作品一覧

  • 音声対話システム ―基礎から実装まで―
    -
    1巻3,520円 (税込)
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 音声対話システムの理論と実装を網羅! Python言語による音声対話システムの実装方法を詳しく解説.  本書は,人間の言葉を理解し,適切に応答するシステム(=音声対話システム)の理論をわかりやすく網羅した書籍です.合わせて,Python言語による音声対話システムの実装方法を詳しく説明しており,基礎を理解しながら実践に即した知識を身につけることができます.  音声対話システムの実用化・普及が進む中で,さまざまな課題が明確化され,取り組みが進められています.また,少子高齢化が進み,働き手が不足している社会状況から,音声対話システムに対する社会の期待は今後ますます高まっていくと予想されています.  今後,音声対話システムの研究開発に携わる方に必携の書籍です. 第1章 音声対話システムの概要 第2章 音声対話システムの分類 第3章 音声認識 第4章 言語理解 第5章 対話管理 第6章 end-to-endモデルによる応答生成 第7章 応答文テキストの音声合成 第8章 音声対話システムの評価 第9章 人間らしい対話を実現するための要素技術 第10章 音声対話システムの未来 付 録 Dialogflow ESによる実装
  • IT Text 音声認識システム(改訂2版)
    3.0
    1巻3,850円 (税込)
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 音声認識の基礎理論から実用的なシステム構成までわかる 本書は音声認識手法の最新技術について基礎から丁寧に解説するとともに、実際の音声認識ソフトによって実践的に学ぶことができることを目的としたものです。改訂版では、DNNをはじめとした音声認識手法のこの間の発展を補うとともに、最新の音声認識ソフトに対応しています。 1章 音声認識の概要 2章 音声特徴量の抽出 3章 HMMによる音響モデル 4章 ディープニューラルネットワーク(DNN)によるモデル 5章 単語音声認識と記述文法に基づく音声認識 6章 統計的言語モデル 7章 大語彙連続音声認識アルゴリズム 8章 音声データベース 9章 音声認識システムの実現例 付録 大語彙連続音声認識エンジン Julius

ユーザーレビュー

  • IT Text 音声認識システム(改訂2版)

    Posted by ブクログ

    現在の音声認識技術は、統計モデルにその基盤をおいており、音響モデルには大量の音声データ、言語モデルには、大量のテキストデータが必要不可欠である。
    音響モデルでは、音声波形から音声認識に必要な言語情報(音韻情報)に対応する物理的な特徴量(音声特徴量)を抽出する。パターン認識モデルを使い、音声特徴量から音素に変換することで、音声を音素に分解していく。分解された音素モデルを連結することで単語モデルを構成し、最も高い確率で観測された音響特徴量をを出力するモデルに対応する単語を決定する。さらに単語間の接続規則として与えられた文法を満たすさまざまな文仮説の中から、最も高い確率で観測音響特徴量を出力する文を

    0
    2017年02月16日

新規会員限定 70%OFFクーポンプレゼント!