impress top gear一覧

  • [第3版]Python機械学習プログラミング 達人データサイエンティストによる理論と実践
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、機械学習コンセプト全般をカバーし、理論的背景とPythonコーディングの実際を解説しています。初歩的な線形回帰から始め、ディープラーニング(CNN/RNN)、敵対的生成ネットワーク、強化学習などを取り上げ、scikit-learnやTensorFlowなどPythonライブラリの新版を使ってプログラミング。第3版では13~16章の内容をほとんど刷新したほか、敵対的生成ネットワークと強化学習の章を新たに追加。機械学習プログラミングの本格的な理解と実践に向けて大きく飛躍できる一冊です。◎本書は『Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition』の翻訳書です。◎微積分/線形代数、Python の文法、データ分析用ライブラリについてある程度理解している必要があります。[原著の第1版]●ドイツ語、韓国語、中国語、日本語、ロシア語、ポーランド語、イタリア語に翻訳。●ACM(米国計算機学会)の「21st Annual list of Notable Books and Articles(2016)」にランクイン。[日本語の第1版]●「ITエンジニア本大賞2017」ベスト10にランクイン。
  • Ansibleクックブック
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、Ansibleの自動化の対象や目的に応じて、必要な内容を調べる逆引きリファレンス的な書籍です。とくに、自動化したい対象システムが定まっていて、これから自動化に取り組む、または取り組んでいる方に適しています。「入門書を読んで基本的なことは分かったが、自分が実現したいことに対してプレイブックをどう書いてよいか分からない。」このような場合に、手がかりとなるプレイブックを本書から見つけ、必要に応じて読み替えや公式ドキュメントも併せて参照していただければ、ご自身の課題解決に役立てることができます。
  • GitLab実践ガイド
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 近年、企業における迅速なソフトウェア開発において、DevOpsは必要不可欠な要素として認識されています。しかしその一方で、開発プロセス改善に関連する情報の飽和や、新しい開発支援ツールの乱立により、自社の開発チームにとってどれが最適な解なのかの見極めが難しくなっています。さらに、開発ツール導入後も、ツールやプラットフォームの運用に余計な時間を取られ、本来の目的であるコード開発に時間が割けないエンジニアが後を経ちません。このような開発現場の課題に取り組み、各企業にとって最適な開発スタイルを模索する中で、GitLabが注目を集め始めています。  GitLabは、開発プロセスを支援する機能として、単なるリポジトリ管理だけにとどまらず、リポジトリの更新を起点とした継続的インテグレーションや継続的デプロイメントのジョブ機能や開発プロセス全体の改善サイクルを支援するプラットフォームを提供しています。さらに、組織文化の改革という点においても、GitLabではConversational Developmentという開発スタイルを提唱しており、チーム開発に不可欠なコミュニケーションの効率化を支援しています。これらの機能により、GitLabは、開発者における無駄なオペレーション工数を削減し、開発作業の効率化を実現します。  本書はアプリケーション開発支援ツールであるGitLabの基礎から、実務の開発ワークフローの運用で使える機能までを網羅した実践ガイドです。まずGitLabが目指す開発スタイルを理解し、開発プロセスの改善を実践していただくことを目指しています。そのため、本書では単なるGitリポジトリ利用者に対する機能紹介ではなく、普段の開発プロセスの改善やデプロイオペレーションの効率化を図るために必要な情報を網羅しています。
  • Amazon Alexaプログラミング入門
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、これからAmazon EchoなどのAlexa対応デバイスを使って独自の機能を開発してみたいというエンジニアが、段階を追って学べるような内容になっています。音声ユーザーインターフェース(VUI)、Alexaデバイスの機能やスキルの仕組み、スキルプログラムの構造といった、固有の考え方を踏まえたうえで、Alexaスキルの開発ツールの使い方やコードの書き方を簡単なサンプルプログラムを作成しながら手順を追って解説します。プログラミング言語としてJavaScript、フレームワークにはNode.jsを用います。
  • Amazon Web Servicesインフラサービス活用大全 システム構築/自動化、データストア、高信頼化
