検索結果
検索のヒント
検索のヒント
■キーワードの変更・再検索
記号を含むキーワードや略称は適切に検索できない場合があります。 略称は正式名称の一部など、異なるキーワードで再検索してみてください。
■ひらがな検索がおすすめ!
ひらがなで入力するとより検索結果に表示されやすくなります。
おすすめ例
まどうし
つまずきやすい例
魔導士
「魔導師」や「魔道士」など、異なる漢字で検索すると結果に表示されない場合があります。
■並び順の変更
人気順や新着順で並び替えると、お探しの作品がより前に表示される場合があります。
■絞り込み検索もおすすめ!
発売状況の「新刊(1ヶ月以内)」にチェックを入れて検索してみてください。
-
5.0数学の理論の公理系にあらわれる基本的な用語は無定義なものであるべきだという公理主義の思想。この思想は、初等幾何学すなわちユークリッドの平面幾何学をめぐる考察のなかから生まれた。その意味で初等幾何学は現代数学の母であり、いまなお「生きた」数学の理論である。本書はヘルマン・ワイルの提唱した公理系にもとづいて、ユークリッドが展開した初等幾何学の再構成を試みる。平面を2次元の内積空間と捉えることで、数学の種々様々な理論と自然につながり合う「現代的な」幾何学が得られるのだ。幾何学が本来もつ証明の面白さを損なわないよう初学者への配慮も溢れる一冊。
-
-数学は学問のなかでもっとも確実なもの、疑えないものと考えられている。数学の確かさは、出発点となる命題、つまり「公理」から、「証明」によって新しいことを導き出すという推論のしくみによって保証される。しかし公理や証明それ自体の確からしさは、いかにして基礎づけられるのだろうか? カントールの創りだした集合論が実は矛盾含みであることをラッセルが明らかにすると、数学者たちはこの問題に目を向けざるをえなくなったのだった。公理とは、証明とは何か? 本書はあらゆる数学の基礎となる公理系のしくみ、そして数学全体を見渡す理論である証明論の初歩を、具体例をもとに平易に解説した「数学の基礎」入門である。