検索結果

  • Python機械学習プログラミング PyTorch&scikit-learn編
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 第3版まで続くロングセラーのPyTorch版! 機械学習の基本から先進的な手法まで本格解説 『機械学習を実践的に学ぶための優れたテキスト』 『多くのトピックを網羅した深い一冊。強力にお勧め』 ―原著への読者の声 本書の前半は、基本的な機械学習ライブラリのscikit-learnを使った手法を解説。 分類の基本モデルに始まり、単層ニューラルネットまでを実装するほか、データ前処理、次元削減、 ハイパーパラメーターのチューニング、アンサンブル学習、回帰分析などを取り上げます。 後半では、PyTorchによるさまざまなディープラーニングの手法を説明。 PyTorchの仕組みを示したあと、CNN/RNN/Transformerといったモデルの実装を解説。 敵対的生成ネットワーク、グラフニューラルネットワーク、強化学習もカバー。 ◎本書は『Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python』の翻訳書です。 ◎微積分/線形代数、Pythonの文法、データ分析用ライブラリについてある程度理解している必要があります。
  • Rではじめるビジネス統計分析
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております】 御社のビッグデータから 隠れた“X(宝)”を見つけ出せ! 2013年以降、企業内部で肥大化したビッグデータ(構造化されてない大量のデータ)を利用する動きが活発になってきています。大量のデータを分析することで、ビジネスで言えば商品の売れ筋やトレンド情報の把握、予測などに役立てることができます。 本書は無料で利用できるRという統計ソフトを用いて、ビジネスの現場で役立つ専門的な統計分析について解説した書籍です。Part1では、Rの使い方の基本について、Part2では統計分析の基本を、Part3ではサンプルを元にした本格的なビジネス統計データ分析手法について解説します。全体を通して、入門的な要素を押さえつつ、本格的な分析手法まで丁寧に解説しています。 これ1冊で、ビジネスの現場で活用できる本格的な統計データ行うことができます。またどの業界の方でも入りやすいように身近なサンプルを元に解説します。数式や分析手法など、つまづきやすい部分については適時コラムなどで解説します。なおRは最新の3.Xに対応しています。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • オンライン機械学習
    3.7
    誰でもすぐにオンライン機械学習を実践できる即戦力の入門書!オンライン機械学習の基礎から理論、実装、応用、最新手法までをすべて網羅し、明快に解説した。この1冊で、面白いほどよくわかる!※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。

