立石賢吾(LINEFukuoka株式会社)作品一覧
検索のヒント
検索のヒント
■キーワードの変更・再検索
記号を含むキーワードや略称は適切に検索できない場合があります。 略称は正式名称の一部など、異なるキーワードで再検索してみてください。
■ひらがな検索がおすすめ!
ひらがなで入力するとより検索結果に表示されやすくなります。
おすすめ例
まどうし
つまずきやすい例
魔導士
「魔導師」や「魔道士」など、異なる漢字で検索すると結果に表示されない場合があります。
■並び順の変更
人気順や新着順で並び替えると、お探しの作品がより前に表示される場合があります。
■絞り込み検索もおすすめ!
発売状況の「新刊(1ヶ月以内)」にチェックを入れて検索してみてください。
-
3.0※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「ディープラーニングをライブラリで実装できるけれど、よく意味が分かっていない」 「ディープラーニングの背景にある数式を理解して、何が行われているか知っておきたい」 本書はそんな人のための本です。 勉強中のプログラマ「アヤノ」と、友達の「ミオ」の会話を通じて、ディープラーニングでどんなふうに入力値から出力値までの計算がされているのか、楽しく学んでいきます。 ※本書は『やさしく学ぶ 機械学習を理解するための数学のきほん』の続刊となりますが、前作を読んでいない人でも問題なく読むことができます。 本書では、 ・ニューラルネットワークでは何ができるのか ・単層のパーセプトロンではどのような計算が行われているのか ・パーセプトロンではどうやって問題を解いているのか ・パーセプトロンにはどんな欠点があるのか などの基本的な部分から解説を始めます。 パーセプトロンが理解できたら、続いて多層のニューラルネットワークについて学んでいきます。 ・ニューラルネットワークではどうやって問題を解いているのか ・問題を正しく解くためのパラメーターはどうやって学習しているのか といったことについて、1つずつ数式を理解して、時には具体的な数値を当てはめて実際に計算しながら理解していきます。 ニューラルネットワークが理解できたら、いよいよ画像の分類などに向いている「畳み込みニューラルネットワーク」について学習を進めます。 何をやっているのか、図解と数式で確認しつつ学習し、どのようにして「畳み込みニューラルネットワーク」が分類のタスクを行っているのか丁寧に解説します。