【本書で学べること】 ・データ加工の基礎知識 ・データの種類と読み込み ・表形式データの加工 ・NumPyと数値データ ・データの評価 ・時系列データの処理 ・テキスト情報の処理 ・画像データの処理 ・グラフデータの処理 ・地理空間データの処理 ・データ分析に必要な線形代数 【本書で学べること】 「Pythonのデータ活用や加工をより詳しく理解したい」「実務でデータ分析をしたい」「幅広いデータ形式の知識を持ちたい」「普段からPythonでデータ分析をしているが、データハンドリングの知識を学びたい/ツールの使い方を調べたい」といった方におすすめの一冊です。
-
-◆入門を超えて、実践へ◆ 『WEB+DB PRESS』の人気連載が待望の書籍化です。Webシステム開発から機械学習・データ分析まで、現場で使えるPythonのノウハウが1冊にまとまっています。取り上げる話題は、環境構築、コード品質、テスト、構造化ログ、リリース管理、Django、Django REST framework、GraphQL、Fast API、Django ORM、データサイエンスプログラムの品質、データ分析レポート、pandasのパフォーマンス改善、JanomeとSudachiPyによる日本語処理、pandasやNumPyによるテスト、数理最適化などなど。今日から仕事で活かせるヒントやテクニックがきっと見つかるです。 ■こんな方におすすめ ・脱初心者を目指す方 ・Pythonの入門を終えた中級者の方 ・すでに趣味の開発ではPythonを使っており、実務レベルにステップアップしたい方 ・Pythonがソフトウェア開発の業務にどのように使えるのかを知りたい方 ・経験2、3年目で基本的なコードを書けるようになっているが、その先に進む方法がわからない方 ・エキスパートな内容は難しいと感じるが、入門よりは難しい内容を知りたい方 ■目次 ●第1部 基礎編 ・第1章 最新Python環境構築 シンプルでコーディングしやすい環境を整える ・第2章 型ヒントとmypyによるコード品質の向上 型チェックの基本から、既存コードの改善プロセスまで ・第3章 pytestを使って品質の高いテストを書く parametrize・フィクスチャ・pytest-covの活用 ・第4章 structlogで効率的に構造化ログを出力 横断的に検索や解析のしやすいログのしくみを整えよう ・第5章 リリースを管理して開発効率を高める towncrierとGitHub Actionsによるリリースの自動化 ●第2部 Webシステム開発編 ・第6章 Djangoアプリケーションの品質を高める 単体テストと運用時の監視 ・第7章 DjangoでAPI開発 初めてのDjango REST framework ・第8章 Django×StrawberryによるGraphQL入門 GraphQLの基礎から実際のプロダクトへの導入まで ・第9章 FastAPIによるWeb API開発 型ヒントを活用したAPI仕様中心の開発手法 ・第10章 Django ORMの速度改善 クエリ発行の基礎、計測、チューニング ・第11章 Django ORMトラブルシューティング ORMにまつわる問題を解決するための型を身に付けよう ●第3部 機械学習・データ分析編 ・第12章 データサイエンスプログラムの品質改善 5つのステップで製品レベルの品質へ ・第13章 データ分析レポートの作成 JupyterLab+pandas+Plotlyでインタラクティブに ・第14章 pandasを使った処理を遅くしないテクニック 4つの視点でパフォーマンス改善 ・第15章 JanomeとSudachiPyによる日本語処理 フリガナプログラム作成で学ぶ自然言語処理の流れ ・第16章 データサイエンスのためのテスト入門 pandasやNumPyのテスト機能を使って快適に実験 ・第17章 Pythonで始める数理最適化 看護師のスケジュール作成で基本をマスター ■著者プロフィール 株式会社ビープラウド:2008年にPythonを主言語として採用し、Pythonを中核にインターネットプラットフォームを活用したシステムの自社開発・受託開発を行う。優秀なPythonエンジニアがより力を発揮できる環境作りに努め、Pythonに特化したオンライン学習サービス「PyQ」、システム開発者向けクラウドドキュメントサービス「TRACERY」、研修事業などを通して技術・ノウハウを発信する。また、IT勉強会支援プラットフォーム「connpass」の開発・運営や勉強会「BPStudy」の主催など、コミュニティ活動にも積極的に取り組む。著書・監修書は『いちばんやさしいPythonの教本 第2版』(インプレス)など多数。https://www.beproud.jp/
-