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AWSインフラ構築/管理の基礎と手法を網羅。アカウント作成から、システム規模の自動化(自動スケーリング)までカバーした格別の一冊! 無料枠での利用についても適宜示しています。多くの章で共通するテーマの1つが「自動化」。本書の内容を試せば、AWS CloudFormationを使いこなせるようになるでしょう―Part 1では、活用事例や長所、料金などを紹介した後、基本サンプルとしてWordPressシステムの構築法を示します。Part 2では、インフラ構築/管理の基礎事項を中心に説明。Part 3では、データを格納する6種類の方法を具体的に見ていきます。Part 4では、動的スケーリングが可能で、高可用性そして耐障害性を持つインフラアーキテクチャを重点的に見ていきます―[サーバー&ネットワーク]自動デプロイ、セキュリティ、サーバーレス開発…[データストア]オブジェクト、リレーショナル、共有、キャッシュ、NoSQL…[高信頼化]高可用性、耐障害性、オートスケーリング…AWSには、さまざまなメリット―最新機能の活用、自動化、スケーラビリティ、信頼性、より短期間での環境構築など―があります。本書の内容を把握すれば、こうしたメリットを享受できる準備が整うはずです。※本書は『Amazon Web Services in Action, Second Edition』の翻訳書です。掲載した画面や手順は、2019年8月上旬に確認したものを掲載していますが、今後変更される可能性があります。
  • Amazon Web Servicesネットワーク入門
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AWSが登場した当初は提供されるサービスもわずかで、ネットワーク構成も簡単でした。しかしいまでは、「たくさんのマネージドサービス」と「ネットワーク機能の高機能化」が、これからAWSを始めようとする人の出鼻をくじいてしまいます。このような事態を何とかしたい。そう思って書いたのが、本書です。本書では、AWSのもっとも基本的な構成となる「ネットワークとサーバー」を説明します。  AWSにおいてネットワークは「VPC」、サーバーは「EC2インスタンス」で構成されます。本書では、この2つの機能を中心に解説します。  本書では、Webサーバー1台とデータベースサーバー1台で構成されたオンプレミスのシステムをAWSで実現するには、AWSならではの決まりごとや罠がたくさんあります。たとえば、「最初に利用するIPアドレスの範囲を決めて、それを分割してネットワークを構築する」「インターネットに接続する場合でも、ネットワークの設計上はプライベートIPアドレスを使う」などです。本書では、こうしたAWSならではの勘所を説明しながら、最終的に、独自ドメインでWebサーバーを運用できるようにするところまでを説明します。
  • Ansible実践ガイド 第3版
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 近年、複数のサーバー構築やクラウド環境の設定変更を統一的に制御できる構成管理ツールとして、Ansibleが注目を浴びています。本書は、オープンソースの構成管理ツールの一つであるAnsibleの基本的な使い方から、アプリケーションデプロイメントの自動化や、クラウドAPIとの連携、Windowsサーバー、ネットワーク機器設定の自動化など、さまざまな応用事例をまとめた実践ガイドです。これからAnsibleを利用し、システム構築の自動化を始めてみたいというエントリーユーザーから、既存の運用プロセスからの自動化を図りたいという実務向けのユーザーまで、幅広く活用していただける内容です。特にシステムを開発、運用するエンジニア同士がコードを共有し、継続的デリバリーへと組織のプロセスを展開していくうえで必要な、Ansibleの知識を豊富に取り上げています。Ansibleの特徴を理解していただいたうえで、ビジネス要求に対する開発スピードの向上や、変更要求に対する運用の柔軟性を身に付けていただくことを目的としています。Ansible 2.8/CentOS 7.6対応。
  • Ansible実践ガイド第2版
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 近年、複数のサーバー構築やクラウド環境の設定変更を統一的に制御できる構成管理ツールとして、Ansibleが注目を浴びています。本書は、オープンソースの構成管理ツールの一つであるAnsibleの基本的な使い方から、アプリケーションデプロイメントの自動化や、クラウドAPIとの連携などの応用的な使い方をまとめた実践ガイドです。 これからAnsibleを利用し、システム構築の自動化を始めてみたいというエントリーユーザーから、既存の運用プロセスからの自動化を図りたいという実務向けのユーザーまで幅広く活用していただける内容です。特にシステムを開発、運用するエンジニア同士がコードを共有し、継続的デリバリーへと組織のプロセスを展開していくうえで必要な、Ansibleの知識を豊富に取り上げています。Ansibleの特徴を理解していただいたうえで、ビジネス要求に対する開発スピードの向上や、変更要求に対する運用の柔軟性を身に付けていただくことを目的としています。 Ansible 2.4/CentOS 7.4対応
