検索結果
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ★誰でも無理なく学べるテキストの決定版!★ ・全学必修のデータサイエンス教育の「さきがけ」となった講義がついに書籍化。 ・文部科学省「数理・データサイエンス・AI教育プログラム認定制度(リテラシーレベルプラス)」に採択された「信頼」と「実績」。 【主な内容】 第1部 社会におけるデータサイエンス 1章 社会におけるデータサイエンスの位置づけと活用事例 1.1 データサイエンス概論 1.2 言語教育にデータはどのように活用されるのか 1.3 データサイエンスと社会科学 1.4 ヒューマンコンピュータインタラクション 1.5 臨床医学・社会医学とデータサイエンス:ヘルスサービスリサーチの視点から 1.6 生物科学研究におけるデータサイエンス:発生生物学研究を例に 1.7 サッカーの上達にデータを活かす 1.8 データサイエンスとWeb 1.9 マテリアルズ・インフォマティクス 1.10 ロボティクスとAI 1.11 都市計画とデータサイエンス 1.12 ビジネスとデータサイエンス 第2部 データサイエンス入門 2章 データの種類と収集 3章 データの前処理 4章 データの管理 5章 高度なデータ活用とビッグデータ 6章 1つの質的データの解析 7章 2つ以上の質的データの解析 8章 1つの量的データの解析 9章 2つ以上の量的データの解析 10章 時系列データの解析 11章 データの可視化 12章 実際のデータ分析 13章 人工知能と機械学習 14章 データ倫理とAI倫理 【著者一覧】 名畑目 真吾/内藤 久裕/落合 陽一/田宮 菜奈子/ 堀江 健生/中山 雅雄/岡 瑞起/岩﨑 悠真/ 袖山 慶太郎/境野 翔/藤井 さやか/岡田 幸彦 川口 一画/滝沢 穂高/遠藤 結城/平田 祥人/ 三谷 純/天笠 俊之/五十嵐 康彦/今倉 暁/ 青砥 隆仁/福地 一斗/三末 和男/津川 翔/馬場 雪乃 ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 第3次AIブームが到来し、AIが浸透した社会における深刻な課題や問題が取りざたされてきている。中でも2017年にオックスフォード大学から公表された「近未来では人間の仕事の半数がAIで代替される」という話題の影響は強く、AIに仕事を奪われることに警鐘を鳴らす書籍が数多く出版されている。反面、ビジネス面以外の「AIによる不都合な現実」にスポットを当てた類書はまだ少ない。 本書は著者が所属する理研・革新知能総合研究センター 社会における人工知能研究グループの成果をもとに、AIの負の側面の紹介とAI設計・運用における倫理指針を示す構成となっている。第1章ではシンギュラリティ—AIが人間を超える可能性、第2章ではAIに奪われる仕事の範囲、第3章ではAIの発展の歴史、第4章では現状の「弱いAI」がもたらす数々の問題、第5章ではAI倫理を主軸とした社会制度の対応策について解説している。 AIの技術そのものに関する記述は少なく、人間社会におけるAIの影響という観点から執筆されているため、社会学や社会工学分野の読者にも興味を持たれる内容となっている。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「AI黎明期」の伝説の事典、待望の復刻!! 本復刻版は、1988年にUPU社から刊行された初版『AI事典』(ISBN13:978-4946432064 ISBN10:494643206X)を底本とする電子書籍である。初版編集委員会より初版復刊の要請を受け、近代科学社の創立60周年記念事業の一つとして発行する。2003年に共立出版から刊行された『AI事典 第2版』、さらに2019年に近代科学社から刊行された『AI事典 第3版』とあわせた3点の『AI事典』を通観することで、AIの誕生から現在に至る研究の推移や各時代における興味・関心の高いテーマをうかがい知ることができる。
-