-◆RとPython両方学べる。コスパ最強の一冊!◆ ・コードが理解の試金石! ・「データサイエンスの準備」にページを割いているから、プログラミング経験ゼロで大丈夫! ・自分に合った言語を見つけたい、言語を乗り換えたいという方にもおすすめ! [サポートサイト] https://github.com/taroyabuki/fromzero [主な内容] 第1部 データサイエンスのための準備 1章 コンピュータとネットワーク 2章 データサイエンスのための環境 3章 RとPython 4章 統計入門 5章 前処理 第2部 機械学習 6章 機械学習の目的・データ・手法 7章 回帰1(単回帰) 8章 回帰2(重回帰) 9章 分類1(多値分類) 10章 分類2(2値分類) 11章 深層学習とAutoML 12章 時系列予測 13章 教師なし学習 付録A 環境構築
-
4.5世界累計50万部のベストセラー『Python Crash Course』待望の翻訳版が登場! 10歳の小学生から定年世代まで、世界中の読者が学んだプログラミング入門書で、あなたもPythonの基本をしっかり学びましょう。本書は世界の中学、高校、大学でもテキストとして利用されており、この本で得た知識をもとに新しい仕事に就いたり、副業をスタートさせたりしている人たちが世界中にいます。 「必修編」では、プログラミング環境の用意、基本的なプログラムの書き方に始まり、リスト、辞書、クラス、関数といった基礎的な知識からエラー処理、テストコードの書き方までを演習問題を交えながら、わかりやすく解説します。随所にプログラマーとしての心構えなども触れられており、読みやすく整理されたコードの書き方も身につきます。これから初めてPythonを学ぶ人も、学び直したい人も、必読の書籍です。Windows・Mac・Linuxに対応しています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆世界で150万部突破の日本語版!◆ 世界で150万部突破の「PYTHON CRASH COURSE」の翻訳版、「最短距離でゼロからしっかり学ぶ Python入門 必修編」の改訂新版です。Python 3.7から3.11へのアップデートのほか、書籍で使用するエディタをSublime TextからVisual Studio Codeに変更します。必修編では、変数、データ型、リスト、if文、while、クラスなど、Python言語の基本を1冊に凝縮して解説します。 ■こんな方におすすめ ・Pythonをゼロから短期間で習得したい人 ・プログラマーの目線で、コードの書き方を学びたい人 ・プログラミングのしっかりした知識をはじめから身につけたい人 ■目次 ●第1章 はじめの一歩 ・プログラミング環境のセットアップ ・異なるOS上のPython ・Hello World!プログラムを実行する ・トラブル解決方法 ・Pythonのプログラムをターミナルで実行する ●第2章 変数とシンプルなデータ型 ・hello_world.pyの実行時に何が起こっているのか ・変数 ・文字列 ・数値 ・コメント ・The Zen of Python: Pythonの禅 ●第3章 リスト入門 ・リストとは ・要素を変更、追加、削除する ・リストを整理する ・リストを操作するときのIndexErrorを回避する ●第4章 リストを操作する ・リスト全体をループ処理する ・インデントエラーを回避する ・数値のリストを作成する ・リストの一部を使用する ・タプル ・コードのスタイル ●第5章 if文 ・簡単な例 ・条件テスト ・if文 ・リストとif文を使用する ・if文のスタイル ●第6章 辞書 ・シンプルな辞書 ・辞書を操作する ・辞書をループする ・入れ子 ●第7章 ユーザー入力とwhileループ ・input()関数の働き ・whileループの紹介 ・whileループをリストと辞書で使用する ●第8章 関数 ・関数を定義する ・実引数を渡す ・戻り値 ・リストを受け渡す ・任意の数の引数を渡す ・関数をモジュールに格納する ・関数のスタイル ●第9章 クラス ・クラスを作成して使用する ・クラスとインスタンスを操作する ・継承 ・クラスをインポートする ・Python標準ライブラリ ・クラスのスタイル ●第10章 ファイルと例外 ・ファイルを読み込む ・ファイルに書き込む ・例外 ・データを保存する ●第11章 コードをテストする ・pipを使用してpytestをインストールする ・関数をテストする ・クラスをテストする ■著者プロフィール Eric Matthes:25年間高校の数学と科学の教師であり、初級のPythonクラスで教える中でよりよいカリキュラムの道を探していた。現在はフルタイムの執筆者兼プログラマーとして、いくつかのオープンソースプロジェクトに参加している。プロジェクトのゴールは広範囲にわたり、山岳地帯の土砂崩れを予測するものからDjangoプロジェクトのデプロイをシンプルにするものまである。執筆やプログラミングをしていないときは、山登りを楽しんだり家族との時間を過ごしている。 