  • Rではじめる機械学習 データサイズを抑えて軽量な環境で攻略法を探る
    -
    機械学習の考え方とRの活用をわかりやすく解説!―Rは、統計解析のためのプログラミング言語・開発環境であり、機械学習で利用できるライブラリが数多く提供されています。膨大なデータの処理よりもプロトタイピングや検証に適しており、先進IT企業では、あるモデルでうまく動作するかを判断するため、まずRでプロトタイプを作成・確認するというケースもあります。本書ではまず、機械学習の考え方や、その基礎となる統計をわかりやすく説明します。それを踏まえて、代表的な機械学習の理論を押さえながら、Rのさまざまな活用法を解説します。本書を読んで、Rによる機械学習の試行や検証を始めてみましょう。 ◇以下「はじめに」より抜粋・要約◇筆者は、これまで2年以上にわたって、オープンソースの統計解析ソフトウェア「R(アール)」を用いた機械学習のセミナーを実施してきました。いつも参加者は満員となり、ニーズの高さを実感しています。Rの場合、何ギガバイトもの膨大なデータ量を処理することにはあまり適していません。むしろ、重要なのは、Rの特性を見極め、どのような機械学習の局面でどのように活用するか、にあると言えます。それが本書のコンセプトであり、代表的な機械学習の理論を押さえながら、Rによる実践について解説します。2年間のセミナーのなかで、受講者の皆様から、わかりにくいポイント、現場で利用するためのポイントなど、様々なフィードバックやリクエストをいただき、本書に反映しました。したがって本書は、実際の現場で利用されるデータサイエンティスト、これからRで機械学習の実施を検討される技術者の方などにお勧めできます。
  • Ethereum+Solidity入門 Web3.0を切り拓くブロックチェーンの思想と技術
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 進化し続けるブロックチェーン「イーサリアム」。その思想を知らなければ次世代のビジネスは作れない! ― 過大な期待と幻滅が入り混じるブロックチェーンの中で、「イーサリアム」は、契約を自動化するスマートコントラクトや、Dappsと呼ばれる分散アプリケーションといった技術を生み出し、ブロックチェーンを新世代のビジネス基盤へと進化させています。本書は、その普遍的な技術思想と基本要素を知るための格好の一冊です。取り上げるテーマは、仮想マシン、ウォレット、暗号資産の移動、プログラミング言語、社会的役割など。ノンプログラマーの方もプログラマーの方も、ブロックチェーンをビジネスに導入する前に知っておきたいイーサリアムの基本をたっぷり解説しています。 ― 【本書の構成】第1章 イーサリアムはなぜ経済を作るのか/第2章 ウォレットから理解するトランザクション/第3章 EVMが世界を1つの巨大なコンピューターにする/第4章 スマートコントラクトのためのSolidityプログラミング/第5章 スマートコントラクトとトークンの発行/第6章 イーサのマイニングとコンセンサスのプロセス/第7章 クリプトエコノミクスのインパクト/第8章 分散型アプリケーションのデプロイ/第9章 プライベートチェーンとパブリックチェーン/第10章 イーサリアムの応用領域/第11章 イーサリアムが約束する未来
  • Windowsコンテナー技術入門
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書では、Windowsコンテナーの基本的な概念とシステム構築についてIT技術者を対象にハンズオン形式で解説します。具体的なシステム構築事例として、Docker for Windowsにおけるコンテナー実行環境の構築、AzureにおけるWindow Server 2016へのコンテナーの導入、AzureのService Fabricを利用したソフトウェア開発環境の構築なども併せて取り上げています。 「Windowsのコンテナー技術を断片的には理解し始めたけれども、全体像を理解し、実務に役立てたい」、といったニーズに応える内容になっています。コマンドや手順の紹介だけではなく、技術の生まれた背景、チームでの開発・運用の実際、コンテナー技術の向き不向きや考慮点など、これからWindowsのコンテナー技術を学ぼうという方々に向けて、入門書でありながら、現場で役立つ情報も数多く盛り込まれています。
