統計モデリング作品一覧
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◆◆ロングセラー、10年ぶりの改訂◆◆ ・全ページをフルカラー化したので、図表もさらにわかりやすく! ・非定常時系列データ解析の基本を加筆(第8章を新設) データの見方や考え方から述べられた本当にほしかった入門書。 それぞれがもつ「予測したい」課題に自ら取り組むための基本を1冊にまとめた。 「モデリングが使えるということはわかった、これからは使いたい!」という人は必読。 統計のプロ中のプロが伝授する「匠の技」「匠の知恵」コラムも多数収録。 【推薦の言葉】 本書は予測のための統計的モデリングの方法を,基礎から具体的実践例に亘るまで明快に解説している特色ある著作である. 平易な記述でベイスの定理などの基礎から粒子フィルタやデータ同化などの先端的な内容までをカバーしている. 便利なブラックボックス型のAI予測では飽き足らず,自分が抱える具体的な課題に対して自らのアイデアを投入し,説明可能な予測をしてみようと思い立った人には必読の書である. ――北川 源四郎先生(東京大学特任教授、数理・データサイエンス教育強化拠点コンソーシアム 議長) 【まえがき(抜粋)】 統計学の強みは,生成モデルの構築に関する,さまざまな知見とノウハウの蓄積,またモデルに基づく意思決定の綿密な評価にある.ある種,モデリングに関する匠の技とも言える暗黙知に,統計学の存在感が増していくであろう.読者が本書を通じてこの暗黙知を習得されることを期待したい. 【目次】 〈基礎編〉 第1章 予測とは何かを考える 第2章 確率による記述:基礎体力をつける 第3章 統計モデル:予測機能を構造化する 第4章 計算アルゴリズム1:予測計算理論を学ぶ 〈展開編〉 第5章 計算アルゴリズム2:モデルを進化させる 第6章 粒子フィルタ:予測計算を実装する 第7章 乱数生成:不確実性をつくる 〈実践編〉 第8章 時系列解析の基本:傾向をつかむ 第9章 経験知の総結集:売上予測の精度を上げる 第10章 データ同化:シミュレーションの予測性能を向上させる 第11章 確率ロボティクス:お掃除ロボをつくる ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
-
-※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書では、確率的グラフィカルモデルの統計的機械学習理論について、画像処理とパターン認識に応用例を絞りつつ概説することから始める。特にパターン認識では、クラス分類問題という視点において、多値ロジスティック回帰モデルと制約ボルツマンマシンという2つの確率的グラフィカルモデルを通し、深層学習の基礎となる数理を紹介する。その上で、グラフ構造の疎(Sparse)性という深層学習とは真逆の性質を元に急速に展開しつつあるスパースモデリングという新しい研究領域の最近の理論的基盤の深化の様子を、連続最適化問題という視点から解説する。
-
4.8近年,確率分布を使った数理モデルをデータにあてはめることで現象の理解と予測を促す「統計モデリング」が注目されている。既存の手法と比べた時の利点は解釈のしやすさと予測のよさの両立である。解釈がしやすいので,モデルに含まれる値を推定した後で次のアクションにつなげやすい。このため現実のデータ解析に極めて有効な手法と評価されている。 背景には,コンピュータの計算速度の向上,大規模のデータが入手しやすくなったこと,モデリングの試行錯誤を極めて簡単にする確率的プログラミング言語の進歩がある。こうした言語の中から,本書ではフリーソフトであるStanを紹介する。Stanは優れたアルゴリズムを搭載し開発も急速に進んでいるパッケージであるが,R用のパッケージであるRStanが並行して公開されているためRから手軽に利用することができる。Stanの記述力は高く,階層モデルや状態空間モデルをわずか30行ほどで書くことができ,推定計算も自動で行なわれる。さらに解析者の問題にあわせたオーダーメイドの拡張が簡単に可能だ。 一般にベイズ統計を扱う書籍は初歩的な内容にとどまるものか,難解な数式が多く実際の問題への応用が難しいものが多い。しかし,本書はこれらの書籍とは一線を画し,現実のデータ解析を念頭に置いて非常に実践的な内容に仕上げた。