鈴木たかのり:一般社団法人PyCon JP Association代表理事、株式会社ビープラウド 取締役/Python Climber。部内のサイトを作るためにZope/Ploneと出会い、その後必要にかられてPythonを使いはじめる。PyCon JP 2024共同座長。各国PyConやPython Boot Campで訪れた土地で、現地のクラフトビールを飲むことが楽しみ。 フェレットとビールとレゴが好き。 安田善一郎:株式会社Surface&Architecture執行役員、株式会社ニューロマジック監査役、シエルセラン合同会社代表。日本IBMを経て(株)ニューロマジックを設立。その後フリーランスとなりPythonベースのPloneをはじめさまざまなCMSでサイト構築(企画・IA・ディレクション)を手がける。現在は、デザインプロジェクトのマネジメントをはじめ各社で複数の業務に携わっている。
-
-世界累計50万部のベストセラー「Python Crash Course」待望の翻訳版が登場! 10歳の小学生から定年世代まで、世界中の読者が学んだプログラミング入門書で、あなたもPythonの基本をしっかり学びましょう。本書は世界の中学、高校、大学でもテキストとして利用されており、またこの本で得た知識をもとに新しい仕事に就き、また副業をスタートさせている人たちが世界中にいます。 本書「実践編」では、「エイリアン侵略ゲーム」「データの可視化」「Webアプリケーション」という3つのプロジェクトにチャレンジします。次第に難易度のあがるシューティングゲーム作りを通じて、2Dゲームの開発ができるようになり、大量のデータを調査し、可視化するデータサイエンスのための必須知識を身に付け、そしてWebアプリケーション開発ではアカウントを作成し日記を記入、ログとして保管できるプログラム作成を習得します。「必修編」で学んだ方はもちろん、Pythonの基礎を学んでより実践的な知識を習得したい方も必読です。
-
-Webアプリの作り方からAPI化、デプロイメントまで エンジニアとデータサイエンティストのためのFlask入門 Pythonのフレームワーク「Flask」によるWebアプリ開発の入門書です。 まずは、最小のアプリの作成から始め、問い合わせフォーム、データベースを使ったアプリ、 認証機能と段階的に作成しながら、Flaskによるアプリ開発の基礎を習得します。 その後、画像データ(写真)から物体を判別する物体検知アプリを作成しながら 実践的なアプリの作り方、その機能をWeb API化する方法について解説します。 また、物体検知機能(手書き文字認識をする分析コード)を題材に、 どのように機械学習をアプリに組み込んでいくかについても詳しく解説します。 【本書の主な内容】 ●Flaskと開発の基礎 ◯問い合わせフォーム/DBアプリの作成 ◯認証機能の作成 ◯物体検知アプリの作成 ●API化/デプロイメント ◯物体検知アプリのWeb API化 ◯Web APIとして外部公開 ●機械学習APIの開発 ◯分析コードから機械学習APIを開発する工程と方法 【主な対象読者】 ●Pythonで簡単にWebアプリ開発を始めたいエンジニア ●機械学習に興味のあるWebエンジニア ●自分でもアプリやWeb APIを作りたいデータサイエンティスト 【構成】 ●第0部 イントロダクション ●第1部 Flask入門 ●第2部[Flask実践1]物体検知アプリの開発 ●第3部[Flask実践2]物体検知機能のAPI化/デプロイメント ●第4部機械学習APIの開発 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-本書(原題:Python Algorithms: Mastering Basic Algorithms in the Python Language)はアルゴリズムの分析と設計方法について、Pythonを使って説明します。古典的なアルゴリズムに焦点を絞って解説していますが、基本的なアルゴリズムによる問題解決の方法もしっかり理解できます。 本書はプログラミングとコンピュータサイエンスの最も重要で難しい分野を非常に読みやすい形で解説しています。アルゴリズムの理論とプログラミングの実践の両方をカバーし、理論が実際のPythonプログラムにどのように反映されているかを説明します。また、Pythonに組み込まれている有名なアルゴリズムとデータ構造について説明し、実装と評価について学ぶことができます。 本書で学べること 新しい問題を効率的なアルゴリズムで解ける問題に変換する方法。もしくは、効率的に解けない問題であると示す方法 数学と基本的な実験やベンチマークを使ってアルゴリズムとPythonのプログラムを分析する方法 古典的なアルゴリズムとデータ構造を深く理解し、Pythonでこれらを効率的に実装する方法 新しい問題を解くために新しいアルゴリズムを設計し、実績のある設計原理・設計技法を使って実装する方法 Pythonのハイパフォーマンスコンピューティングを実現する豊富なツールを使って実装を高速化する方法