  • Elastic Stack実践ガイド[Elasticsearch/Kibana編]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Elastic Stackは、単なる全文検索システムではなく、Webシステム管理者、データサイエンティスト、インフラエンジニアなど、幅広い用途で利用できるデータ分析基盤です。 本書は、Elastic Stack 7.6をベースに、分散型全文検索システムによるデータ分析基盤の構築、Elasticsearchのインデックスの作成やクエリの基本的な使い方、Analyzer/Aggregationによる高度な分析やElastic Stack(Logstash/Kibana)によるログ収集・解析・可視化など、全文検索の基礎から具体的なデータ分析の手法まで、豊富な事例と応用的な使い方をまとめた実践ガイドです。 全文検索エンジンとしてのElasticsearchの特徴や導入・利用方法を紹介するだけでなく、ログ収集・解析などの用途で使う際に関連する製品と組み合わせて使う手順や、Elasticsearchを運用する際の注意点なども含めて、総合的に使える内容をまとめました。 アプリケーション開発者からデータサイエンスにかかわるインフラエンジニアまで、多くの利用者に役立てていただける内容です。Elastic Stack 7.6対応
  • Elastic Stack実践ガイド[Logstash/Beats編]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Elastic Stackは、単なる全文検索システムではなく、Webシステム管理者、データサイエンティスト、インフラエンジニアなど、幅広い用途で利用できるデータ分析基盤です。 本書は、Elastic Stack 7.6を利用し、さまざまな形式のログデータの加工・蓄積・可視化・解析を行うための分析基盤の構築、基本操作、ログ分析の具体的なユースケースを解説した実践ガイドです。 ログデータの具体的なユースケースから、Logstash(データパイプライン)とBeats(データシッパー)によるログ分析基盤の構築、Logstashプラグインの活用、LogstashによるETL処理、AWSにおけるログ分析の活用など、実践的なノウハウを提供します。 アプリケーション開発者からデータサイエンスにかかわるインフラエンジニアまで、多くの利用者に役立てていただける内容です。Elastic Stack 7.6対応
  • nginx実践ガイド
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 nginxは、インターネットの多くのWebサイトで使われているソフトウェアで、設定ファイルの構造がシンプルで使いやすく、少ないリソースで動作し、性能も安定して出るため、順調に人気を獲得している注目度ナンバーワンのWebサーバーです。静的ファイルを配信するWebサーバーとしての性能も目を見張るものがありますが、よく使われるのはロードバランサやリバースプロキシとしての使い方です。本書は、nginxを利用したWebアプリケーションを構築・運用するといった作業において、性能やセキュリティ、メンテナンスに頭を悩ませる管理者のために、表面的なnginxの設定ファイルの書き方だけにとどまらず、実際に動作を検証する方法や、Webシステムの中でnginxとは直接関係ない部分も含めて紹介しています。これらの手法を知っておくことで、ネットワーク全般の知識、ネットワークプログラムの動作に関する知識を得られます。
  • AIアルゴリズムマーケティング 自動化のための機械学習/経済モデル、ベストプラクティス、アーキテクチャ
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 マーケティング自動化の予測モデル、ベストプラクティス、アーキテクチャをまとめた大著! 1・2章では、アルゴリズムマーケティングの概念、ケーススタディ、理論基盤となる機械学習/経済モデルを説明します。3~6章では、「プロモーションと宣伝」「検索」「レコメンデーション」「価格設定と品揃え」といった領域を取り上げ、「顧客と商品のマッチング」「顧客に適した商品の特定」「商品特性の最適化」を考察します。本書は、どのような理論を基に各領域のシステムが実現されるか、総合的に理解できる稀有な一冊です。(本書は『Introduction to Algorithmic Marketing: Artificial Intelligence for Marketing Operations』の翻訳書です。統計学や微積分学などの数学的知識を前提としています)。原著への読者の声―「市場原理を理解して実装しようとする者にとってきわめて有益」「小売業に関わるデータサイエンティストは必読」。推薦の言葉―「本書はマーケティング分野でのデジタル変革を鮮やかに映し出しており、データサイエンスがいかにしてあらゆるマーケティング活動に不可欠な部分になるのかを示している。データ駆動型アプローチとスマートなアルゴリズムによって、従来の労働集約型のマーケティングタスクにディープな自動化がどのようにしてもたらされるのかを詳しく解説している。意思決定は改善されるだけでなく、はるかに高速になる。このことは、加速する一方の競争環境において決定的に重要である。データサイエンティストとマーケティング責任者の必読書である」(Andrey Sebrant, Director of Strategic Marketing, Yandex)。
