リーヴェン・ヴァンデンベルグ作品一覧
検索のヒント
検索のヒント
■キーワードの変更・再検索
記号を含むキーワードや略称は適切に検索できない場合があります。 略称は正式名称の一部など、異なるキーワードで再検索してみてください。
■ひらがな検索がおすすめ!
ひらがなで入力するとより検索結果に表示されやすくなります。
おすすめ例
まどうし
つまずきやすい例
魔導士
「魔導師」や「魔道士」など、異なる漢字で検索すると結果に表示されない場合があります。
■並び順の変更
人気順や新着順で並び替えると、お探しの作品がより前に表示される場合があります。
■絞り込み検索もおすすめ!
発売状況の「新刊(1ヶ月以内)」にチェックを入れて検索してみてください。
-
5.0《これが世界標準! 世界もここから始めてる!!》 データサイエンス・機械学習を学ぶ「はじめの一歩」として、スタンフォード大学にて使用されている教科書“Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares”がついに翻訳!! ・豊富な事例を示しながら、ベクトル・行列の基本から最小二乗法による機械学習までをていねいに解説! ・データサイエンス・機械学習に必要な数学の学び直しにうってつけ! ・章末問題が298問掲載されているから、完全に理解できる! ・Julia言語によるプログラミング課題が原著者のウェブサイトから入手できる! ・プログラミング課題を日本語に翻訳したものを、訳者のGitHubにて無料公開! 【プログラミングの補足資料と追加の演習問題の入手先】 ・原著者のウェブサイト:http://vmls-book.stanford.edu ・補足資料の日本語訳:https://github.com/tttamaki/julia_companion_jp 【推薦の言葉:原著刊行にあたって】 データサイエンスの学生だけでなく,すべての学生に必読の入門書 ――ローラン・EI・ガウイ(カリフォルニア大学バークレー校) これが正攻法! ――ギルバート・ストラング(マサチューセッツ工科大学) この本は多くの授業で使われるだろう.これだけ演習問題が大量にあるのだから ――トレバー・ヘイスティ(スタンフォード大学) 【主な内容】 第1部 ベクトル 1章 ベクトル 2章 線形関数 3章 ノルムと距離 4章 クラスタリング 5章 線形独立 第2部 行列 6章 行列 7章 行列の例 8章 線形連立方程式 9章 線形動的システム 10章 行列積 11章 逆行列 第3部 最小二乗法 12章 最小二乗法 13章 最小二乗当てはめ 14章 最小二乗識別 15章 多目的最小二乗法 16章 制約付き最小二乗法 17章 制約付き最小二乗法の応用 18章 非線形最小二乗法 19章 制約付き非線形最小二乗法 付録A 記法 付録B 計算量 付録C 微分と最適化 付録D さらなる話題