本書でStanとRを介して身につけた統計モデリングの考え方は,Stanの文法が変化しても,他の統計モデリングツールを扱う場合にも,大いに役に立つと確信している。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 実験、調査、検査などで得たデータに統計モデルを用いて解析する手法を例題でやさしく解説します。 本書では対象データに適した統計分布、つまり統計モデルを適用し、解析する方法を基礎から説明します。この場合、「最小二乗法」は使えないため、「最尤法」を使います。データに合った統計モデルを使うことで、より精度の高い予測、判断ができます(この解析するプロセスを統計モデリングとよぶ)。さらに、この解析手法はベイズ統計学に繋がっていきます。 はじめに 第1章 データ解析のための準備 1.1 四則計算と対数・指数計算 1 四則演算 2 指数と対数 1.2 条件(場合)分け 1.3 順列と組み合わせ 1.4 集合 解答 第2章 統計および確率 2.1 データ 2.2 度数分布表とヒストグラム 2.3 データの代表値 1 平均 2 中央値 3 最頻値 4 分散 2.4 事象と確率 2.5 確率の性質 2.6 条件付き確率 2.7 独立事象 2.8 確率変数 1 確率変数とは何か 2 確率変数の平均と分散 3 確率変数の加法と乗法 解答 第3章 確率分布 3.1 離散型確率分布 1 ベルヌーイ分布 2 二項分布 3 ポアッソン分布 4 負の二項分布 5 多項分布 6 超幾何分布 3.2 連続型確率分布 1 正規分布 2 対数正規分布 3 指数分布 4 ワイブル分布3 5 ガンマ分布 6 ベータ分布 7 一様分布 3.3 確率分布に基づくデータの捉え方 3.4 代表的な確率分布の平均と分散 3.5 確率分布の近似 1 二項分布の正規分布への近似 2 ポアッソン分布の正規分布への近似 3 超幾何分布の二項分布への近似 解答 第4章 確率分布へのデータのフィッティング:最尤法 4.1 確率分布へのデータのフィッティング 4.2 モーメント法 4.3 最尤法 1 最尤推定量の求め方 2 パラメーターの存在範囲 3 各種確率分布の適用 解答 第5章 統計モデルの適用 5.1 統計モデルとは何か 5.2 計数データと計量データ 5.3 離散型および連続型統計モデル 5.4 代表的な統計モデルの特性 1 二項モデル 2 ポアッソンモデル 3 負の二項モデル 4 正規モデル 5.5 統計モデルの選択 5.6 統計モデルの比較指標 5.7 尤度の重要性 5.8 まとめ:統計モデルの適用手順 1 対象とするデータの特徴の把握 2 データに適した統計モデルの選択 3 候補統計モデルによるデータ解析 4 最適な統計モデルの選択 5 統計モデルの検証 6 総合的判断 第6章 計数データの解析:単一条件下 6.1 二項モデルによる解析 6.2 多項モデルによる解析 6.3 ポアッソンモデルによる解析 6.4 負の二項モデル 6.5 離散型統計モデルの選択 6.6 正規モデルによる解析 6.7 0を含まない計数データの解析 6.8 0が過剰の計数データの解析 6.9 度数分布データの解析 解答 第7章 計量データの解析:単一条件 7.1 正規モデル 7.2 指数モデル 7.3 ワイブルモデル 7.4 連続型統計モデルの選択4 7.5 確率分布からの乱数データ生成 解答 第8章 複数条件下のデータ解析 Ⅰ 8.1 用量反応関係 8.2 回帰分析 8.3 統計モデル 8.4 最小二乗法 8.5 正規分布に基づいた単回帰分析 8.6 正規モデルによる重回帰分析 8.7 比率データの解析:ロジスティック回帰分析 8.8 計数データの解析 解答 第9章 複数条件下のデータ解析 Ⅱ 9.1 指数回帰モデル 9.2 ワイブル回帰モデル 9.3 回帰分析のポイント 解答 第10章 各種のデータ解析手法 10.1 ブートストラップ法 10.2 モンテカルロ法 10.3 応答曲面法Response Surface Method 解答 練習問題 解答 索引