  • AI技術史 考える機械への道とディープラーニング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ●技術知識がなくても読める本格的なAI史 本書は英オックスフォード大学のコンピュータサイエンス研究者マイケル・ウルドリッジ教授による、AI(人工知能)の一般向け解説書です。AIは高度なコンピュータ技術であり、その実像を技術レベルで理解することは容易ではありません。しかし、本書は技術的知識がなくても、コンピュータの歴史を通じて、AI の技術的な概念や意義について正しい理解ができるように工夫されています。 ●AIの歴史とディープブレイクスルー 本書の前半ではコンピュータ技術の黎明期から続く人工知能の研究の歴史を振り返ます。チューリングマシンと言われる思考実験上の機械から、コンピュータ技術の開発史に触れ、人工的な知能を作り出すためのさまざまなアプローチを紹介します。また、21世紀におけるディプラーニングの登場やそれらがなぜ大きなブレイクスルーをもたらしたのかについても触れます。後半ではAIの可能性やそれがもたらす社会の変化、注意すべき事象や将来の姿について考察をめぐらしていきます。 ●本当のAI の姿を知る AIがどのように開発され、どのような状況にあり、将来どのような姿になるのか、そして人間は本当に「意識のある機械」を作れるのか?本書はAIを知り、それを有効に活用するための必読の入門書です。
  • AWS Lambda実践ガイド 第2版
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書では、従来のシステムをLambdaで構築するときの設計手法や具体的な事例の作成を通じてLambdaでのプログラミング手法を解説します。第2版では、2022年の最新情報にアップデート、SAM開発環境に対応しました。  AWS Lambdaは、サーバーを必要としないプログラムの実行環境です。開発者が処理したい内容を小さな関数として実装すると、必要に応じて、それが実行される仕組みです。  サーバーを必要としないということは、運用の手間やコストを削減できるということです。この利点はとても大きいため、新規の開発案件では、Lambdaが採用されるケースが増えています。しかし、Lambdaによる開発に大きなメリットがあるといっても、すぐに移行できるほど話は簡単ではありません。従来のEC2インスタンスを使った開発とLambdaを使った開発とでは、プログラミングの方法はもちろん、設計の考え方も大きく異なるからです。Lambdaを使い始めるには、Lambdaの仕組みの理解と、その特性を活かした設計の考え方を習得することが不可欠です。  本書では、従来のシステムをLambdaで構築するときの設計手法や具体的な事例の作成を通じてLambdaでのプログラミング手法を解説します。とくにLambdaを使った開発では、AWSサービスの操作に重きを置きます。Lambdaを活かせるかどうかは、AWSの各種サービス――ストレージのS3、プッシュサービスのSNS、メール送信のSESなど――を、いかに使いこなせるかに左右されます。そこで本書では、実例を通じて、そうしたAWSサービスの実際の使い方にも言及されています。
  • オブジェクト指向の考え方 5th Edition
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 オブジェクト指向は、現代のソフトウェア開発には欠かすことのできない技術要素となっています。オブジェクト指向分析、オブジェクト指向プログラミング、オブジェクト指向データなど、オブジェクト指向を元にした技術にはさまざまなものがあります。しかし、それらはすべて基本的な要素や概念を共有しており、ひとつの基礎から成り立っています。オブジェクト指向に通底する考え方を理解しておくことは、それぞれの技術の使いこなしには欠かすことができません。 本書では、プログラミングを軸に、オブジェクト指向のさまざまな概念を学んでいきます。基礎的な概念であるクラスやオブジェクトを学び、それらがどのような方法でシステムを抽象化し、開発やメンテナンスを効率化するかを示します。プログラミング言語を学んだだけではオブジェクト指向を活かすことはできませんが、こうした思考法を身につけていくことで、次第に依存性の少ない見通しの良いシステムの設計/開発が可能となっていきます。 本書では、1~9章でオブジェクト指向のさまざまな要素を解説していきます、各要素の概念を説明するとともに、クラスをどのように設計すべきなのか、難しいとされる「継承」をどのように実現すべきなのか、さらにインタフェースや抽象クラスなどの利用についても充実した解説を行います。また、後半の10~12章では、デザインパターンの利用、依存関係の制御、設計の原則であるSOLIDなど、よりプロジェクト的な観点からの知識を身につけることができます。 本書はオブジェクト指向開発の揺籃期から、その概念を学ぶための優れた指南書となってきました。第5版ではWebを前提としたシステムやモバイルデバイスなどの要素も取り込んで、現代の開発のさまざまな局面でオブジェクト指向を活かせるようになっています。 オブジェクト指向のエッセンスを正しく理解して、システム開発を効率化し、一歩進んだ開発者となるための有用な知識をまとめた一冊です。