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆世界で150万部突破の日本語版!◆ 世界で150万部突破の「PYTHON CRASH COURSE」の翻訳版、「最短距離でゼロからしっかり学ぶ Python入門 実践編」の改訂新版です。Python 3.7から3.11へのアップデート、ライブラリのアップデートのほか、書籍で使用するエディターをSublime TextからVisual Studio Codeに変更します。実践編では、インベーダーゲーム開発、データ可視化、Webアプリケーション開発の各テーマについて、手を動かしながら学ぶ形でわかりやすく解説します。 ■こんな方におすすめ ・Pythonをゼロから短期間で習得したい人 ・プログラマーの目線で、コードの書き方を学びたい人 ・プログラミングのしっかりした知識をはじめから身につけたい人 ■目次 ●プロジェクト1 エイリアン侵略ゲーム 第1章 弾を発射する宇宙船 ・プロジェクトの計画を立てる ・Pygameをインストールする ・ゲームのプロジェクトを開始する ・宇宙船の画像を追加する ・リファクタリング:_check_events()と_update_screen()メソッド ・宇宙船を操縦する ・振り返り ・弾を発射する ・まとめ 第2章 エイリアン! ・プロジェクトをレビューする ・最初のエイリアンを生成する ・エイリアンの艦隊を編成する ・艦隊を動かす ・エイリアンを撃つ ・ゲームを終了する ・まとめ 第3章 得点を表示する ・Playボタンを追加する ・ゲームをリセットする ・レベルアップする ・得点を表示する ・まとめ ●プロジェクト2 データの可視化 第4章 データを生成する ・Matplotlibをインストールする ・簡単な折れ線グラフを描画する ・ランダムウォーク ・Plotlyでサイコロを転がす ・まとめ 第5章 データをダウンロードする ・CSVファイル形式 ・地球全体のデータセットを地図に描画する(GeoJSON 形式) ・まとめ 第6章 APIを取り扱う ・APIを使う ・Plotlyを使ってリポジトリを可視化する ・Hacker NewsのAPI ・まとめ ●プロジェクト3 Webアプリケーション 第7章 Djangoをはじめる ・プロジェクトの準備をする ・アプリケーションを開始する ・ページを作成する:学習ノートのホームページ ・追加のページを作成する ・まとめ 第8章 ユーザーアカウント ・ユーザーがデータを入力できるようにする ・ユーザーアカウントを設定する ・ユーザーが自分のデータを持てるようにする ・まとめ 第9章 アプリケーションのスタイル設定とデプロイ ・「学習ノート」にスタイルを設定する ・「学習ノート」をデプロイする ・まとめ ■著者プロフィール Eric Matthes:25年間高校の数学と科学の教師であり、初級のPythonクラスで教える中でよりよいカリキュラムの道を探していた。現在はフルタイムの執筆者兼プログラマーとして、いくつかのオープンソースプロジェクトに参加している。彼のプロジェクトのゴールは広範囲にわたり、山岳地帯の土砂崩れを予測するものからDjangoプロジェクトのデプロイをシンプルにするものまである。執筆やプログラミングをしていないときは、山登りを楽しんだり家族との時間を過ごしている。 鈴木たかのり:一般社団法人PyCon JP Association代表理事、株式会社ビープラウド 取締役/Python Climber。部内のサイトを作るためにZope/Ploneと出会い、その後必要にかられてPythonを使いはじめる。各国PyConやPython Boot Campで訪れた土地で、現地のクラフトビールを飲むことが楽しみ。 フェレットとビールとレゴが好き。 安田善一郎:株式会社Surface&Architecture執行役員、株式会社ニューロマジック監査役、シエルセラン合同会社代表。日本IBMを経て(株)ニューロマジックを設立。その後フリーランスとなりPythonベースのPloneをはじめさまざまなCMSでサイト構築(企画・IA・ディレクション)を手がける。現在は、デザインプロジェクトのマネジメントをはじめ各社で複数の業務に携わっている。
-
