検索結果
-
3.0【データに基づく議論・意思決定が生み出す競争戦略】 「データで話す組織」づくりを通じて、その先にあるDXを実現するための基礎を解説していきます。本書では、データを活用したいと考える組織が備えるべきケイパビリティを課題発見力、人材力、データ力、施策実行力の4つに整理して、それぞれ解説します。 また、一足飛びにAIやデータサイエンスに取り組んでも、基礎ができていない/用意ができていないために、うまくいかないことがあります。データ活用を考える組織はデジタル化、データ分析、AI・データサイエンスの3つのフェーズを一段ずつ越えていくことをおすすめします。 ■こんな方におすすめ - 事業会社のDX・データ活用プロジェクトの担当者 - 会社にデータドリブンな文化を持ち込みたい経営層・マネージャ層 ■目次 第1章 データで話す組織づくり 1-1 一歩ずつデータ活用力を上げる長期スパンでの文化醸成 1-2 「データで話す組織」を追求する戦略的意義 1-3 「データで話す組織」づくりのアプローチ 1-4 予算・リソースに応じたプロジェクトの進め方 1-5 データ活用による価値創出と継続の重要性 コラム タクシー業界でのデジタル化とデータ分析技術の活用 コラム ワークマンでのデータ活用の軌跡 第2章 現状把握とデジタル化 2-1 社内業務の把握 2-2 意思決定プロセスの把握 2-3 事業課題の把握 2-4 アクションのための情報収集 2-5 情報システム部門の把握 2-6 ステークホルダーの把握 2-7 外部人材の活用 2-8 情報セキュリティの把握 2-9 社内システムの把握 2-10 データの把握 2-11 システムによる課題解決の実践 2-12 いつでも振り返れるように現状を整理 第3章 データ分析チームの組成 3-1 分析テーマの選定 3-2 類似事例の調査と比較 3-3 ビジネスフレームワークの活用 3-4 データ分析チームを構成する人員 3-5 兼任担当者から専任へ 3-6 データ理解とデータ整備 3-7 定常モニタリングとBIツールの用途 3-8 データの伝え方 3-9 効果の計測 コラム データ分析組織の継続 コラム データ基盤の重要性 第4章 AI・データサイエンスの応用 4-1 統計・AIモデルでできること 4-2 統計・AIモデルにおける課題設定 4-3 データ分析人材のスキルセットと獲得戦略 4-4 育成のためのしくみづくり 4-5 評価体系の構築 4-6 AI・統計モデルのためのデータ選定 4-7 モデルの評価 4-8 MLOps コラム 中央集権型かデータの民主化か ■著者プロフィール 大城 信晃:NOB DATA株式会社 代表取締役。データサイエンティスト協会九州支部 支部長。主に地方のインフラ企業にてDX推進という文脈で各社に自走できる分析チームの立ち上げに関する伴走支援を、東京エリアを中心とする企業にてChatGPT等のLLM技術を応用したサービス開発・業務活用支援を行っている。 油井 志郎:株式会社ししまろ CEO(代表取締役)。金融、医療、製薬、製造メーカー、IT、観光、運送、小売などの様々なデータ分析・AI関連などの分析全般を伴走型で支援を行っている。 小西 哲平:株式会社biomy 代表取締役社長。がん微小環境のAI解析を通して個別化医療の実現を目指す。秋田大学大学院医学系研究科博士課程(病理学)、理化学研究所に研究員としても在籍。 伊藤 徹郎:Classi株式会社 プロダクト本部 本部長。徳島大学 デザイン型AI教育研究センター 客員准教授。Classi株式会社にて、データ組織の立ち上げからエンジニア組織の統括。2023年8月よりプロダクト開発に関わるすべての職能を統括した部署の本部長に就任し、奮闘するかたわら、大学にも籍を置く。 落合 桂一:大手通信会社R&D部門 データサイエンティスト。東京大学大学院工学系研究科 特任助教。位置情報、端末ログなどのモバイル関連データに対する機械学習の応用に関する研究開発に従事。また、自らの経験を活かし大学で社会人ドクターの研究を指導。国際的なデータ分析コンペKDD Cupにおいて2019年の1位をはじめ複数回入賞。 宮田 和三郎:株式会社カホエンタープライズ CTO。業種業態を問わず、様々な組織におけるデータ利活用の支援を行なっている。