あらすじ
※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。
「ぼく」と三人の数学ガール(ユーリ、テトラちゃん、ミルカさん)のトークを通して、「中高生レベルの数学を楽しく学ぶ『数学ガールの秘密ノート』シリーズの最新作。本書のテーマは、多くの人が苦手意識をもつ複素数です。
抽象的で理解しにくい複素数の世界を、多数の図版を使ってやさしく解き明かしていきます。登場人物たちの楽しい対話を通して、読者は、複素数の性質を正しく深く理解することができるでしょう。
数学に関心を持ち始めた中学生、複素数に苦手意識を持っている高校生・大学生はもちろんのこと、より進んだ学びを求める方も楽しく読むことができる数学読み物です。
感情タグBEST3
Posted by ブクログ
数学ガール秘密ノートで自分にとっての最後の1冊を読み終わりました。今回は「複素数の広がり」という副題となっています。複素数は高校の数学で習いましたが、「2乗すると-1になる」というそれまでなかった概念が導入されたということは理解していたと思うのですが、それで何が便利になるのか、どういったことに使われるのかについては教えてもらえなかったと記憶しています。
数学ガールでは用途については特に説明されていませんでしたが、複素数を常に図形で表してみたり、実数との違いについて丁寧に説明したり、共役複素数という互いに虚数部分の絶対値が等しい複素数について図形で確かめながら説明がなされ、「嘘」の概念ではなく、実際に図形上確認のできる「実際の」数値的概念であることが理解できるようになっています。
a+biの共役複素数はa-bi
a-biの共役複素数はa+bi
また複素数を三角関数で表現できることも確認した上で、複素数の積は加法定理を介して偏角の和と単位円に対して絶対値をもって図形上表現できることも学びました。
その後、先生からのメッセージで「正五角形を複素数を介して図形上表現」し、テトラちゃんの希望から、その頂点を「実際の複素数」で表すといったことも行いました。
最後に複素数に対して3次元数、4次元数を表現することができるのかどうかを証明していきます。そこではまず3次元数は矛盾があることを証明しました。また4次元数はテトラちゃんの「ベクトルで表現する」というアイディアとその方針では一部の矛盾を内包していることを確認します。しかしそのアイディアを生かして積の交換法則を回避した複素共役を利用した数式の変換で表現できることを仲間と一緒に証明するのです。
Posted by ブクログ
36年前は複素数平面は高校数学の範囲外だったので、複素数を平面上にプロットし、極形式で表現する辺りからとても興味深く読み進めることができた。後半の三元数、四元数への展開も面白かった。
Posted by ブクログ
本編より易しめに扱った「秘密ノート」でも、後ろ半分くらいはたいていついて行けなくなりますが、はじめのユーリのあたりで、「普通にわかる範囲の算数・数学」から、各巻のテーマの世界へ緩やかにつないでくれるのがありがたいです。