検索結果
-
4.0◆変化の激しい生成AIの本質としくみを理解する◆ 生成AI技術は目覚ましい進歩を続けています。そのため、表面的なトレンドを追うだけでは、そのしくみを理解することが困難になっています。こうした状況において、本書は生成AIを支える理論的基礎について原論文レベルまで深く踏み込んで解説し、読者が技術の核心部分を理解できるよう導く一冊です。本書の主な特徴は、以下の3つにあります。 1つ目の特徴は、Transformerから推論時のスケーリング則に至るまでの「生成AIの重要な理論」について、原論文の内容を参照しながら数式と図版を用いて詳細に解説しています。2つ目の特徴は、英語・日本語を問わず既存の文献ではあまり扱われていない分布仮説の実験的根拠や拡散モデルの数学的保証など、「生成AIを理解する上で、重要であるものの他の書籍などで十分に扱われていない理論」も丁寧に掘り下げています。3つ目の特徴として、「演習問題とGitHubサポートページを連携させた読者参加型の学習環境」を提供し、より深い学びをサポートしています。 本書を通じて読者は、生成AIに関わる重要な理論について深い理解を得ることができるだけでなく、原論文レベルの内容を読み解く力を身につけることができます。これにより、新たなモデルや技術動向を独力で理解し、急速に変化する技術トレンドへの自律的なキャッチアップ能力を獲得することができるでしょう。表面的な知識ではなく、生成AI技術の本質的な理解を求める全ての方にとって、必携の一冊です。 ■こんな方におすすめ ・生成 AI 分野の理論の基礎をキャッチアップしたいと考えている方々 ・機械学習を学んでいる学部生や院生の方々 ・機械学習を業務で活用しているエンジニア ・異分野の研究者の方々 ■目次 第1章 本書の読み方と論文を読み解く技術 ・1.1 本書の読み方 ・1.2 論文を読み解く技術 ・1.3 本書における数式記法 第2章 入力データの特徴量化 ・2.1 埋め込みと分布仮説 ・2.2 サブワードの必要性とトークン化 ・2.3 バイト対符号化 (Byte Pair Encoding) ・2.4 サブワードユニグラム言語モデル ・2.5 SentencePiece ・2.6 文字単位よりも細かいサブワード分割 ・2.7 トークナイザーは本当に必要なのか 第3章 生成AI モデルの大前提となるTransformer ・3.1 Transformer の全体像 ・3.2 位置埋め込み (Positional Encoding) ・3.3 マルチヘッド注意 ・3.4 エンコーダーとデコーダーの共通要素 ・3.5 デコーダーの出力部分 ・3.6 モデルの学習と実験結果 第4章 Generative Pre-trained Transformerとテキスト生成 ・4.1 複数タスクモデルとしての GPT-1, 2 ・4.2 生成モデルとしての GPT-3, 4 ・4.3 テキスト生成モデルの性能を高めるための要素 第5章 拡散モデルと画像生成 ・5.1 画像分類モデルとしての Vision Transformer ・5.2 拡散モデル ・5.3 画像生成モデル Diffusion Transformer 第6章 テキストと画像の融合 ・6.1 テキストと画像を関係づけるCLIP ・6.2 text-to-imageモデル unCLIP ・6.3 text+image-to-imageモデル Imagic ・6.4 text+image-to-text の実現方法 第7章 生成 AI モデルのスケーリング則 ・7.1 生成AIモデルの事前学習スケーリング則 ・7.2 テキスト生成の推論スケーリング則 第8章 生成 AI モデルの評価 ・8.1 人間による相対評価 ・8.2 高い専門性を有するタスクでの評価 Appendix A.1 参考文献の取り扱い Appendix A.2 Landauのビッグオー記法と計算量 ■著者プロフィール 菊田 遥平:1986年生まれ。2014年総合研究大学院大学高エネルギー加速器科学研究科素粒子原子核専攻修了。博士(理学)。機械学習と生成AIの専門家として、複数の企業で研究開発・プロダクト開発・開発組織のリードなどを経験。X:@yohei_kikuta
-