-「あらゆる人があらゆることを 言っているAI人材とはなにか、 その育て方についての答えがここにある。」 『イシューからはじめよ』 『シン・ニホン』著者 安宅和人氏推薦! 【本書のポイント】 ・AI人材を取り巻く状況・必要とされる理由がわかる ・AI人材の特徴・役割ごとの育成方法を知ることができる ・研修マニュアルを確認しながら自社に取り入れることができる ・育成現場の現状を知ることができる 【こんな人におすすめ】 ・AI人材を増やしたい経営・人事担当者 ・AI人材を部下に持つ管理職の方 ・AI人材と企業の関わりについて知りたい方 ・大学でのAI教育の担当者 【内容紹介】 DX時代において必須となるAI人材は、 2030年には約79万人が不足するとされており、 企業にとってはAI人材の育成・確保が急務です。 今後AI人材を育成しなければならない、と思っていても 具体的にどのように育成すればいいのか、 AI人材が社内でどのような役割を担うのか、 漠然としていてつかみにくいかもしれません。 本書では、AI人材の役割から 育成現場の現状、具体的な育成方法や研修マニュアル、 教育現場における教育課程までを詳細に解説。 政府のAI教育プログラム認定制度検討会議の構成員を務める著者により、 AI人材を取り巻く環境・全体像と具体的な育成方法を まとめて知ることができる1冊です。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-1巻2,860円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆生成AIを大幅加筆し,好評テキストが改訂!◆ ・いますぐ身につけるべき「データサイエンス」「データエンジニアリング」「AI」の基礎知識がここにある! ・「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に完全準拠した公式カラーテキスト! ・カラーで見やすく、練習問題も充実! 【主な内容】 1章 データサイエンス基礎 1.1 データ駆動型社会とデータ分析の進め方 (久野遼平) 1.2 データの記述 (宿久 洋) 1.3 データの可視化 (宿久 洋・久野遼平) 1.4 データ分析の手法 (原 尚幸) 1.5 数学基礎 (清 智也) 2章 データエンジニアリング基礎 2.1 ビッグデータとデータエンジニアリング (内田誠一) 2.2 データ表現、プログラミング基礎、アルゴリズム基礎 (辻 真吾) 2.3 データ収集と加工、データベース (森畑明昌) 2.4 ITセキュリティ (宮地充子) 3章 AI基礎 3.1 AIと社会 (松原 仁) 3.2 機械学習の基礎と予測手法 (赤穂昭太郎) 3.3 深層学習の基礎 (今泉允聡) 3.4 ロボット、認識、言語 (高野 渉) 3.5 生成AI(岡﨑 直観) ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
4.0データサイエンティストはどのように考えるのか? 本書は、紙と鉛筆で学ぶというコンセプトのもと、 PythonやRなどのプログラミング言語を使わずに データサイエンティストの思考過程を体験できます。 データサイエンティストがどのような思考回路でデータと向き合っているのか、 本書掲載の40問のクイズを解きながら体験してみてください。 本書掲載のクイズは複雑な計算やExcelなども不要で、 紙と鉛筆さえあれば解くことができますので、ぜひチャレンジしてみてください。 【こんな方におすすめ!】 ・デジタル時代を生き抜くためにデータを読み解くスキルを身につけたい人 ・「データを使って論理的に考えろ」と言われるが、 データのどこを見ればよいのかわからない人 ・大学時代に政府が提唱するデータリテラシーを学ぶことができなかった人 ・大学でデータリテラシーを身につけた新入社員を受け入れる部署の管理職 ・社会でデータリテラシーがどう活用されているか知りたい人 ・データサイエンティストと仕事をすることになったが、 どのような思考回路の専門家なのか知りたい人 【本書を読むことで得られる知識/できるようになること】 ・データを活用するプロであるデータサイエンティストが どのような思考回路でデータに向き合っているかわかる ・データサイエンティストの思考過程を知る(なぞる)ことによって、 自分自身でデータを正しく読み解くことができるようになる ・データを読み解く際の勘所(着眼点)がわかる ・与えられたデータの意味を適切に読み解き、 他者に対して正しくデータを説明できるようになる ・恣意的に誇張されたグラフや不適切に切り取られたデータに騙されなくなる ・データ分析の考え方、留意事項がわかる ・データを分類する方法、データから法則を見つけ出す方法、予測する方法がわかる ・データを基に論理的に意思決定できるようになる 【目次】 第1章 デジタル時代に必要なデータリテラシー 第2章 データを読む力を身につける 第3章 データを説明する力を身につける 第4章 データを分類する力を身につける 第5章 データから法則を見つける力を身につける 第6章 データから予測する力を身につける 第7章 仕事でデータリテラシーを活用する ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-★機械学習を「工学」として熟成していくために★ 【推薦の言葉】 AIブームの3回目は、機械学習技術が牽引してきた。業務や生活の 中で使われるようになるにつれて、現場や社会における課題に直面 している。機械学習工学を生み出した著者らによる本書は、技術と 現場をつなぎ、普及させていくための羅針盤となる貴重な一冊である。 ――浦本直彦氏(三菱ケミカルグループ、元・人工知能学会会長) 注目の新領域「機械学習工学」の入門書。まずはこの一冊から始めよう! 機械学習ソフトウェアの開発・テスト・運用の方法論を体系的に俯瞰できる。 開発現場で試行錯誤しているエンジニアはもちろん、エンジニアと協働している人すべてに読んでほしい。 【主な内容】 巻頭言(丸山宏・PFN) 第1部 機械学習工学とは 第1章 機械学習工学(中川裕志・理化学研究所、石川冬樹・国立情報学研究所) 第2部 機械学習システムの開発・運用マネジメント 第2章 機械学習システムの開発とその検証プロジェクト(竹内広宜・武蔵大学) 第3章 機械学習システムの運用(堀内新吾、土橋昌・株式会社エヌ・ティ・ティ・データ) 第3部 機械学習システムの開発技術と倫理 第4章 機械学習デザインパターン(鷲崎弘宜・早稲田大学) 第5章 品質のとらえ方と管理(石川冬樹・国立情報学研究所) 第6章 機械学習モデルの説明法(原聡・大阪大学) 第7章 AI倫理(中川裕志・理化学研究所) 第4部 機械学習と知財・契約 第8章 機械学習と知財・契約(柿沼太一・弁護士法人STORIA) 第5部 機械学習工学の今後 第9章 今後に向けて(石川冬樹・国立情報学研究所) 付録A 模擬裁判の紹介(柿沼太一・弁護士法人STORIA)
-
4.2
-
3.01巻1,980円 (税込)※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆累計5万部を超えるベストセラー改訂!◆ 【安宅和人氏(慶應義塾大学環境情報学部教授・LINEヤフー株式会社シニアストラテジスト)推薦!!】 データ×AIドリブンな時代に何が基礎なのか、それを理解したい人はまずこれを手に取りたい。 ・これからを生き抜くために知っておきたいキーワードが、この一冊でまるわかり! ・「数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム」の改訂にあわせ、高等学校「情報1」との連携、生成AIの急速な発展などに対応し、完全準拠の公式テキストがますますパワーアップ! ・フルカラーで見やすく練習問題も充実! ・日本を代表する豪華執筆陣がていねいに解説! 【主な内容】 第1章 [導入] 社会におけるデータ・AI利活用 1.1 社会で起きている変化(樋口知之) 1.2 社会で活用されているデータ(樋口知之) 1.3 データ・AIの活用領域(孝忠大輔) 1.4 データ・AI利活用のための技術(内田誠一) 1.5 データ・AI利活用の現場(丸山 宏) 1.6 データ・AI利活用の最新動向(内田誠一) 第2章 [基礎] データリテラシー 2.1 データを読む(川崎能典) 2.2 データを説明する(椎名 洋) 2.3 データを扱う(川崎能典) 第3章 [心得] データ・AI利活用における留意事項 3.1 データ・AIを扱う上での留意事項(中川裕志) 3.2 データを守る上での留意事項(佐久間淳) ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