5.0本書は,統計的因果推論の理論(数理的メカニズム)と実装(Rによる数値解析)の両方を統一的にカバーしたものである。具体的には,ハーバード大学統計学科のDonald B. Rubinの提唱した潜在的結果変数の枠組みによる統計的因果推論を扱う。また,データの一部が観測されない場合の因果推論も扱っており,これは類書にはほとんどみられない本書の特徴である。本書の数理的な理論解説は,できるだけ高校数学の範囲内で理解できるように工夫した。微積分や線形代数も,ほぼ登場しない。さらに,必要な数学的知識は,登場する箇所で解説を加えた。また,Rを使った数値計算により,数学が苦手な人にも統計的因果推論のメカニズムを理解してもらえるように工夫している。そして,数式とRコードとの対応関係をRの初心者も理解できるように,できるだけ1行ごとに完結するコードを書くよう心がけた。さらに,Rを使って統計的因果推論の実証研究を行うための実践的な内容も盛り込んでいる。本書の解析結果は,シミュレーション結果を除いて,すべて,本書の中に記載されているRコードを使って再現できるようにした。そして,本書で使用したデータはすべて,本書のサポートページからダウンロードして使用できるので,本書記載のRコードと一緒に活用することで,統計的因果推論を実践的に学ぶことができる。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 <データサイエンス/データ分析の基本技術を体系的に網羅!> <pandasの威力を実感! 効率的なデータ操作と可視化を実践できる> データ分析や機械学習を利用する現場では、データを取り込み、変換/整備する必要があります。 そうしたデータの取り込みや前処理から始め、データ解析をスムーズに進めるための Pythonライブラリとして、pandasが用意されています。 本書では、pandasなどを使ったデータ分析全体の基本手法を体系的・網羅的にカバー。 巻末の付録では、Python環境のインストールや文法などPythonの基本事項も確認できます。 初中級レベルの方がコードを試しながら理解を深めたり、おぼろげな知識について 確認したりすることで、基礎技術の定着やスキルアップが図れる一冊になっています。 「データクリーニング/前処理に慣れてから、モデリングを解説! 解釈しやすい形にデータセットを変更できる」 ※本書は『Pandas for Everyone, 2nd Edition』の翻訳書です。 ■本書の「序文」から抜粋 pandasを使うと、Pythonによるデータ分析が理解しやすくなり、 組織的で保守が可能なデータセットを作ることができ、 しかも(最も重要なことですが)整然としたデータセットが得られます。
-
5.01巻4,400円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、機械学習コンセプト全般をカバーし、理論的背景とPythonコーディングの実際を解説しています。初歩的な線形回帰から始め、ディープラーニング(CNN/RNN)、敵対的生成ネットワーク、強化学習などを取り上げ、scikit-learnやTensorFlowなどPythonライブラリの新版を使ってプログラミング。第3版では13~16章の内容をほとんど刷新したほか、敵対的生成ネットワークと強化学習の章を新たに追加。機械学習プログラミングの本格的な理解と実践に向けて大きく飛躍できる一冊です。◎本書は『Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition』の翻訳書です。◎微積分/線形代数、Python の文法、データ分析用ライブラリについてある程度理解している必要があります。[原著の第1版]●ドイツ語、韓国語、中国語、日本語、ロシア語、ポーランド語、イタリア語に翻訳。●ACM(米国計算機学会)の「21st Annual list of Notable Books and Articles(2016)」にランクイン。[日本語の第1版]●「ITエンジニア本大賞2017」ベスト10にランクイン。
-
5.01巻4,620円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 第3版まで続くロングセラーのPyTorch版! 機械学習の基本から先進的な手法まで本格解説 『機械学習を実践的に学ぶための優れたテキスト』 『多くのトピックを網羅した深い一冊。強力にお勧め』 ―原著への読者の声 本書の前半は、基本的な機械学習ライブラリのscikit-learnを使った手法を解説。 分類の基本モデルに始まり、単層ニューラルネットまでを実装するほか、データ前処理、次元削減、 ハイパーパラメーターのチューニング、アンサンブル学習、回帰分析などを取り上げます。 後半では、PyTorchによるさまざまなディープラーニングの手法を説明。 PyTorchの仕組みを示したあと、CNN/RNN/Transformerといったモデルの実装を解説。 敵対的生成ネットワーク、グラフニューラルネットワーク、強化学習もカバー。 ◎本書は『Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python』の翻訳書です。 ◎微積分/線形代数、Pythonの文法、データ分析用ライブラリについてある程度理解している必要があります。