経営や組織の観点でのデータ利活用に深い興味を持つ。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 アジア太平洋地域で二年連続シェア1位! 世界第3位クラウド(IaaS)プロバイダーであるアリババクラウドの、初めての日本語解説書です。世界最大・最速規模のクラウドを支える技術・豊富なサービスをわかりやすく解説します。セキュリティからメディア配信、IoT基盤まで解説。経営陣にとっては必読の入門書であり、技術者が知りたい最新テクノロジーの解説書です。今すぐ、Alibaba Cloudが始められる読者特典も付いています。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております】 御社のビッグデータから 隠れた“X(宝)”を見つけ出せ! 2013年以降、企業内部で肥大化したビッグデータ(構造化されてない大量のデータ)を利用する動きが活発になってきています。大量のデータを分析することで、ビジネスで言えば商品の売れ筋やトレンド情報の把握、予測などに役立てることができます。 本書は無料で利用できるRという統計ソフトを用いて、ビジネスの現場で役立つ専門的な統計分析について解説した書籍です。Part1では、Rの使い方の基本について、Part2では統計分析の基本を、Part3ではサンプルを元にした本格的なビジネス統計データ分析手法について解説します。全体を通して、入門的な要素を押さえつつ、本格的な分析手法まで丁寧に解説しています。 これ1冊で、ビジネスの現場で活用できる本格的な統計データ行うことができます。またどの業界の方でも入りやすいように身近なサンプルを元に解説します。数式や分析手法など、つまづきやすい部分については適時コラムなどで解説します。なおRは最新の3.Xに対応しています。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 教育現場のデータを活かすために! 本書は、教育現場に蓄積された多様なデジタルデータ(成績データ、アンケート結果など)の分析方法を解説するものです。 中・高・大や予備校などの教育現場には、多くのデータ(試験・入試の結果、TOEICなどの外部試験の結果、出席管理システムの情報など)が、なかば勝手に集積されていきます。昨今、データ利用の重要性が叫ばれるなか、そのようなデータの山の中から教育上、有用な知見を見つけ出すことが教育現場にも求められています。 本書は、大学や予備校、通信教育の教職員・事務職員、教育に熱心な中・高の教職員をおもたる対象として、教育データの分析手法や考え方を解説しています。オープンソースの統計分析向けのソフトウェア環境であるRを用いることで、実際に使える実践的な方法を解説しています。 教育分野の方以外にも、データ分析が身近な学校という現場を例に、どのように実応用されているかを知ることができる一冊になっています。 【準備編】 第1章 Rの使い方 【基本編】 第2章 記述統計―テスト結果の概要を知りたい 第3章 層別分析・可視化―クラスごとの傾向を視覚的に把握したい 第4章 t検定―2つのテスト結果を比較したい 第5章 分散分析・多重比較―3つ以上のグループや繰り返しのテスト結果を比較したい 第6章 効果量―指導法による成績の違いを調べたい コラム ノンパラメトリック検定―少人数の成績を比較したい 第7章 相関分析―中間試験と期末試験の成績の関係を調べたい コラム テキストマイニング―授業評価アンケートの自由記述を分析したい 【発展編】 第8章 回帰分析―テスト欠席者の見込み点を予測したい コラム マルチレベル分析―異なる学校の成績を比較したい 第9章 因子分析―授業評価アンケートを作成・分析したい コラム 項目反応理論―テストごとの難易度を考慮して成績を出したい 第10章 構造方程式モデリング―成績データから因果関係を探りたい コラム 潜在ランク理論―100点満点のテスト結果を5段階評価に変換したい 第11章 クラスター分析―同じような特徴を持つ学習者をグループ化したい コラム 決定木分析―合格者と不合格者を分けるルールを知りたい 参考文献 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 テキストアナリティクスの技術と実践を詳しく解説! 