  • OpenStack実践ガイド
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 OpenStackによるクラウドコンピューティング環境は、欧米の最先端技術をいち早く採用するサービスプロバイダ企業はもちろんのこと、製造、通信、流通、金融、公共、軍事システムなどさまざまな分野で採用されており、全世界規模で利用が広がっています。しかし、OpenStackによるクラウドコンピューティング環境は、高度な自動化・省力化を実現できる柔軟性に富んだITシステムをもたらす半面、自社への採用可否の判断、導入前の基盤設計、初心者でもわかるレベルのステップ・バイ・ステップによる構築手順、運用管理の具体的な手法、注意点など、実践的な内容を短時間で効率よく入手することが難しい状況にあります。また、OpenStackは、クラウドコンピューティングで求められる機能要求の増加に伴い、含まれるコンポーネンの数も年々増加し、ソフトウェア自体が大変複雑化しており、構築手順や運用管理のノウハウが、すぐに陳腐化するといった頭の痛い問題もあります。  本書は、進化の非常に速いOpenStackの情報を可能な限り素早く提供し、クラウド基盤をまったく構築したことがない初心者にもその基礎を理解できるように、代表的なOpenStack環境のインストール手順、ソフトウェア定義型ネットワークの構築手順、使用法などを具体的に記載しました。これにより、OpenStackを触ったことがない初心者でも、まずは、実際に構築、使用することで、OpenStackによるクラウドコンピューティングの基本的な機能を理解できます。
  • 機械学習 100+ページ エッセンス
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIエキスパートの知見から得る、新たな視点! 理論と現場を橋渡しする、機械学習の実践的エッセンス。 数式をどう読み解くか。 各手法がどこまで活用できるか。 問題をどう乗り越えるか。 米国で大ブレークの機械学習本を翻訳 機械学習アルゴリズムにおける考え方や数式を示し、 アルゴリズムの特徴、利用条件、長所/短所、活用範囲などを解説。 一気に読める量でありながらも、主要な手法を網羅。 著者は、人工知能分野で博士号を取得、その後は企業で実装を続けています。 本書では、そうして積み重ねた知見を展開。 現実問題に取り組むための知識が得られる貴重な一冊です。 数学や統計学、プログラミングについてあまり高度な知識や経験を求めていませんが 取り上げている手法に時間を費して学べる人なら、かなり読み進められるはずです。 機械学習を学ぶ機会を探している初学者にも、 すでに実務に携わっていてより知識を広げたい熟練者にも適しています。 この分野でPh.D論文の研究をこれから始めようという人にはきっと本書が必要で、 研究が進むにつれて有用な参考書となるでしょう。 ◎本書は『The Hundred-Page Machine Learning Book』の翻訳書です。 数学など一定の知識が前提となっています。
  • 逆引きPython標準ライブラリ 目的別の基本レシピ180+!
    3.5
    便利に使えるPython標準ライブラリの活用術。 初中級スキルアップの近道! 文字列/データ操作、テキスト処理、ファイル操作、 数値演算、ネットワークアクセス、GUIなど、使えるテクニックを満載。 本書では、Pythonの基本的な文法をすでに理解したユーザーが 次に学ぶべきテーマとして、Pythonの標準ライブラリを取り上げます。 本格的なプログラミングへの準備として、習得しておきたい標準ライブラリの 基礎的な活用法を解説します。 Pythonの標準ライブラリは、多数のデータ型やモジュールを提供しています。 それらの機能をうまく活用することがプログラミングの上達につながります。 目的別に180以上の基本レシピを収録。特定の目的を達成するのに、 どの機能をどのように使えばよいのか、すぐにわかるようになっています。 キーとなる関数やメソッドなどの書式に加え、対話的な実行例やスクリプトの例も示しています。 本書により、Pythonのスキルを高め、実践に向けて足場を固めていきましょう。
  • クラウドネイティブ・アーキテクチャ 可用性と費用対効果を極める次世代設計の原則