3.51巻2,596円 (税込)「データサイエンティスト検定 リテラシーレベル」の公式リファレンスブックが登場。 試験で問われる計147個のスキル項目について,要点と学習のポイントを基本から一つひとつ解説。 第一線で活躍する執筆陣が具体的なシーンにまで踏み込んで説明しているため,データサイエンティストとしての確かな力が身につきます。 さらに巻末の模擬問題では,実際の試験のイメージをつかむことができます。 「データサイエンティスト検定 リテラシーレベル」とは? 「データサイエンティスト検定 リテラシーレベル」(略称:DS検定)は,一般社団法人データサイエンティスト協会によって,2021年9月に第1回が開催される検定試験です。「リテラシーレベル」では,協会が定めたスキルレベルのうち最も基礎的な内容(見習いレベル)を問われるため,すでにデータサイエンティストとして活躍している方はもちろんのこと,データサイエンスに興味を持つ学生,ビジネスパーソンの方も挑戦することができます。
-
3.51巻2,860円 (税込)【読めば読むだけ力になる、新スキルチェックリスト対応の公式リファレンスブック!】 集めたデータから価値を創出し、ビジネス課題に答えを出すデータサイエンティストは、ますます必要とされてきています。そんなデータサイエンティストには、様々なスキルが求められています。 ・情報処理、人工知能、統計学などの情報科学系の知恵を理解し使う、データサイエンス力 ・データサイエンスを意味のある形に使えるようにし実装・運用できるようにする、データエンジニアリング力 ・課題背景を理解した上でビジネス課題を整理し解決する、ビジネス力 さらに、これらのスキルを日常生活や仕事等の場で活かすための学修目標を示した「数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム」も公表されています。データサイエンティスト検定(リテラシーレベル)では、これらの基礎的な部分を総合的に問われます。 本書では、問われる項目をひとつひとつピックアップし、現場の第一線でで活躍する著者が詳しく解説しています。読み込めば読み込むほど力になる、試験対策のための一冊です。 ■目次 第1章 DS検定とは 第2章 データサイエンス力 第3章 データエンジニアリング力 第4章 ビジネス力 第5章 数理・データサイエンス・AI(リテラシーレベル)モデルカリキュラム データサイエンティスト検定TMリテラシーレベル模擬試験 問題 データサイエンティスト検定TMリテラシーレベル模擬試験 解答例 ■著者プロフィール ●菅 由紀子(かん ゆきこ):株式会社Rejoui(リジョウイ) 代表取締役、一般社団法人データサイエンティスト協会 スキル定義委員、広島大学 客員教授。 ●佐伯 諭(さえき さとし):一般社団法人データサイエンティスト協会 スキル定義委員会副委員長、事務局長、ビーアイシーピー・データ株式会社 取締役COO。 ●高橋 範光(たかはし のりみつ):株式会社ディジタルグロースアカデミア 代表取締役会長、株式会社チェンジホールディングス 執行役員、一般社団法人データサイエンティスト協会 スキル定義委員。 ●田中 貴博(たなか たかひろ):株式会社日立製作所 人財統括本部 デジタルシステム&サービス人事総務本部 直轄人事部 シニアHRビジネスパートナー、一般社団法人データサイエンティスト協会 スキル定義委員。 ●大川 遥平(おおかわ ようへい):株式会社AVILEN 取締役、一般社団法人データサイエンティスト協会 スキル定義委員。 ●大黒 健一(だいこく けんいち):株式会社日立アカデミー 事業戦略本部戦略企画部部長、一般社団法人データサイエンティスト協会 学生部会副部会長、博士(農学)。 ●森谷 和弘(もりや かずひろ):データ解析設計事務所 代表、データアナリティクスラボ株式会社 取締役CTO、一般社団法人データサイエンティスト協会 スキル定義委員。 ●參木 裕之(みつぎ ひろゆき):株式会社大和総研 フロンティア研究開発センター データドリブンサイエンス部、チーフグレード/主任データサイエンティスト、一般社団法人データサイエンティスト協会 スキル定義委員。 ●北川 淳一郎(きたがわ じゅんいちろう):LINEヤフー株式会社、一般社団法人データサイエンティスト協会 スキル定義委員。 ●守谷 昌久(もりや まさひさ):日本アイ・ビー・エム株式会社 シニアアーキテクト、一般社団法人データサイエンティスト協会 スキル定義委員。 ●山之下 拓仁(やまのした たくひと):一般社団法人データサイエンティスト協会 スキル定義委員。 ●苅部 直知(かりべ なおと):一般社団法人データサイエンティスト協会 スキル定義委員、LINEヤフー株式会社。 ●孝忠 大輔(こうちゅう だいすけ):日本電気株式会社 アナリティクスコンサルティング統括部長、一般社団法人データサイエンティスト協会 スキル定義委員。 ●福本 信吾(ふくもと しんご):一般社団法人データサイエンティスト協会 スキル定義委員。
-
4.01巻2,750円 (税込)※PDF版をご希望の方は Gihyo Digital Publishing (https://gihyo.jp/dp/ebook/2022/978-4-297-12833-3)も合わせてご覧ください。 「データサイエンティスト検定 リテラシーレベル」の公式リファレンスブック第2版です。 2022年6月の試験から,出題範囲となる「データサイエンティストスキルチェックリスト」がver.3からver.4へ。 それにともなって計185個に増加したスキル項目について,要点と学習のポイントを基本から一つひとつ解説しています。 第一線で活躍する執筆陣が具体的なシーンにまで踏み込んで説明しているため,データサイエンティストとしての確かな力が身につきます。 さらに付録の模擬試験では,試験で出題される問題のイメージをつかむことができます。 「データサイエンティスト検定 リテラシーレベル」とは? 「データサイエンティスト検定 リテラシーレベル」(略称:DS検定)は,一般社団法人データサイエンティスト協会によって,2021年9月に始まった検定試験です。「リテラシーレベル」では,協会が定めたスキルレベルのうち最も基礎的な内容(見習いレベル)を問われるため,すでにデータサイエンティストとして活躍している方はもちろんのこと,データサイエンスに興味がある学生の方,ビジネスパーソンの方も挑戦することができます。 検定概要:https://www.datascientist.or.jp/dskentei/ データサイエンティスト協会HP:https://www.datascientist.or.jp/
-
5.02009年発売の『企業の研究者をめざす皆さんへ』の新版。前書から十年の間に著者が経験した東京大学工学系研究科技術経営戦略専攻での技術リーダーシップ講義、統計数理研究所での知見、スタートアップ企業PFNの企業文化、政府関係の委員会や学会で得た情報を加えて、内容をさらに充実させている。 前書は日本IBM東京基礎研究所所長時代に研究員に宛てたレターを解説する形の構成をとったが、本書はレターだけでなく著者が講義で使用したケース事例、ブログや学会誌に寄稿したエッセイも紹介している。 研究の方法、論文の作法、キャリア、マネジメント、知財問題など研究職を希望する学部生や修士・博士課程の学生にとって興味を引く情報が揃い、現役の企業研究者・技術者にとっても読みごたえのある一冊となっている。
-
5.0わが国トップランナー研究陣が贈る入門書。 人工知能(AI)の発展が人類社会にもたらす変化とは何か――。1960年代、80年代に次いで、現在は3度目の人工知能ブームといわれています。そんな中、日本の第一線のAI研究者らが、仮説や空想ではないAIの真実と、私たちの近未来の暮らしを綴りました。「AIが人類を凌駕するシンギュラリティはやってくるのか?」、「AIの進化によってなくなる仕事、残る仕事とは?」、「AIで医療分野はどう変わる?」。そんな期待や不安、疑問に答える22テーマの書き下ろし記事を掲載。さらに、図解の「ビジュアル」ページや「小事典」で深い理解が得られる、新時代のAI入門書です。