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Excelを用いてデータを解析し、実践的な統計処理をマスターする!! 「どのような場合に、どのような統計的手法を用いれば、得られたデータから新たな知見が得られるか」ということを中心に、実際に企業で実践した、また、現在、大学で実践している例を交えて、丁寧に解説します。統計および確率の概念や、それぞれの解析手法の理論については、極力数式を省略して簡単にそのエッセンスを解説し、理解を深めていただきます。 第1章 はじめに~統計の知識はこんなに大事!~ 第2章 データの特徴をつかもう 第3章 正規分布とは何なのか? 第4章 梅干しは本当に減塩か?~母平均を推定する~ 第5章 新薬は高血圧に有効か?~統計的仮説検定とt検定~ 第6章 専有面積が広ければ賃料も上がる?~相関~ 第7章 家賃は築年数だけで決まる?~統計モデリング(回帰分析)~ 第8章 補遺 8.1 数学的説明 8.2 分析ツールのセットアップ 8.3 練習問題の解答と解説
-
5.0★「いつか学ぼう」と思っていたなら、今!★ 初歩から実装まで悩まず進める! GISの基本から始まり、今ホットな時空間データの解析まで解説。 サンプルコードと出力結果が詳細だから実践しながら学べる、最高のガイド! [主な内容] 第1部〈導入編〉 空間データの統計解析の基礎 第1章 はじめよう! 地理空間データの統計解析 第2章 統計学の基本 第3章 回帰モデルの基本 第4章 Rの基本 第5章 Rによる空間データ処理・可視化の基本 第2部〈基礎編〉 地域データの記述統計 第6章 空間相関と近接行列 第7章 大域空間統計量 第8章 局所空間統計量 第3部〈基礎編〉 地域データの統計モデリング 第9章 同時自己回帰モデル 第10章 条件付き自己回帰モデル 第4部〈基礎編〉 点データの統計モデリング 第11章 空間過程とバリオグラム 第12章 地球統計モデル 第13章 地理的加重回帰 第5部〈応用編〉 非ガウス空間データの統計モデリング 第14章 一般化線形モデルの基礎 第15章 空間相関を考慮した一般化線形モデル 第16章 INLAによる空間モデリング 第6部〈応用編〉 時空間データの統計モデリング 第17章 時空間データの統計モデリングの概略 第18章 時空間CARモデル 第19章 時空間過程モデル 第7部〈応用編〉 一般化加法モデルと時空間モデリング 第20章 一般化加法モデルの基礎 第21章 一般化加法モデルによる時空間モデリング 第22章 加法モデルによる空間可変パラメータモデリング 補章 空間統計と機械学習
-
4.4「基本をより実践的に!」学べる新シリーズの第一弾は、「統計モデリングの世界」へのファーストブック。基礎から学べる超入門!・チュートリアル形式だから、すぐに実践できる!・統計、確率、ベイズ推論、MCMCの基本事項から、やさしくサポート!・brmsやbayesplotなどのパッケージの使い方も、しっかり身につく!・一般化線形モデル(GLM)→一般化線形混合モデル(GLMM)→動的線形モデル(DLM)→動的一般化線形モデル(DGLM)を体系的に学べる!【本書のサポートページ】https://logics-of-blue.com/r-stan-bayesian-model-intro-book-support/ 【実践Data Scienceシリーズ】 「基本をより実践的に!」を合言葉に、データサイエンスで用いられる各種手法の基本を、プログラミングの実装とともに解説していきます。はじめて学ぶ大学生、大学院生、ソフトウェアエンジニアに向けた注目の新シリーズです。【主な内容】1部 【理論編】ベイズ統計モデリングの基本 1.はじめよう! ベイズ統計モデリング 2.統計学の基本 3.確率の基本 4.確率分布の基本 5.統計モデルの基本 6.ベイズ推論の基本 7.MCMCの基本/2部 【基礎編】RとStanによるデータ分析 1.Rの基本 2.データの要約 3.ggplot2によるデータの可視化 4.Stanの基本 5.MCMCの結果の評価 6.Stanコーディングの詳細/3部 【実践編】一般化線形モデル 1.一般化線形モデルの基本 2.単回帰モデル 3.モデルを用いた予測 4.デザイン行列を用いた一般化線形モデルの推定 5.brmsの使い方 6.ダミー変数と分散分析モデル 7.正規線形モデル 8.ポアソン回帰モデル 9.ロジスティック回帰モデル 10.交互作用/4部 【応用編】一般化線形混合モデル 1.階層ベイズモデルと一般化線形混合モデルの基本 2.ランダム切片モデル 3.ランダム係数モデル/5部 【応用編】状態空間モデル 1.時系列分析と状態空間モデルの基本 2.ローカルレベルモデル 3.状態空間モデルによる予測と補間 4.時変係数モデル 5.トレンドの構造 6.周期性のモデル化 7.自己回帰モデルとその周辺 8.動的一般化線形モデル:二項分布を仮定した例 9.動的一般化線形モデル:ポアソン分布を仮定した例
