言語・プログラミング - 講談社 - データサイエンス入門シリーズ作品一覧
-
-★まずは実行しよう。数理はそれからだ。★ 初学者が無理なく読み進められるように、ていねいに解説した。まずは、Rでデータ解析を実践し、Rの操作を習熟したら、数理的側面を学ぶ構成。理解の定着に役立つ練習問題が充実! コードはWebで公開。 【サポートページ】 https://sites.google.com/view/ihsayah/sdar 【主な内容】 第1章 準備:Rの操作 第2章 データの可視化と要約 第3章 回帰分析(1):単回帰モデル・重回帰モデル 第4章 回帰分析(2):統計的推測・正則化法に基づく回帰分析 第5章 判別分析 第6章 ロジスティック回帰モデル 第7章 単純な規則に基づく判別モデル:決定木・インデックスモデル 第8章 主成分分析 第9章 クラスター分析 第10章 ブートストラップ法 第11章 Rを用いたシミュレーション:数理統計学を「実感」する 【「巻頭言」より抜粋】 文部科学省は「数理及びデータサイエンスに係る教育強化拠点」6 大学(北海道大学、東京大学、滋賀大学、京都大学、大阪大学、九州大学)を選定し、拠点校は「数理・データサイエンス教育強化拠点コンソーシアム」を設立して、全国の大学に向けたデータサイエンス教育の指針や教育コンテンツの作成をおこなっています。 本シリーズは、コンソーシアムのカリキュラム分科会が作成したデータサイエンスに関するスキルセットに準拠した標準的な教科書シリーズを目指して編集されました。またコンソーシアムの教材分科会委員の先生方には各巻の原稿を読んでいただき、貴重なコメントをいただきました。 データサイエンスは、従来からの統計学とデータサイエンスに必要な情報学の二つの分野を基礎としますが、データサイエンスの教育のためには、データという共通点からこれらの二つの分野を融合的に扱うことが必要です。この点で本シリーズは、これまでの統計学やコンピュータ科学の個々の教科書とは性格を異にしており、ビッグデータの時代にふさわしい内容を提供します。本シリーズが全国の大学で活用されることを期待いたします。 ――編集委員長 竹村彰通(滋賀大学データサイエンス学部学部長、教授)
-
-Rも数理もていねいに! データ解析の標準的ツールとなったスパース回帰分析、判別分析、深層学習、サポートベクターマシン、ランダムフォレストなどをRコードとともに解説。深層学習はRのパッケージkerasで実装。具体例も豊富で実用性も高い! また、選ばれたモデルへの理解などの発展的な内容まで踏み込んだ。 【主な内容】 1章 回帰モデルとスパース推定 2章 統計手法によるパターン認識 3章 深層学習 4章 機械学習によるパターン認識 【「巻頭言」より抜粋】 文部科学省は「数理及びデータサイエンスに係る教育強化拠点」6 大学(北海道大学、東京大学、滋賀大学、京都大学、大阪大学、九州大学)を選定し、拠点校は「数理・データサイエンス教育強化拠点コンソーシアム」を設立して、全国の大学に向けたデータサイエンス教育の指針や教育コンテンツの作成をおこなっています。 本シリーズは、コンソーシアムのカリキュラム分科会が作成したデータサイエンスに関するスキルセットに準拠した標準的な教科書シリーズを目指して編集されました。またコンソーシアムの教材分科会委員の先生方には各巻の原稿を読んでいただき、貴重なコメントをいただきました。 データサイエンスは、従来からの統計学とデータサイエンスに必要な情報学の二つの分野を基礎としますが、データサイエンスの教育のためには、データという共通点からこれらの二つの分野を融合的に扱うことが必要です。この点で本シリーズは、これまでの統計学やコンピュータ科学の個々の教科書とは性格を異にしており、ビッグデータの時代にふさわしい内容を提供します。本シリーズが全国の大学で活用されることを期待いたします。 ――編集委員長 竹村彰通(滋賀大学データサイエンス学部学部長、教授) 【推薦の言葉】 データサイエンスの教育の場や実践の場で利用されることを強く意識して、動機付け、題材選び、説明の仕方、例題選びが工夫されており、従来の教科書とは異なりデータサイエンス向けの入門書となっている。 ――北川源四郎(東京大学特任教授、元統計数理研究所所長) 国を挙げて先端IT人材の育成を迅速に進める必要があり、本シリーズはまさにこの目的に合致しています。本シリーズが、初学者にとって信頼できる案内人となることを期待します。 ――杉山将(理化学研究所革新知能統合研究センターセンター長、東京大学教授)
-
4.0ベイズ統計を支えるMCMCをやさしく丁寧に! マルコフ連鎖モンテカルロ法(MCMC)が驚くほど真面目によくわかる! 理解を助けるためのR言語のコードや章末の練習問題が充実! モンテカルロ法の感覚を養ってもらうために「乱数の生成」を第2章で解説した。また,入門向けを標榜しながらも,後半の第4章以降では,和書で情報を得ることが難しい「エルゴード性」について踏み込んだ。 【主な内容】 1章 序論 2章 乱数 3章 積分法 4章 マルコフ連鎖 5章 ギフスサンプリング 6章 メトロポリス・ヘイスティングス法 【「巻頭言」より抜粋】 文部科学省は「数理及びデータサイエンスに係る教育強化拠点」6 大学(北海道大学、東京大学、滋賀大学、京都大学、大阪大学、九州大学)を選定し、拠点校は「数理・データサイエンス教育強化拠点コンソーシアム」を設立して、全国の大学に向けたデータサイエンス教育の指針や教育コンテンツの作成をおこなっています。 本シリーズは、コンソーシアムのカリキュラム分科会が作成したデータサイエンスに関するスキルセットに準拠した標準的な教科書シリーズを目指して編集されました。またコンソーシアムの教材分科会委員の先生方には各巻の原稿を読んでいただき、貴重なコメントをいただきました。 データサイエンスは、従来からの統計学とデータサイエンスに必要な情報学の二つの分野を基礎としますが、データサイエンスの教育のためには、データという共通点からこれらの二つの分野を融合的に扱うことが必要です。この点で本シリーズは、これまでの統計学やコンピュータ科学の個々の教科書とは性格を異にしており、ビッグデータの時代にふさわしい内容を提供します。本シリーズが全国の大学で活用されることを期待いたします。 ――編集委員長 竹村彰通(滋賀大学データサイエンス学部学部長、教授) 【推薦の言葉】 データサイエンスの教育の場や実践の場で利用されることを強く意識して、動機付け、題材選び、説明の仕方、例題選びが工夫されており、従来の教科書とは異なりデータサイエンス向けの入門書となっている。 ――北川源四郎(東京大学特任教授、元統計数理研究所所長) 国を挙げて先端IT人材の育成を迅速に進める必要があり、本シリーズはまさにこの目的に合致しています。本シリーズが、初学者にとって信頼できる案内人となることを期待します。 ――杉山将(理化学研究所革新知能統合研究センターセンター長、東京大学教授)