情報科学 - 秀和システム作品一覧
-
3.5
-
3.0
-
3.5※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIエージェント時代の標準規格MCP(モデル コンテキスト プロトコル)の入門書。 大バズりしたスライド「やさしいMCP入門」の著者が新技術の基礎をやさしく解説。 Chapter 1 MCPとは Chapter 2 MCPの仕組み Chapter 3 MCPを実際に触ってみよう Chapter 4 MCP対応クライアント紹介 Chapter 5 MCPサーバー紹介 Chapter 6 MCPサーバー紹介(開発者向け) Chapter 7 MCPがもたらすビジネスインパクト Chapter 8 MCPの展望と今後の発展
-
-
-
-
-
-
-
4.0
-
-
-
-
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 RPA(Robotic Process Automation)は、ソフトウェア化されたロボットで、パソコンやサーバに対して人手で行われている業務を自動化する技術です。AIやIoTなどのデジタル技術と同じく、経営や業務の革新に貢献すると期待されています。本書は、RPAの市場動向および導入前の心得から「五段階」導入プロセス、用語までを図表をつかってわかりやすく解説した入門書です。RPAに興味のある方、導入を検討されている方などにおすすめします。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ⦅生成AIの登場で社会が変わった⦆ 人工知能の最前線 AI技術の可能性と限界を知り 将来の社会の変革に備える。 ⦅最新用語とメカニズムを基礎から学ぶ!⦆ ●生成AIとは ●トランスフォーマーモデルとは ●大規模言語モデル(LLM) ●LLMの覇権を巡る争い ●AIの弱点となる「ハルシネーション」 ●独自情報に対応する「RAG」 ●続々と登場する「日本語LLM」 ●自律学習型汎用AI ●AI業界の覇者「NVIDIA」の今後の戦略 ●AGIとSGI、強いAIと弱いAI ●バーチャルとロボットとAIエージェント ●AIの開発、機械学習、モデルの作成・推論 ------------------------------------------------------ 最近ChatGPTとか生成AIとか、Office AIとか人工知能(AI)のことを知らないとマズイようだが、簡単に知りたい。 いまビジネスマンが知りたい、現在の人工知能がビジネス的にどこまで活用できるのかという疑問がわかる本。 進化の激しいAIについて、最新の状況をさっと知ることができます。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 IoT導入・運用というとセンサーやデバイスに注目しがちです。しかしIoTをうまく構築するためには、ネットワークとサーバを含むシステム全体を理解する必要があります。本書は、これからIoTシステムについて学習したい方、導入の検討をしている方を対象に、IoTとはどのようなものか、どうすればうまく構築できるのか、そして導入・運用のポイントまでをやさしく解説します。自動化・無人化を進めるコア技術がよくわかります。
-
3.0
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データマイニングは、大量のデータを効率よく整理して、ビジネスなどに有用な知見を引き出す作業です。本書は、データマイニングで使われる専門用語や基礎知識の解説から、データ解析に必要な統計学の知識、最前線で使われているテクニックの紹介までを、豊富なイラストを交えながらわかりやすく解説した入門書です。データをどのように集めるのか、前処理とは何か、精度など知っておくべきことがまとめて身につきます!
-
3.6
-
3.7※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 いま多くの企業で、データサイエンスを理解できる人材の需要が急増しています。本書は、データサイエンスや機械学習の概要を、初心者向けに難しい言葉や難解な数式を省き、わかりやすい言葉で解説した入門書です。「データサイエンスって何?」からはじめて、よく聞くキーワードや押さえておきたいトピック、ビジネスシーンでデータサイエンスがどう生かされているのかという最新事例まで、ポイントを絞って具体的に紹介します。
-
3.5
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Transformerを用いた代表的検出モデル「DETR」を中心に、ViT(Vision Transformer)による物体領域の検出、「CenterNet」による中心点予測型の検出、言語生成型アプローチである「Pix2Seq」、さらには「RetinaNet」などのCNN系アーキテクチャまで幅広くカバー、近年の物体検出分野の主要モデルを、比較・理解しながら習得できます。 全編にわたり、「Keras」(一部対応)と「PyTorch」の両ライブラリに対応しており、モデルの構築、推論、可視化、バックボーン(ResNet101/152)の変更や、COCOデータセットを用いた大規模推論処理の実装までを丁寧に解説しました。 画像分類のその先…「どこに、何があるのかを検出する」という実践的課題に挑むすべての人にお勧めの一冊です。 1章 開発環境について 2章 ViTモデルによる物体領域の検出(Keras) 3章 ViTモデルによる物体領域の検出(PyTorch) 4章 CenterNetによる物体領域の検出(PyTorch) 5章 DETRモデルによる物体検出(ResNet101) 6章 ResNet152をバックボーンとするDETRによる物体検出 7章 COCOトレーニングセットを使用下物体検出 8章 事前トレーニング済みDETRモデルによる物体検出 9章 Pix2Seqモデルを用いた物体検出(PyTorch) 10章 RetinaNetによる物体検出(Keras)
-
-令和のビジネスマンにはデータ分析が求められています。 もはや特定の専門家だけのものではありません。 大人気書籍「Python実践 データ分析 100本ノック」の著者が、 数字で考える思考技術を伝授します。 --- 『AIを使う側になる』 数字で考える技術と 現代に必要な発想法。 実はデータ分析の世界は、想像以上に “クリエイティブ”で“楽しい”のです。 ―――― データを活用するためのツールや技術が広まっています。 TableauなどのBIツールなどで、今ある手持ちの数字を、デジタルデータ化するという流れは非常に多く、グラフ化、ビジュアル化、データ基盤やダッシュボードなどは多くの企業で導入されています。 しかしながら、言われたとおりにデータをビジュアライズすることができても、その意味を理解するデータ分析脳が育っていないので、手順通りにやってみたにとどまり、説明ができずにデータが活用できていません。 本書は、その何故と方法を結び付け、データ分析をするための思考を学ぶことのできる必読の書籍です。
-
3.7