本書は、アンケートやSNSといったテキストデータを対象とした分析に興味がある方や実務で応用したい方に向けて、テキストアナリティクスに関する基本的な知識と、著者が非常に重要であると考える技術について解説した入門書です。テキストアナリティクスは従来のテキストマイニングにとどまらず、より明確な分析目的や理論的枠組みをもった方法論です。 本書では、データの構築から分析までを行った、汎用性の高い事例を紹介しています。また、単にツールとしてのRの使い方を知るだけでなく、読者が目的に応じた分析方法を判断できるようになるようにまとめています。 サンプルのデータやコードを参考に手を動かしながら学習することができ、初心者の「一冊目」にうってつけです。 はじめに [基礎編] 第1章 テキストアナリティクス入門 1.1 テキストアナリティクスとは 1.2 社会で活用されるテキストアナリティクス 1.3 テキストアナリティクスの活用事例の探し方 1.4 テキストアナリティクスの歴史 第2章 テキストアナリティクスの理論的枠組み 2.1 テキストデータの構築 2.2 テキストデータの分析 [準備編] 第3章 分析データの準備 3.1 データセットの構築 3.2 テキストファイルの作成 3.3 CSVファイルの作成 3.4 テキスト整形 第4章 Rの基本 4.1 Rの導入 4.2 コードの入力 4.3 変数と代入 4.4 ベクトル 4.5 行列とデータフレーム 4.6 ファイルの操作 4.7 パッケージのインストール 4.8 ヘルプの参照 第5章 データ分析の基本 5.1 データハンドリング 5.2 文字列処理 5.3 可視化 5.4 統計処理 第6章 テキスト分析の基本 6.1 RMeCabの導入 6.2 形態素解析 6.3 単語の分析 6.4 n-gramの分析 6.5 共起語の分析 6.6 複数テキストの分析 6.7 頻度表の加工 6.8 用例検索 [実践編] 第7章 授業評価アンケートの分析 7.1 授業評価アンケートに基づく授業改善 7.2 分析データ 7.3 単純な頻度集計 7.4 品詞別の頻度集計 7.5 用例検索 第8章 オンラインレビューを用いたクチコミ分析 8.1 マーケティングのためのクチコミ分析 8.2 分析データ 8.3 レビューの評価と集計 8.4 低評価コメントと高評価コメントの比較 8.5 共起語の集計 8.6 共起ネットワークによる可視化 第9章 スクレイピングによる特徴語抽出 9.1 スクレイピングによるデータ収集 9.2 分析データ 9.3 特徴語抽出 9.4 用例検索 第10章 警察白書のトピック分析 10.1 白書から見る現代社会の諸相 10.2 分析データ 10.3 トピックモデル 10.4 階層型クラスター分析 第11章 文学作品の著者推定 11.1 文体識別指標を用いた著者推定 11.2 分析データ 11.3 箱ひげ図 11.4 対応分析 11.5 ランダムフォレスト おわりに 参考文献 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「テキストマイニングに必要な知識とはなんだろう?」 素朴な疑問に答えたテキストマイニング入門書の決定版! 本書は、「テキストマイニングに必要な知識とはなんだろう?」という素朴な疑問に直球でお答えする入門書です。テキストマイニング自体に注力して、わかりやすく解説しています。 単なるツールの説明にならないように、言語学や社会調査法の理論についても前半でていねいにふれ、さまざまな用途に応じたデータの視覚化手法を盛り込みます。また、テキスト分析やデータ分析のためのファイルの作り方についても詳しく説明します。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Rによるテキストマイニングを豊富な事例で解説! 本書は、テキストマイニングの初心者に向けて活用事例を解説した入門書です。実務ですぐに応用したい人や、すでにほかの分析ツールを使っている方が参考にできる活用事例も豊富に掲載しています。 