-
-◆◆数式とコードの距離が近いJuliaで一生モノの考え方を身につけよう!◆◆ 線形代数、微積分、最適化、確率・統計の基本的な計算から、 ハミルトニアンモンテカルロ法、階層ベイズ、状態空間モデルの原理までをていねいに解説! [サポートページ] https://github.com/sammy-suyama/JuliaBayesBook [主な内容] 第1章 Juliaの基礎 1.1 Juliaとは 1.2 基本文法 1.3 パッケージの利用 1.4 グラフの描画 第2章 数値計算の基礎 2.1 ベクトル・行列計算 2.2 統計量の計算 2.3 統計量と確率分布のパラメータ 2.4 微分計算 2.5 関数の最適化 2.6 最適化によるカーブフィッティング 2.7 積分計算 第3章 確率計算の基礎 3.1 表を使った確率計算 3.2 式を使った確率計算 3.3 連続値における周辺分布と条件付き分布 3.4 確率的試行のシミュレーション 第4章 確率分布の基礎 4.1 確率分布とは 4.2 Juliaでの確率分布の扱い(Distributions.jl) 4.3 離散型確率分布 4.4 連続型確率分布 4.5 統計モデルの設計 第5章 統計モデリングと推論 5.1 ベルヌーイモデル 5.2 線形回帰 5.3 ロジスティック回帰モデル 第6章 勾配を利用した近似推論手法 6.1 なぜ勾配を利用するのか 6.2 ラプラス近似 6.3 ハミルトニアンモンテカルロ法 第7章 発展的な統計モデル 7.1 ポアソン回帰 7.2 階層ベイズモデル 7.3 状態空間モデル
-
4.0データが価値を生み出す資源として脚光を浴び、ソフトウェアで手軽にデータ分析ができる時代を迎えました。一般の企業/組織では、機械学習や統計モデリングなどの数理的な理論の活用がはじまっています。 数理モデリングは、さまざまな現象の観測および考察を重ねて得られた発見を抽象的なナレッジに落とし込む手法です。「どんな目的を達成するために」、「どの程度のコストで」、「どんな問題を解くべきか」というような課題に対して、適切な手法でアプローチするための技術が数理モデリングであり、多くのエンジニア、ビジネスマンにとって、今後ますます重要視される知識と言えます。 本書は全7章で構成し、1章では「数理モデルの考え方」をごく単純な例を用いて解説します。続く章では、購買予測、離脱予測、意思決定、オンライン広告、ネットワーク科学、画像解析などの社会実装を通して数理モデリングがもたらす恩恵を解説していきます。数理科学に携わる気鋭のデータサイエンティスト陣による理論解説は、きっとあなたのビジネスを加速させるでしょう。
-
4.4※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データ分析のための手法は、統計学の考え方に基づいています。だから、本格的なデータ分析に取り組むためには、統計学の知識と考え方を身に着けることが不可欠。にも関わらず、既存の統計学の本は「数学的な記述ばかりの難解な専門書」もしくは「広く浅くの超入門書」ばかりで、「データ分析の前提となる統計学」を本格的に学ぶには厳しい状況だと言わざるを得ません。対して本書は、データ分析には必須な仮説検定から統計モデリング、さらに因果推論、ベイズ統計、機械学習、数理モデルまで幅広いトピックを網羅的に扱っています。 記述については最大限にわかりやすく、数学的な説明をできるだけ減らし、図を多用することで、数学に自信のない読者の方でも読み通せるように工夫しました。統計学に苦手意識・不安のある方、文系の方やこれからデータサイエンスを本格的に始めてみたい方、生物学・医学・心理学などの研究分野でデータ分析が必須の学生の方など、統計学をきちんと学びたい全ての方に向けた一冊です。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は統計モデルの発想、練り上げ、検証、改良にかかわる「統計モデリング」の過程を理解し、扱えるようになることを目的する。