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 クラウドの活用ステージをレベルアップ! シンプルな移行からクラウドネイティブへ。クラウドの潜在能力を存分に引き出す! ― ITリソースをクラウドネイティブに移行すると、コストの削減、パフォーマンスの向上、リソースの効率的な活用、スケーラビリティの向上といった、さまざまなメリットを享受できます。さらには、クラウドベンダーによるITイノベーションを容易に活用できるようになり、ユーザーのシステムは飛躍的に進化する機会を得ます。本書は、技術面だけではなく、事業や組織との関係性にも踏み込み、シンプルな移行からクラウド活用の成熟化へと道筋をつける、格好の一冊となっています。※本書は『Cloud Native Architectures: Design high-availability and cost-effective applications for the cloud』の翻訳書です。
  • CUDA C プロフェッショナル プログラミング
    -
    ディープラーニングや機械学習などAIの処理高速化に最適! CUDA C プログラミングを本格的に学ぶ。 グローバルメモリ、シェアードメモリ、ストリームなどを徹底活用。 CUDA Cプログラミングを本格的に理解して、プログラムの高速化を図るための技術解説書。本書では、CUDAプログラミングモデルから始め、カーネルレベルやグリッドレベルの並列化手法を解説。グローバルメモリ、シェアードメモリ、ストリームなどを徹底活用する方法を紹介します。さらに、GPUスループットの計測、CUDAアプリケーションへの効率的な移植、マルチGPUプログラミングについても説明。 ◎本書は『Professional CUDA C Programming』の翻訳書です。 【本書の構成】 第1章 CUDAによるヘテロジニアス並列コンピューティング 第2章 CUDAプログラミングモデル 第3章 CUDAの実行モデル 第4章 グローバルメモリ 第5章 シェアードメモリとコンスタントメモリ 第6章 ストリームと並列処理 第7章 命令レベルのプリミティブの調整 第8章 CUDAのGPUアクセラレーションライブラリとOpenACC 第9章 マルチGPUプログラミング 第10章 実装上の注意点
  • Kubernetes完全ガイド
    3.5
    コンテナオーケストレーションの業界標準 クラウドネイティブ開発の第一歩を踏み出そう! Kubernetes認定資格(Certified Kubernetes Administrator/Certified Kubernetes Application Developer)保有者直伝! プロダクション環境で培われた、Kubernetesを使い倒すための実践ノウハウが満載の一冊です。 Kubernetesはコンテナ化されたアプリケーションのデプロイ、スケーリング、および管理を自動化するためのプラットフォーム(コンテナオーケストレーションエンジン)です。 本書籍では、Kubernetesを触ったことがない方でもKubernetesのコンセプトを理解し、実際にアプリケーションをコンテナ化して実行することができるようになることを目標としています。 前半の章では図をふまえながらKubernetesの各リソースについて体系的かつ網羅的に説明します。さらに後半の章では、マニフェスト管理(Helm/Ksonnet)、モニタリング(Prometheus/Datadog)、ログ集約(Fluentd/Datadog)、CI/CD(Spinnaker/JenkinsX/Scaffold)、サービスメッシュ(Istio/Conduit/Linkerd)、Service Brokerなど、Kubernetesを用いてクラウドネイティブな開発を促進させる周辺エコシステムについても紹介します。

    試し読み

    フォロー
  • Kubernetes実践ガイド クラウドネイティブアプリケーションを支える技術
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書では、クラウドネイティブに求められる背景やトレンドを押さえるとともに、「Kubernetes」やそのエコシステムを利用し、クラウドネイティブアプリケーションの実装について解説しています。Kubernetesは、コンテナを管理するコンテナオーケストレーションツールであり、これを活用することで、適切なインフラリソースの提供だけではなく、アプリケーションの開発や展開が、容易かつ動的に行える環境を構築できます。  本書の読者対象は、これからクラウドネイティブアプリケーションの開発・運用を始める方です。したがってその内容も、Kubernetesとそのエコシステムを活用したアプリケーションの開発、運用にフォーカスしています。最初にKubernetesそのものの仕組みの基礎を説明したあとは、その上で動くアプリケーションを運用するために必要なエコシステムやその活用方法に重点を置いています。 全体は、2部構成になっており、第1部では、クラウドネイティブアプリケーションを支える技術の一つとして注目される、Kubernetesの概要を紹介します。クラウドネイティブの考え方からKubernetesが提供するコンポーネントの役割まで、本書を読み進める上でのポイントを取り上げます。  第2部では、Kubernetesエコシステムを活用して、クラウドネイティブアプリケーションの開発やその上で動くアプリケーションの管理方法を紹介します。クラウドの特徴を活かしたアプリケーション開発や運用の重要性を取り上げます。