-
-このわかりやすさ、もう手放せない!・「仮名化/匿名化」「差分プライバシー」「秘密計算」の3つの主要技術を扱う。・統計学・データ工学・暗号理論の観点から丁寧に解説。・データ解析実務者も必読。※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
3.8
-
5.0データサイエンスの門をたたく前に必要となる数学を、一冊にまとめたテキスト。微分積分・線形代数・確率論の中から、入門者が学んでおきたい基礎を厳選、平明簡潔に整理した。まずはこの本で、しっかり基礎固め!【データサイエンス入門シリーズ】第1期として、以下の3点を刊行!・『データサイエンスのための数学』椎名 洋・姫野哲人・保科架風(著)清水昌平(編)・『データサイエンスの基礎』浜田悦生(著)狩野 裕(編)・『最適化手法入門』寒野善博(著)駒木文保(編)【「巻頭言」より抜粋】データサイエンス分野の遅れを取り戻すべく、日本でも文系・理系を問わず多くの学生がデータサイエンスを学ぶことが望まれます。文部科学省も「数理及びデータサイエンスに係る教育強化拠点」6 大学(北海道大学、東京大学、滋賀大学、京都大学、大阪大学、九州大学)を選定し、拠点校は「数理・データサイエンス教育強化拠点コンソーシアム」を設立して、全国の大学に向けたデータサイエンス教育の指針や教育コンテンツの作成をおこなっています。本シリーズは、コンソーシアムのカリキュラム分科会が作成したデータサイエンスに関するスキルセットに準拠した標準的な教科書シリーズを目指して編集されました。またコンソーシアムの教材分科会委員の先生方には各巻の原稿を読んでいただき、貴重なコメントをいただきました。データサイエンスは、従来からの統計学とデータサイエンスに必要な情報学の二つの分野を基礎としますが、データサイエンスの教育のためには、データという共通点からこれらの二つの分野を融合的に扱うことが必要です。この点で本シリーズは、これまでの統計学やコンピュータ科学の個々の教科書とは性格を異にしており、ビッグデータの時代にふさわしい内容を提供します。本シリーズが全国の大学で活用されることを期待いたします。――編集委員長 竹村彰通(滋賀大学データサイエンス学部学部長、教授) 【推薦の言葉】データサイエンスの教育の場や実践の場で利用されることを強く意識して、動機付け、題材選び、説明の仕方、例題選びが工夫されており、従来の教科書とは異なりデータサイエンス向けの入門書となっている。――北川源四郎(東京大学特任教授、元統計数理研究所所長)国を挙げて先端IT人材の育成を迅速に進める必要があり、本シリーズはまさにこの目的に合致しています。本シリーズが、初学者にとって信頼できる案内人となることを期待します。――杉山将(理化学研究所革新知能統合研究センターセンター長、東京大学教授)
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「データサイエンティスト」は世界的に注目されているが、実際にこの職種に就こう、育てよう、また組織としてこの職種を活用していこうと考えた時に、どのよう進めていけばよいのか、新しいがゆえに指標が少ない。本書は著者らの統計数理研究所・IBMコンサルタント部門で培った知見を元に、この仕事を目指す人、育成する人に必要な情報、組織としての活用を分かりやすい事例と整理された内容で理解しやすいよう解説する。
-