-1巻4,180円 (税込)Pythonプログラマ必読と言われるベストセラーが、最新のPython環境に合わせて改訂されました。本書は、Pythonを使って仕事をしている開発者が普段どのようなツールやテクニックを用いて仕事をしているのか、また開発者が実際に現場で用いているベストプラクティスについて解説した書籍です。本書を読むことで、先進的なPythonプログラマが日常的に使用している開発ノウハウを学ぶことができます。今回の改訂によって、新たにメタプログラミング、イベント駆動型プログラミング、型ヒントについての解説が追加されました。
-
4.51巻3,960円 (税込)本書は、Pythonを使って仕事をしている開発者が普段どのようなツールやテクニックを用いて仕事をしているのか、また開発者が実際に現場で用いているベストプラクティスについて解説した書籍です。本書を読むことで、先進的なPythonプログラマが日常的に使用している開発ノウハウを学ぶことができます。
-
4.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ビジネスユーザーも腑に落ちる! Excelでアルゴリズムの仕組みをとらえよう。 プロジェクト準備のための第一歩。 Part 1では、機械学習の全体像、ExcelやPythonの基本事項を解説、 どのような状況や体制であれば機械学習を利用してよいのかを確認。 さらに、具体的な活用シーンもイメージできるようにします。 Part 2では、機械学習の各アルゴリズムをExcelで実現する方法を説明。 Pythonコードによる実装例も紹介します。 線形回帰、ロジスティック回帰、クラスタリングなどの仕組みを 具体的に理解できるようにしていきます。 アルゴリズムのメリット/デメリット、向き/不向きがわかれば、 ビジネスへの応用の可能性も見えてくるでしょう。 機械学習を理解していく最初の一歩として本書をご活用ください。 ●データ活用における機械学習の役割/位置づけを理解できる ●Excelに展開することで、仕組みをより具体的に把握できる ●ビジネスの現場に活かせる具体的な理解を獲得できる ●より実務的なPythonコードによる実装方法も把握できる
-
3.5※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◇-------------------------------------------◇ せっかく覚えたPythonを仕事に活かそう!! ◇-------------------------------------------◇ 機械学習やディープラーニングなどで注目を集めるPython(パイソン)を、 日常の業務でも活かしてみませんか? 作業を速く・正確にできる「画像・CSV・テキスト処理」 Googleのサービス「スプレットシートとカレンダーの連携」 Excel VBA代わりにPythonを使う「Excel文書の操作」 など、単純だけど時間がかかる作業を自動化するためのプログラムを集めました。 サンプルプログラムは、すべて本書のサポートページからダウンロードできます。 ■本書はこんな人におすすめ ・Pythonの入門書を読み終えた人 ・Pythonを日常の業務にも活かしたい人 ・時間のかかる仕事を自動化したい人 ・ネットの情報をベースに資料を作りたい人 など。
-
4.7※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ■先行きが不透明ないまだからこそ、データ分析が武器になる 商品がどれだけ売れるかを予測したり、買ってもらえて利益も出るギリギリの価格設定をしたり、ロスを極力抑える生産計画を立てたり……。ビジネスパーソンが日々考えなければならない課題は多岐にわたります。そこに押し寄せたコロナ禍により、先行きの不透明さが加わった状態で事業を展開しなければならなくなりました。そのような中、データサイエンティストなどの専門家でなくても、データ分析をビジネスに活かすことの必要性がますます高まっています。そこで、ビジネスパーソンになじみのあるExcelを用いて、統計学の基礎から学んでデータ分析スキルが身につく解説書を刊行します。 ■データ分析に必要な知識が全部学べる 本書は、これからデータ分析を行う人が知っておくべきことを全部学べる解説書です。本当に役立つ、使えるスキルが身につくように、「統計学の基礎からしっかり学ぶ」「学んだことをExcelを使って実践する」という構成になっています。そのため、これまでまったく統計学に触れたことのない人でも理解しやすく、また、Excelの操作も1つ1つ画面を見せながら解説しているため、分析が初めてでも迷わず実践できます。