    試し読み

    フォロー
  • 改訂2版 データサイエンティスト養成読本 [プロになるためのデータ分析力が身につく!]
    4.0
    2013年に刊行した「データサイエンティスト養成読本」の改訂版です。データサイエンティストを取り巻くソフトウェアや分析ツールは大きく変化していますが,必要とされる基本的なスキルに大きな変化はありません。本書は「データサイエンティスト」という職種について考察し,これから「データサイエンティスト」になるために必要なスキルセットを最新の内容にアップデートして解説します。
  • 機械学習のエッセンス 実装しながら学ぶPython、数学、アルゴリズム
    4.5
    1巻3,080円 (税込)
    ※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は具体的なデータ分析の手法を説明する意図で書かれたものではありません。 実用的な目的ならscikit-learnやChainerなどの既存のフレームワークを使うべきですが、本書では機械学習のいくつかの有名なアルゴリズムを、自分でゼロから実装することを目標としています。こうすることにより、とかくブラックボックスになりがちな機械学習の仕組みを理解し、さらなる応用力と問題解決力を身につけることができるようになります。 また、処理系にはデファクトスタンダードであるPythonを使い、機械学習に必要な数学の知識もわかりやすく解説しています。 これから機械学習を始める学生さんや、いきなりプロジェクトに放り込まれていまいち理解できないままデータ分析の仕事をしているエンジニアの方にも最適です。
  • したっぱエンジニア、経営に成功して億万長者になる
    5.0
    ごく普通のエンジニア仲間3人が、起業からわずか数年で100名規模の会社を作り上げ、数十億円で企業を売却するまでの経緯をもとにした経済小説です。 誰も教えてくれない会社設立の方法、組織が大きくなるにつれて生じる軋轢など、乗り越えるべきさまざまなハードルを、エンジニアならではの性格と発想で乗り越えていきます。問題に直面したときの判断のよりどころとなったのは次の3つの考えです。 - 自由な働き方を追求すること - 有名になることをいとわないこと - 売上にはシビアな判断をすること これらの考えを経営判断に取り入れることで会社は急成長しました。実は3人の性格はバラバラで、これらの考えをピッタリと表すのが3人の性格なのです。創業から売却までのさまざまなストーリーが凝縮されていて、起業したいと考えるエンジニアだけでなく、組織の管理に悩む現役のマネージャ/経営者にとっても重要なヒントが見つかる1冊です。
  • [第3版]Python機械学習プログラミング 達人データサイエンティストによる理論と実践
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、機械学習コンセプト全般をカバーし、理論的背景とPythonコーディングの実際を解説しています。初歩的な線形回帰から始め、ディープラーニング(CNN/RNN)、敵対的生成ネットワーク、強化学習などを取り上げ、scikit-learnやTensorFlowなどPythonライブラリの新版を使ってプログラミング。第3版では13~16章の内容をほとんど刷新したほか、敵対的生成ネットワークと強化学習の章を新たに追加。機械学習プログラミングの本格的な理解と実践に向けて大きく飛躍できる一冊です。◎本書は『Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition』の翻訳書です。◎微積分/線形代数、Python の文法、データ分析用ライブラリについてある程度理解している必要があります。[原著の第1版]●ドイツ語、韓国語、中国語、日本語、ロシア語、ポーランド語、イタリア語に翻訳。●ACM(米国計算機学会)の「21st Annual list of Notable Books and Articles(2016)」にランクイン。[日本語の第1版]●「ITエンジニア本大賞2017」ベスト10にランクイン。
  • データサイエンティスト養成読本 機械学習入門編
    3.3
    ビッグデータ分析をきっかけとして「機械学習」に注目が集まり,ビジネス利用への検討がはじまっています。しかし,実際に「機械学習」を理解しているエンジニアや分析担当者は少なく,うまく活用できていないのが現実です。「機械学習」を利用するにはアルゴリズムの理解,プログラミング技術,ビジネス知識などが必要になってきます。本書では,第1部で機械学習のアルゴリズムやビジネスへの応用方法,流行の深層学習などに触れ,第2部ではPythonを用いた機械学習,画像認識,推薦エンジンなど,サンプルコードをもとに手を動かして試すことができます。機械学習分野で先頭を走る著者陣が,面白く,わかりやすい解説でお届けします。
  • Pythonによるあたらしいデータ分析の教科書
    3.2
    データ分析エンジニアに求められる技術の基礎が最短で身に付く ビッグデータの時代といわれ始めて数年が経過しました。 デバイスの進化により多くの情報がデジタル化され、 それらのデータを活用しようとデータ分析エンジニアに注目が集まっています。 この書籍では、データ分析において、 デファクトスタンダードになりつつあるプログラミング言語Pythonを活用し、 データ分析エンジニアになるための基礎を身に付けることができます。 書籍ではデータ分析エンジニアになるために必須となる技術を身につけていきます。 ・データの入手や加工などのハンドリング ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 本書で学べること ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装 対象読者 データ分析エンジニアを目指す方 目次(抜粋) 第1章 データ分析とは 第2章 Pythonと環境 第3章 数学の基礎 第4章 ツールの基礎 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonによるあたらしいデータ分析の教科書 第3版
    -
    最新環境に対応した第3版の登場! データ分析エンジニア必携の 基本技術を習得できる 【本書の概要】 本書はデータ分析エンジニアに必要な 以下の基礎技術について サンプルを交えながら丁寧に解説します。 ・データの取得・加工 ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 【第3版のポイント】 ・Pythonデータ分析試験の主教材に指定 ・Python 3.13に対応 ・各種ライブラリの最新版への対応 【本書で学べること】 ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装方法 【対象読者】 データ分析エンジニアを目指す方 【目次】 第1章 データ分析エンジニアの役割 第2章 Pythonと環境 第3章 数学の基礎 第4章 ライブラリによる分析の実践 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • Pythonによるあたらしいデータ分析の教科書 第2版
    -
    読者の声に応えて第2版の登場! データ分析エンジニアに必要な 基本技術をしっかり習得できる 【本書の概要】 本書はデータ分析エンジニアに必要な 以下の基礎技術を丁寧に解説しています。 ・データの取得・加工 ・データの可視化 ・プログラミング ・基礎的な数学の知識 ・機械学習の流れや実行方法 【第2版のポイント】 ・Python 3.10対応 ・よりわかりやすい解説 ・Pythonデータ分析試験の主教材に指定 【本書で学べること】 ・Pythonの基本的な文法 ・データフォーマットについて ・データの前処理技術 ・データの可視化技術 ・既存アルゴリズムでの機械学習の実装方法 【対象読者】 データ分析エンジニアを目指す方 【目次】 第1章 データ分析エンジニアの役割 第2章 Pythonと環境 第3章 数学の基礎 第4章 ライブラリによる分析の実践 第5章 応用:データ収集と加工 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • pandasライブラリ活用入門[第2版] データクリーニング/前処理など一連の分析プロセスをマスター!
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 <データサイエンス/データ分析の基本技術を体系的に網羅!> <pandasの威力を実感! 効率的なデータ操作と可視化を実践できる> データ分析や機械学習を利用する現場では、データを取り込み、変換/整備する必要があります。 そうしたデータの取り込みや前処理から始め、データ解析をスムーズに進めるための Pythonライブラリとして、pandasが用意されています。 本書では、pandasなどを使ったデータ分析全体の基本手法を体系的・網羅的にカバー。 巻末の付録では、Python環境のインストールや文法などPythonの基本事項も確認できます。 初中級レベルの方がコードを試しながら理解を深めたり、おぼろげな知識について 確認したりすることで、基礎技術の定着やスキルアップが図れる一冊になっています。 「データクリーニング/前処理に慣れてから、モデリングを解説! 解釈しやすい形にデータセットを変更できる」 ※本書は『Pandas for Everyone, 2nd Edition』の翻訳書です。 ■本書の「序文」から抜粋 pandasを使うと、Pythonによるデータ分析が理解しやすくなり、 組織的で保守が可能なデータセットを作ることができ、 しかも(最も重要なことですが)整然としたデータセットが得られます。
  • ヒューマンコンピュテーションとクラウドソーシング
    4.0
    <人間と機械>を超えた、人工知能の新世界!計算機では対応できない問題は,ヒューマンコンピュテーションとクラウドソーシングを組み合わせて解決する!基本概念から技術的課題とその解決方法までをわかりやすく紹介。将来展望や研究動向も把握できる最適な一冊!※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。

