将棋AIで学ぶディープラーニング

将棋AIで学ぶディープラーニング

3,498円 (税込)

17pt

5.0

※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。

人より強い“将棋プログラム”を作ろう

2016年3月、プロ棋士に勝つには後10年かかると言われていたコンピュータ囲碁でAlphaGoがトップ棋士に勝利しました。そこで使われた手法がディープラーニングです。

AlphaGoは局面を「画像」として認識し、打ち手の確率と局面の勝率を予測することで、次の打ち手を決めています。画像とはどのようなものか、次の打ち手をどうやって決めるのか?AlphaGoの論文をヒントに、ディープラーニングを使い棋譜を学習した将棋AIの開発を行います。強化学習のみでトップレベルの強さを持つAlphaZeroの手法も取り入れています。

[導入編]では、コンピュータ将棋の歴史とディープラーニングの関係、コンピュータ将棋の大会の概要を紹介します。
[理論編]では、従来のコンピュータ将棋のアルゴリズム、コンピュータ囲碁で用いられているモンテカルロ木探索とAlphaGoがどのようにディープラーニングを応用したか。基礎的な知識について解説しつつ、これらを将棋AIに応用する方法について述べます。
[実践編]では、ディープラーニングを使った以下の3つの将棋AIについて、PythonとChainerで実装していきます。

方策ネットワーク(policy network)を使って指し手の予測のみでプレイするAI
価値ネットワーク(value network)を使って1手探索を行うAI
方策ネットワークと価値ネットワークを使ってモンテカルロ木探索を行うAI

最後に、より強い将棋AIを作りたいという方のために、ヒントとなる情報を紹介します。

...続きを読む

詳しい情報を見る

閲覧環境

  • 【閲覧できる環境】
  • ・ブックライブ for Windows PC(アプリ)
  • ・ブックライブ for iOS(アプリ)
  • ・ブックライブ for Android(アプリ)
  • ・ブックライブ PLUS for Android(アプリ)
  • ・ブラウザビューア

※アプリの閲覧環境は最新バージョンのものです。

将棋AIで学ぶディープラーニング のユーザーレビュー

\ レビュー投稿でポイントプレゼント / ※購入済みの作品が対象となります
レビューを書く

感情タグBEST3

    Posted by ブクログ

    Ⅰ部 導入編
     1章 コンピュータ将棋について
      省略
    Ⅱ部 理論編
     2章 コンピュータ将棋のアルゴリズム
      ゲームの木、ミニマックス法、αβ法、評価関数について簡単な説明
     3章 コンピュータ囲碁のアルゴリズム
      モンテカルロ法とその発展版UCTアルゴリズム
     4章 AlphaGoの手法

    0
    2019年12月28日

    Posted by ブクログ

    本書は、囲碁におけるAlphaGoの手法を参照しつつ、コンピュータ将棋のアルゴリズムを、モンテカルロ法+ディープラーニングを使って、実装する方法を解説している。

    コンピュータ将棋の従来手法
    →ミニマックス法。
    評価関数の質が要であり、2006年のBonanzaが初めて、評価関数の機械学習を導入した

    0
    2018年05月29日

将棋AIで学ぶディープラーニング の詳細情報

閲覧環境

  • 【閲覧できる環境】
  • ・ブックライブ for Windows PC(アプリ)
  • ・ブックライブ for iOS(アプリ)
  • ・ブックライブ for Android(アプリ)
  • ・ブックライブ PLUS for Android(アプリ)
  • ・ブラウザビューア

※アプリの閲覧環境は最新バージョンのものです。

この本をチェックした人は、こんな本もチェックしています

無料で読める IT・コンピュータ

IT・コンピュータ ランキング

山岡忠夫 のこれもおすすめ

同じジャンルの本を探す