木田悠歩作品一覧
検索のヒント
検索のヒント
■キーワードの変更・再検索
記号を含むキーワードや略称は適切に検索できない場合があります。 略称は正式名称の一部など、異なるキーワードで再検索してみてください。
■ひらがな検索がおすすめ!
ひらがなで入力するとより検索結果に表示されやすくなります。
おすすめ例
まどうし
つまずきやすい例
魔導士
「魔導師」や「魔道士」など、異なる漢字で検索すると結果に表示されない場合があります。
■並び順の変更
人気順や新着順で並び替えると、お探しの作品がより前に表示される場合があります。
■絞り込み検索もおすすめ!
発売状況の「新刊(1ヶ月以内)」にチェックを入れて検索してみてください。
-
4.0★確率的プログラミング言語がすぐに使える!★ ・Pythonでのコーディングを前提に、PyMC3、Pyro、NumPyro、TFP、GPyTorchをカバー。 ・回帰モデルの基本から潜在変数モデル・深層学習モデルまでを幅広く解説。 【主な内容】 第1章 ベイジアンモデリングとは 1.1 データ解析とコンピュータ 1.2 ベイジアンモデリングの基礎 1.3 代表的な確率分布 1.4 近似推論手法 第2章 確率的プログラミング言語(PPL) 2.1 ベイジアンモデリングとPPL 2.2 自動微分・最適化アルゴリズム 2.3 PyMC3の概要 2.4 Pyroの概要 2.5 NumPyroの概要 2.6 TensorFlow Probabilityの概要 2.7 GPyTorchの概要 第3章 回帰モデル 3.1 線形回帰モデル:線形単回帰モデル 3.2 線形回帰モデル:線形重回帰モデル 3.3 一般化線形モデル:ポアソン回帰モデル 3.4 一般化線形モデル:ロジスティック回帰モデル 3.5 階層ベイズモデル 3.6 ガウス過程回帰モデル:ガウス尤度 3.7 ガウス過程回帰モデル:尤度の一般化 第4章 潜在変数モデル 4.1 混合ガウスモデル 4.2 行列分解モデル 4.3 状態空間モデル 4.4 隠れマルコフモデル 4.5 トピックモデル 4.6 ガウス過程潜在変数モデル 第5章 深層学習モデル 5.1 ニューラルネットワーク回帰モデル 5.2 変分自己符号化器 5.3 PixelCNN 5.4 深層ガウス過程 5.5 正規化流