第1章では基礎論としてデータの関係を統計モデルの形で記述する方法を解説し、第2〜4章では時系列解析(過去と将来のデータの因果関係)、空間統計学(測定した位置とそれ以外の位置との関係性)、医療統計(診断における統計的検定の使い方)の分野における統計モデリングの具体例を詳述する。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIの要である機械学習は、結果を導き出す過程がブラックボックス化する問題があり、AI実用化の障害となっている。その解決策として、丹念なデータ分析によりデータの背景にある現象を統計モデルで表現する、本来の意味での「データサイエンス」の活用が期待されている。メカニズムが理解可能なモデルをAIの頭脳に使うことで、AIの透明化——すなわち説明可能なXAIも実現できる! 本書ではデータサイエンスの考えに基づく統計モデリングを解説し、機械学習の代表的な手法を、Rを用いて体験していく。本書を読み込めば、機械学習を用いた探索的データ解析の本質を学ぶことができる。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 機械学習エンジニア必見! ベイズ統計の基礎から ベイズ統計モデリングまで Pythonプログラムをもとに丁寧に解説! 【本書の内容】 ベイズ統計の基礎知識からベイズ統計モデリングまで、 Pythonのプログラムをもとにわかりやすく解説した書籍です。 前半ではベイズ統計の理解に必要な確率の説明からはじまり、 ベイズ統計学、ベイズの定理、ベイズ推定の基本事項をわかりやすく解説。 後半では線形モデルを例題として、MCMC法を用いたモデルの推定方法について解説します。 【本書で扱うベイズの定理について】 事後分布を求める際に問題となる、ベイズの定理の積分計算を回避する方法を2つ紹介します。 1つは、共役事前分布によって事後分布の解析解を求める方法です。 そしてもう1つは、MCMC法を使用することで数値計算によって事後分布を推定する方法です。 MCMC法はPythonのライブラリのPyMC3を用いて手軽に実践することができます。 【本書の扱うベイズ統計の範囲】 ・確率の基本 ・ベイズの定理 ・ベイズ推定 ・MCMC法:マルコフ連鎖モンテカルロ法 ・線形モデル ・一般化線形モデル 【対象読者】 ・ベイズ統計モデリングをこれから学ぼうとされる方 ・ベイズ統計モデリングの基礎知識が少ない機械学習エンジニア ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-統計学の基礎から 統計モデリング、機械学習の入り口まで しっかり学べる! 【本書の概要】 データサイエンスやAIについて学ぶ上で欠かせない 統計学の知識をPythonを利用して 基礎からしっかり学べる書籍です。 【統計学の学習にPythonを利用する理由】 Pythonは統計学を学ぶのに便利なライブラリが多数用意されており データサイエンス、AIの研究開発に数多く利用されています。 統計学の基礎を学ぶのに格好のプログラミング言語です。 【対象読者】 ・統計学の初学者 ・統計学を学びたいエンジニア 【本書のポイント】 はじめて統計学を学ぶ方でも躓かずに学習できるよう 以下の3つをもとに丁寧に解説しています。 ・データの分析方法 ・分析の意味 ・Pythonによる分析の実践 【目次】 第1部 統計学をはじめよう 第2部 PythonとJupyter Notebookの基本 第3部 記述統計 第4部 確率と確率分布の基本 第5部 統計的推定 第6部 統計的仮説検定 第7部 統計モデルの基本 第8部 正規線形モデル 第9部 一般化線形モデル 第10部 統計学と機械学習 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
-
-※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 著者が実際の現場で集めたフィールドデータを材料にして、現場視点と統計モデリング視点とで複眼的に考察し、素直にデータを見ることによってフィールドワークだけでは得られない発見を得ることが出来ることを詳説している。数理を得意としないフィールドワーカーと、フィールド経験が少なくフィールドデータに馴染みの薄い数理系の読者を対象に、赤池情報量規準AICとそれを用いたモデル評価という統計数学についての異色の入門書である。