蒲生弘郷作品一覧

  • Azure OpenAI ServiceではじめるChatGPT/LLMシステム構築入門
    4.5
    【Azure×OpenAIでChatGPTシステムを構築!】 本書はLLM(大規模言語モデル)に興味があるITエンジニアを対象に、AzureからOpenAIモデルにアクセスできる「Azure OpenAI Service」を使い、ChatGPTを利用した社内AIシステムの開発と導入を実現してもらうのが目的です。 前半では、生成AIとChatGPTモデルの基本的な概念とその仕組みを解説します。また、Azure OpenAI Serviceの概要と具体的な利用方法を解説し、プロンプトエンジニアリングについても紹介します。後半ではChatGPTを利用する社内システムの開発手法について、実際にAzure OpenAI Serviceを使いながら学んでいきます。RAGを利用した社内文章検索システムの実装を経て、LLMを組み込んだアプリケーション(Copilot)の構築へとステップアップしていきます。また、ガバナンス実現に必要な共通基盤化と責任あるAIについても解説しています。 ■目次 ●第1部 Microsoft AzureでのChatGPT活用 ・第1章 生成AIとChatGPT ・第2章 プロンプトエンジニアリング ・第3章 Azure OpenAI Service ●第2部 RAGによる社内文章検索の実装 ・第4章 RAGの概要と設計   4.1 ChatGPTの問題点と解決手法   4.2 Retrieval-Augmented Generationとは   4.3 検索システム   4.4 Azure AI Search   4.5 オーケストレータ   4.6 Azure OpenAI on your data   4.7 Azure Machine Learningプロンプトフロー   4.8 大規模言語モデル   4.9 Azure OpenAI API   4.10 まとめ ・第5章 RAGの実装と評価   5.1 アーキテクチャ   5.2 社内文章検索の実装例   5.3 会話履歴の保持   5.4 検索機能   5.5 データインジェストの自動化   5.6 RAGの評価と改善   5.7 検索精度の評価   5.8 生成精度の評価   5.9 まとめ ●第3部 Copilot stackによるLLMアプリケーションの実装 ・第6章 AIオーケストレーション   6.1 Copilot stackとは   6.2 AIオーケストレーションとエージェント   6.3 独自Copilot開発のアーキテクチャと実装   6.4 まとめ ・第7章 基盤モデルとAIインフラストラクチャ   7.1 基盤モデルとAIインフラストラクチャとは   7.2 ホスティングされたモデルの場合   7.3 公開モデルの場合   7.4 まとめ ・第8章 Copilotフロントエンド   8.1 ユーザーエクスペリエンスの基礎   8.2 LLMの不確実な応答への対処   8.3 UX向上のための参考資料   8.4 まとめ ●第4部 ガバナンスと責任あるAI ・第9章 ガバナンス ・第10章 責任あるAI ■著者プロフィール 永田 祥平:日本マイクロソフト株式会社 クラウドソリューションアーキテクト。主にエンタープライズのお客様を対象に、Azureビッグデータ分析基盤や機械学習基盤の導入・活用支援を行う。 伊藤 駿汰:日本マイクロソフト株式会社 クラウドソリューションアーキテクト/株式会社Omamori 取締役。AI/ML開発と利活用の技術支援、機械学習基盤やMLOps基盤の構築および活用の技術支援を行う。 宮田 大士:日本マイクロソフト株式会社 クラウドソリューションアーキテクト。現職では、幅広い業界のお客様へのAIの導入/活用を支援。 立脇 裕太:日本マイクロソフト株式会社 クラウドソリューションアーキテクト。現在は日本マイクロソフトでビッグデータ、クラウド、機械学習を活用した企業のデータ活用を支援。 花ケ﨑 伸祐:日本マイクロソフト株式会社 パートナーソリューションアーキテクト。現在はパートナーAIソリューションの開発支援に携わる。 蒲生 弘郷:日本マイクロソフト株式会社 クラウドソリューションアーキテクト。現在はソリューションアーキテクトとしてAI導入の技術支援やAzure OpenAI Serviceのエバンジェリスト活動などに従事。 吉田 真吾:株式会社セクションナイン 代表取締役。2023年5月にAzure OpenAI/Azure AI Search/Azure Cosmos DBを活用した人事FAQ 機能をリリース。著書、監訳書多数。