-ロジスティック回帰モデル、一般化線形モデル、混合分布モデルまで、この一冊で! ・確率分布、推定、検定などの基本的な内容から、ロジスティック回帰モデル、一般化線形モデル、混合分布モデルまでを一冊で解説した、稀有の入門書 ・Rによるデータ分析例およびコードを多く掲載! 【データサイエンス入門シリーズ】 第2期として、以下の2点を同時刊行! 『統計モデルと推測』松井秀俊・小泉和之(著)竹村彰通(編) 『Pythonで学ぶアルゴリズムとデータ構造』辻真吾(著)下平英寿(編) 第3期の刊行は2020年2月の予定(^o^)/ 【「巻頭言」より抜粋】 文部科学省は「数理及びデータサイエンスに係る教育強化拠点」6 大学(北海道大学、東京大学、滋賀大学、京都大学、大阪大学、九州大学)を選定し、拠点校は「数理・データサイエンス教育強化拠点コンソーシアム」を設立して、全国の大学に向けたデータサイエンス教育の指針や教育コンテンツの作成をおこなっています。 本シリーズは、コンソーシアムのカリキュラム分科会が作成したデータサイエンスに関するスキルセットに準拠した標準的な教科書シリーズを目指して編集されました。またコンソーシアムの教材分科会委員の先生方には各巻の原稿を読んでいただき、貴重なコメントをいただきました。 データサイエンスは、従来からの統計学とデータサイエンスに必要な情報学の二つの分野を基礎としますが、データサイエンスの教育のためには、データという共通点からこれらの二つの分野を融合的に扱うことが必要です。この点で本シリーズは、これまでの統計学やコンピュータ科学の個々の教科書とは性格を異にしており、ビッグデータの時代にふさわしい内容を提供します。本シリーズが全国の大学で活用されることを期待いたします。 ――編集委員長 竹村彰通(滋賀大学データサイエンス学部学部長、教授) 【推薦の言葉】 データサイエンスの教育の場や実践の場で利用されることを強く意識して、動機付け、題材選び、説明の仕方、例題選びが工夫されており、従来の教科書とは異なりデータサイエンス向けの入門書となっている。 ――北川源四郎(東京大学特任教授、元統計数理研究所所長) 国を挙げて先端IT人材の育成を迅速に進める必要があり、本シリーズはまさにこの目的に合致しています。本シリーズが、初学者にとって信頼できる案内人となることを期待します。 ――杉山将(理化学研究所革新知能統合研究センターセンター長、東京大学教授) ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆◆ロングセラー、10年ぶりの改訂◆◆ ・全ページをフルカラー化したので、図表もさらにわかりやすく! ・非定常時系列データ解析の基本を加筆(第8章を新設) データの見方や考え方から述べられた本当にほしかった入門書。 それぞれがもつ「予測したい」課題に自ら取り組むための基本を1冊にまとめた。 「モデリングが使えるということはわかった、これからは使いたい!」という人は必読。 統計のプロ中のプロが伝授する「匠の技」「匠の知恵」コラムも多数収録。 【推薦の言葉】 本書は予測のための統計的モデリングの方法を,基礎から具体的実践例に亘るまで明快に解説している特色ある著作である. 平易な記述でベイスの定理などの基礎から粒子フィルタやデータ同化などの先端的な内容までをカバーしている. 便利なブラックボックス型のAI予測では飽き足らず,自分が抱える具体的な課題に対して自らのアイデアを投入し,説明可能な予測をしてみようと思い立った人には必読の書である. ――北川 源四郎先生(東京大学特任教授、数理・データサイエンス教育強化拠点コンソーシアム 議長) 【まえがき(抜粋)】 統計学の強みは,生成モデルの構築に関する,さまざまな知見とノウハウの蓄積,またモデルに基づく意思決定の綿密な評価にある.ある種,モデリングに関する匠の技とも言える暗黙知に,統計学の存在感が増していくであろう.読者が本書を通じてこの暗黙知を習得されることを期待したい. 【目次】 〈基礎編〉 第1章 予測とは何かを考える 第2章 確率による記述:基礎体力をつける 第3章 統計モデル:予測機能を構造化する 第4章 計算アルゴリズム1:予測計算理論を学ぶ 〈展開編〉 第5章 計算アルゴリズム2:モデルを進化させる 第6章 粒子フィルタ:予測計算を実装する 第7章 乱数生成:不確実性をつくる 〈実践編〉 第8章 時系列解析の基本:傾向をつかむ 第9章 経験知の総結集:売上予測の精度を上げる 第10章 データ同化:シミュレーションの予測性能を向上させる 第11章 確率ロボティクス:お掃除ロボをつくる ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。