【感想・ネタバレ】未来IT図解 これからのAIビジネスのレビュー

1,650円 (税込)
825円 (税込) 12月18日まで

4pt

3.4
5件

あらすじ

【AIの基幹技術からビジネス活用、AIベンダーとの協業のポイントまで、ビジネスパーソンが知っておくべきポイントを総ざらい!】

現在は第3次人工知能ブームと言われていますが、これまでのブームとは違い、現実のビジネスにも利用できるようになってきています。そして、今から本格的なAIビジネスが始まろうとしています。

ところが日本企業の大半は、AIビジネスの特性を知らず、その方法論も確立できていません。このため、従来からあるソフトウェアを利用したビジネスと同様な取り組みをしてしまい、失敗が多発しているのが実情です。

このような行き詰まりを避けるには、実際にAIにはなにができるのか、その開発にはどのような準備が必要になるのかといった実務面をきちんと踏まえておく必要があります。

本書では、ディープラーニングやニューラルネットワークといった現在のAIブームを支える基本的な技術やビジネス活用の最新情報に加え、AIの開発工程の実際、PoC(実証実験)の課題、クライアントとベンダーの役割分担なども図をふんだんに用いてわかりやすく解説しています。さらに近未来の産業像を描いたSociety 5.0や求められる人材像なども詳しく紹介しました。

「AIには何ができて何ができないの?」
「自分のビジネスに活用するにはどうすればいい?」
「AI時代になると自分の仕事はどう変わる?」

こんな疑問を解消し、本気でAI時代に備えたいビジネスパーソンに必須のナレッジを凝縮した一冊です。

〈本書のおもな内容〉
■PART1 人工知能とは何か
■PART2 AIビジネスの登場
■PART3 AI活用の時代
■PART4 AI活用の時代
■PART5 変容する社会における企業の姿

...続きを読む
\ レビュー投稿でポイントプレゼント / ※購入済みの作品が対象となります
レビューを書く

感情タグBEST3

Posted by ブクログ

G検定受験前に、ちょっと広く整理しておければいいなと購入。分量は少なく、手ごたえはそれほど多くなく、あまり印象に残らなかったが、間違ったことは書いてないという印象。

0
2019年07月13日

Posted by ブクログ

シリーズがあるようなので、揃えて家に置いておきたい一冊。

理解できないセクションは学びが必要、
自分なりに解釈できるものは補完で使える。

と思った。

0
2019年03月20日

Posted by ブクログ

IT系に疎い人でも読みやすいと思う。
後半は特に、AIビジネスの紹介本ってよりは、AIにできないことをするビジネスパーソンになりなさい、っていう啓発本のようにも感じた。

0
2020年05月28日

Posted by ブクログ

AIテクノロジーの現状と将来像をわかりやすく解説している。AI時代に求められる経営、人材像や、SDGs/Society 5.0といった未来社会像にも言及していて今後のAI発展の方向性をイメージさせてくれる。
ただ、わかりやすくまとめられているが故に各章の内容は概要レベルなので少々物足りなさはある。AIの技術論ではなく、AIをどのように今後活用していくかを考えるきっかけとして最初に読む分にはよい。

0
2020年01月13日

Posted by ブクログ

ネタバレ

AIビジネスというタイトルだが、個人的にはスキル習得に対する
考え方や、未来像の議論が役に立った。

■求められる3つのスキル
産業構造審議会によると、以下の3つのスキルセットが求められている。
すべてのビジネスパーソンに3つのスキルセットを要求しているわけ
ではないが、これらを身に付けている人材は将来にわたって引く手
あまたである。
・ビジネス力:
 課題背景を理解したうえで、ビジネス課題を整理し、解決する
・データサイエンス:
 情報処理、人工知能、統計学などの情報科学系の知恵を理解し、
 使う力
・データエンジニアリング:
 データサイエンスを意味のある形に使えるようにし、
 実装・運用できるようにする力

IPAのITSS+では、セキュリティ領域、データサイエンス領域、
IoTソリューション領域、アジャイル領域を2017年に追加した。

■ハイプ・サイクル
毎年夏にGartnerが発表する。アメリカでどのような最新技術が注目されているのかが一目瞭然。
 黎明期(注目度が一気に上がる)
→過度な期待のピーク
→幻滅期(様々な理由から効果が出せない)
→啓蒙活動期(実用に達した技術がビジネスで採用され始める)
→生産性の安定期(普及)

ハイプ・サイクルから分かること:
・画期的な新技術の発表でも過度に期待せず、ハイプ・サイクルの
 ようなイメージで受け入れるとよい。
・どれか1つの技術をマスターしても、何年もその技術が使えるわけ
 ではない。技術の進化速度への追従が求められる。

製品開発との関係:
リスク低減のため、ハイプ・サイクルで啓蒙活動期や安定期に入った
技術を製品に用いるのが本来のエンジニアリングである。しかし、
リスクを恐れずに新技術を駆使するベンチャー企業に対抗するためには、
情報が乏しくても新技術を調査し、製品開発に急いで利用しなければ
ならなくなった。次々に出現する新技術を追いかけて習得し、リスクの
高い製品開発をせざるを得なくなった。

■世界や日本が目指す未来
・SDGs
 国連が掲げる、2016年~2030年の15年間で達成するべき17の目標。
 数値目標と定期モニタリングにより、取り組みに実行性を持たせている。
・Society 5.0
 IoT, ロボット、AI, ビッグデータなどの先端技術を、あらゆる
 産業や社会生活に取り入れ、経済発展と社会的課題の解決を両立
 することを目指す。
 フィジカル空間にあるセンサーとIoTを通じて、あらゆる情報が
 サイバー空間へ集積し、AIがこのビッグデータを解析、高い付加
 価値を付けて現実空間にフィードバックする。

■インフラ企業のAI活用
・東京電力フュエル&パワー
 火力発電所運営の最適化モデルの実証実験結果を発表した。ボイラーに空気や石炭の粉末をふき込む装置の角度を、従来は運転員が経験に基づいて調整していた。これを機械学習させたことで発電効率が高まり、排ガスの抑制や燃料の使用量削減を実現できた。

■再現率と適合率
再現率=AIの正答/正解(見逃さなかった割合)
適合率=AIの正答/AIの回答(誤答がない割合)
・病気の発見など見逃しが許されない場合は、再現率重視。
 誤答があっても人間が最終判断すればよい。
・スパムメール判断など、誤答が許されない場合は、適合率重視。
 AIの回答を人間が全数判断したくない。

0
2019年08月07日

「IT・コンピュータ」ランキング