検索結果
検索のヒント
検索のヒント
■キーワードの変更・再検索
記号を含むキーワードや略称は適切に検索できない場合があります。 略称は正式名称の一部など、異なるキーワードで再検索してみてください。
■ひらがな検索がおすすめ!
ひらがなで入力するとより検索結果に表示されやすくなります。
おすすめ例
まどうし
つまずきやすい例
魔導士
「魔導師」や「魔道士」など、異なる漢字で検索すると結果に表示されない場合があります。
■並び順の変更
人気順や新着順で並び替えると、お探しの作品がより前に表示される場合があります。
■絞り込み検索もおすすめ!
発売状況の「新刊(1ヶ月以内)」にチェックを入れて検索してみてください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 マーケティングプロジェクトを成功に導く分析プロセスがサクッと学べる! ビジネスの現場では多くのデータやAIの活用に関する取り組みが行われています。このようなプロジェクトが増える一方で、思うような結果が得られずにプロジェクトを中止せざるを得なかったとの声も聞こえてきます。 そこで本書では、正しく的確にAIを活用したデータ分析を導入できるよう、具体的な活用シーンに示しながら、「要件定義」「分析マスターデータ作成」「基礎集計・可視化」「モデリング」「評価・実装」の分析プロセスにおける知識やテクニックを丁寧に解説します。 Part 1 プロセスの一般論 Part 2 顧客データ × クラスタリング分析モデル Part 3 広告効果データ × 重回帰分析モデル Part 4 キャンペーンデータ × ロジスティック回帰分析モデル Part 5 調査データ × コレスポンデンス分析モデル Part 6 Eコマースデータ × 協調フィルタリング分析モデル Appendix AI開発の成功パターン(EDA)と失敗パターン(LISA)
-
4.5※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、マーケティングをテーマに因果推論の基本から応用までを解説した一冊です。因果推論という科学的な手法をマーケティングに応用することで、「どの広告・施策がどれだけ効果をもたらしたのか?」という問いに答えます。 ただし、因果推論を用いたマーケティングの実験やその結果を紹介するのではなく、あくまで「マーケティングを舞台として因果推論を学ぶ」というスタンスであることにはご留意ください。 因果推論なら、様々な変数が入り組む現場でも真の効果を見極めることができます。本書では、観察研究を実験相当へ近づける理論と手法を詳説。DAG、傾向スコアなど、マーケターにとって本当に使える実践ノウハウが網羅的に身につくでしょう。データを使った、説得力のある戦略立案を実現するための必携書です。