    試し読み

    フォロー
  • ビジネス活用事例で学ぶ データサイエンス入門
    4.2
    ※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 リアルな8つの事例ごとに、ビジネス上のさまざまな問題を解決に導くまでの分析ストーリーを、実績ある企業の分析実務者2人が解説。各事例のログデータとフリーソフトRのスクリプトを使って実際に自分で分析の追体験をすることが可能です。
  • 見て試してわかる機械学習アルゴリズムの仕組み 機械学習図鑑
    3.8
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 機械学習アルゴリズムの違いが見てわかる! 「機械学習アルゴリズムは種類が多く、複雑で何をしているのかわかりにくい」と思ったこと、ありませんか?本書は、そのような機械学習アルゴリズムをオールカラーの図を用いながら解説をした機械学習の入門書です。 いままで複雑でわかりにくかった機械学習アルゴリズムが図を通してわかりやすく解説をしています。アルゴリズムごとに項目を立てているので、どのアルゴリズムがどのような仕組みで動いているのか比較をしやすくしています。 これから機械学習を勉強する方だけでなく、実際に機械学習を業務で使用している方にも新しい気付きを得られるのでお勧めの1冊です。 【本書の特徴】 ・複雑な機械学習アルゴリズムの仕組みを1冊で学べる ・オールカラーで機械学習の図をたくさん掲載 ・各アルゴリズム毎にScikit-Learnを使用したコードを記載しているので、見るだけでなく試すこともできる ・仕組みだけでなく、実際の使い方や注意点もわかる 【本書で紹介するアルゴリズム】 01 線形回帰 02 正則化 03 ロジスティック回帰 04 サポートベクトルマシン 05 サポートベクトルマシン(カーネル法) 06 ナイーブベイズ 07 ランダムフォレスト 08 ニューラルネットワーク 09 kNN 10 PCA 11 LSA 12 NMF 13 LDA 14 k-means 15 混合ガウス 16 LLE 17 t-SNE ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • やってみよう! 機械学習
    -
    月刊誌『Software Design』の特集や単発企画で評判の良い、機械学習とPython関連の記事を再編纂。機械学習・深層学習に取り組んでいる開発現場のITエンジニアが自身で試して学んだことが記事のベースになっており、いま押さえておくべき技術を習得する足がかりとして最適です。
  • 統計的因果推論の理論と実装 潜在的結果変数と欠測データ
    5.0
    本書は,統計的因果推論の理論(数理的メカニズム)と実装(Rによる数値解析)の両方を統一的にカバーしたものである。具体的には,ハーバード大学統計学科のDonald B. Rubinの提唱した潜在的結果変数の枠組みによる統計的因果推論を扱う。また,データの一部が観測されない場合の因果推論も扱っており,これは類書にはほとんどみられない本書の特徴である。本書の数理的な理論解説は,できるだけ高校数学の範囲内で理解できるように工夫した。微積分や線形代数も,ほぼ登場しない。さらに,必要な数学的知識は,登場する箇所で解説を加えた。また,Rを使った数値計算により,数学が苦手な人にも統計的因果推論のメカニズムを理解してもらえるように工夫している。そして,数式とRコードとの対応関係をRの初心者も理解できるように,できるだけ1行ごとに完結するコードを書くよう心がけた。さらに,Rを使って統計的因果推論の実証研究を行うための実践的な内容も盛り込んでいる。本書の解析結果は,シミュレーション結果を除いて,すべて,本書の中に記載されているRコードを使って再現できるようにした。そして,本書で使用したデータはすべて,本書のサポートページからダウンロードして使用できるので,本書記載のRコードと一緒に活用することで,統計的因果推論を実践的に学ぶことができる。

    試し読み

    フォロー

最近チェックした作品からのおすすめ