また、実際のレポートや、データの収集からテキスト整形などの前処理、分析対象とする単語や品詞の頻度集計、分析対象に合わせた統計手法の選定、分析結果の可視化まで、分析プロジェクトにおける一連の流れを省略せずに解説しました。 読者が実際にRによるテキストマイニングの分析ができるように最大限配慮しています。 はじめに Part I Rによるテキストマイニング 第1章 テキストマイニングの活用 第2章 Rの活用 Part II 日本語テキストマイニングの活用事例 第3章 授業評価アンケートの分析 第4章 オンラインレビューを用いたクチコミ分析 第5章 スクレイピングによる特徴語抽出 第6章 Twitterにおける話題と感情の抽出 第7章 警察白書のトピック分析 第8章 文学作品の著者推定 Part III 英語テキストマイニングの活用事例 第9章 政治演説の言語分析 第10章 文学テキストの類型化 おわりに
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習で捗るテキストマイニング! 機械学習を用いた本格的なテキストマイニングをやさしく解説! 本書は、フリーの分析ツールであるRを用いて、機械学習による大規模なテキストデータ解析の手法などをわかりやすく解説した書籍です。 (1) ウェブからのテキストデータの自動収集、(2) 生の「きたない」データを分析しやすい「きれいな」データにするための前処理、(3) 大規模データを解析するための機械学習の手法、(4) 分析結果を顧客や上司に分かりやすく伝えるための可視化の手法を丁寧に解説しています。 解説は、数式が苦手な読者もすんなりと読めるように、手法の原理を直感的に理解できるイラスト・図面を多用した構成としています。 主要目次 Part I テキストマイニング 第1章 自然言語処理 第2章 テキスト処理 第3章 スクレイピング Part II 機械学習 第4章 データハンドリング 第5章 教師あり学習―回帰 第6章 教師あり学習―分類 第7章 教師なし学習
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ユーザーの行動、分析できますか? --「資料請求なし・訪問30回」のユーザーが商品を購入する確率と購入の要因を求めよ 【対象読者】 ビジネスの現場で、Excelを利用した統計分析を行う担当者の方 【特徴】 本書は、データを扱う場面で必須となる「ビジネス統計分析」の基本を まとめた書籍です。ビジネスシーンで求められる問題解決には、仮説の検証、 データの正確な読み取りが不可欠です。 本書では統計学の基礎も触れているので、統計学の基礎を学びながら、 データを読み解く力(具体的には仮説を立てたり、検証したりすること)が養えます。 第3版となる本書では、ビジネスの現場で最近利用されてきている 「ロジステック回帰分析」の手法も追加。モデルの選択、交互作用等、不十分な 箇所はまだまだありますが、意味がわからないまま、いきなりRで1行書く前に、 オッズ比、尤度、最尤法、log、ネイピア数e等の概念の理解にお役立てください。 また本書の刊行と同時にリニューアルしてリリースする多変量解析アドイン 「ビジネス統計」の導入部分と利用方法の事例を盛り込んでいます。 【読者特典】 多様な統計処理ができる多変量解析アドイン「ビジネス統計」を 著者サイト「メディアチャンネル」からダウンロード提供しています。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
5.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております】 問題解決に即効 ビジネス統計学の基本とテクニック 「どうしたら商品は売れるのか」「集客に不足しているものは何か」など、ビジネスでは様々な問題の解決が求められます。そのためには仮説の検証、データの正確な読み取りが必須です。そこで役立つのが「ビジネス統計学」です。 本書は問題解決に効く、ビジネス統計学の基本と分析手法をまとめました。難しい数式は極力使わず、丁寧な解説を心がけているので、統計学をはじめて学ぶ人も安心! 仕組みをしっかり理解して、テクニックを活用できるようになります。多様な統計処理ができるアドインも無料で提供しています。日々の問題解決に頭を抱えるビジネスパーソンにおすすめの1冊です。 ※本電子書籍は同名出版物を底本とし作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております】 市場調査と分析する力が身につく 消費者の嗜好が細分化されてきている現在、商品やサービスの開発段階における市場調査と市場分析がますます重要になってきています。 本書は企業の企画開発部門、マーケティング担当者の方に向けて、調査設計から始まり、集めた(既存)データを分析する手法について解説した書籍です。専用の高額なソフトではなくExcelを用いて分析していますので、すぐに実践できます。 また業種業界を問わずニーズのある「既存商品評価」「新商品開発」「顧客満足度アップ」について、具体的な事例をもとに丁寧に解説していますので、実際のビジネスの現場で役立てることができます。本書があれば、市場調査と分析する力がつくこと間違いなしです。 ※本電子書籍は同名出版物を底本とし作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
4.0データサイエンティストと呼ばれる職種が登場して、いまや10年以上が経過しようとしています。ビッグデータやディープラーニングなど技術的な流行も後押しして、AI・データ分析プロジェクトに取り組む企業も増えました。また、データサイエンス、データエンジニアリングに関する技術情報は次第に増え、データ分析コンペティションの盛り上がりもあって技術的な知識を持つ方が増えているのは事実です。ところが、実際にAI・データ分析プロジェクトに取り組んでみると、そううまくはいかないようです。プロジェクトを進めるには技術知識だけでなく「ビジネス⼒」が必要なのです。 そこで、本書はこれまでメインテーマとして語られることのなかった「ビジネス⼒」に焦点をあてて、データ分析プロジェクトを一通り解説していきます。プロジェクトの⼊⼝として「組織の立ち上げ方」から「案件獲得」にふれ、続く実際のデータ分析プロセスにおいては、課題とゴールを明確にして、分析結果は出して終わりではなく共有、評価のサイクルが必要であることを解説します。最後に出⼝となる「収益化」に関する情報をまとめます。 先を行くデータ分析者達は、これまでさまざまな罠にかかり、見えない落とし穴にはまっても奮闘してノウハウを蓄積してきたのがこの10年です。これからAI・データ分析プロジェクトに取り組む方/関わる方へ向けて、先人たちのノウハウをまとめたのが本書です。
-
4.0
-
-
-
5.0ごく普通のエンジニア仲間3人が、起業からわずか数年で100名規模の会社を作り上げ、数十億円で企業を売却するまでの経緯をもとにした経済小説です。 誰も教えてくれない会社設立の方法、組織が大きくなるにつれて生じる軋轢など、乗り越えるべきさまざまなハードルを、エンジニアならではの性格と発想で乗り越えていきます。問題に直面したときの判断のよりどころとなったのは次の3つの考えです。 - 自由な働き方を追求すること - 有名になることをいとわないこと - 売上にはシビアな判断をすること これらの考えを経営判断に取り入れることで会社は急成長しました。実は3人の性格はバラバラで、これらの考えをピッタリと表すのが3人の性格なのです。創業から売却までのさまざまなストーリーが凝縮されていて、起業したいと考えるエンジニアだけでなく、組織の管理に悩む現役のマネージャ/経営者にとっても重要なヒントが見つかる1冊です。
-
3.3ビッグデータ分析をきっかけとして「機械学習」に注目が集まり,ビジネス利用への検討がはじまっています。しかし,実際に「機械学習」を理解しているエンジニアや分析担当者は少なく,うまく活用できていないのが現実です。「機械学習」を利用するにはアルゴリズムの理解,プログラミング技術,ビジネス知識などが必要になってきます。本書では,第1部で機械学習のアルゴリズムやビジネスへの応用方法,流行の深層学習などに触れ,第2部ではPythonを用いた機械学習,画像認識,推薦エンジンなど,サンプルコードをもとに手を動かして試すことができます。機械学習分野で先頭を走る著者陣が,面白く,わかりやすい解説でお届けします。
-
4.2