  • Kubernetes CI/CDパイプラインの実装
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Kubernetesを活用したアプリケーションライフサイクルの自動化ノウハウを解説。  近年、アプリケーションの実行環境として“Kubernetes”を採用している企業が急速に増えています。Kubernetes上でのコンテナ開発は、これまでのアプリケーション開発とは大きく異なるため、どこから手を付けていけばよいのかと不安に感じている方も少なくありません。こうした状況を踏まえ、本書では、1つのアプリケーションライフサイクルの実装を通して「いかに少ない労力で開発プロセスを運用し続けるか」という改善案を提示します。  単にコンテナを導入し、Kubernetesを活用するだけでは運用負担の軽減や、迅速なサービス展開といったビジネスメリットを得るのは簡単ではありません。継続的インテグレーションや継続的デリバリの実装にとどまらず、開発プロセスに関わる開発者やレビューアの役割を見直す必要があります。本書ではこの点にも焦点を当て、ツールの使い方以上に、クラウドネイティブな開発プロセスの変化を理解し、実践しながらアプリケーションライフサイクルの改善ノウハウを解説します。
  • 軽量Alpine LinuxによるDockerコンテナ構築術
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 コンテナ技術の発展と普及に合わせ、現在ではさまざまなコンテナが提供されるようになっています。 「コンテナ」とはLinuxのカーネルの機能を使ったインフラ技術であり、1つのLinuxサーバーを複数のサーバーのように振舞わせることで従来よりもオーバーヘッドの低い仮想化を実現します。 コンテナの代表的な仕組みであるDockerを使うことで、さまざまなサーバー環境がパッケージ化でき、システムへ簡単に導入/移動/削除できるようになります。そして、これらの普及に合わせて新しいソフトウェアや独自の環境をコンテナ化したいという要望も増えて来ました。 本書は、コンテナの作成に広く使われている「Alpine Linux」を解説するものです。Alpine LinuxはOSに付属のソフトウェア群を極力削った軽量ディストリビューションであり、とても小さなフットプリントを持ちます。このため、導入が簡単で運用しやすい小さなコンテナを作ることが可能です。 本書では、OSとしてのAlpine Linuxの特徴を解説し、その導入の方法や基本的な操作をLinuxの基本から解説します。また、各種のサーバーの導入方法など、目的のソフトウェアを導入したシステムを作成するための手順を解説するほか、それらをDockerコンテナとするための手順も詳しく解説します。 本書の内容を学ぶことで、自分の目的に応じたオリジナルのコンテナを開発でき、それらを公開して運用することも可能となります。現代のシステムインフラストラクチャーに欠かせないコンテナ技術の実践的な活用法を学べる一冊です。
  • Goプログラミング実践入門 標準ライブラリでゼロからWebアプリを作る
    -
    Goプログラマーの実践力を上げる! Go言語はシンプルで直接的です。net/http、html/templateなど標準ライブラリが提供され、Webアプリの開発に最適となっています。本書では、Go言語と標準ライブラリによるWebアプリの開発手法を解説。HTTPの仕組みから始め、リクエストやレスポンスのコーディング、テンプレート/DBの活用、テスト/デプロイへと進みます。Go言語の拡張性/モジュール性/保守性/実行効率を発揮させるべく、本書により開発の実践力を培ってください。――※本書は『Go Web Programming』の翻訳書です。※Go言語に関する基本的な知識を前提としています。※サンプルコードは訳者のサポートページ(marlin-arms.com/support/goweb)からダウンロードできます。
  • 新世代Javaプログラミングガイド[Java SE 10/11/12/13と言語拡張プロジェクト]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Javaのテクニックをアップグレードしよう! バージョン10から最新版まで さまざまなアップデートを一挙に学べる! Java SE 10以降では、年2回のバージョンアップサイクルとなっています。 そのうちバージョン11は、長期サポート版としてリリースされました。 本書では「Java SE 10~13の新機能」と「開発中の機能」を取り上げています。 取り上げるテーマは、以下のとおりです。 型推論、アプリケーション・クラスデータ共有、 ガベージコレクタ、ラムダ式、ラムダパラメータ、enum、 データクラス、テキストブロック、パターンマッチング、など 機能の内容だけでなく、背景、使い方、ユースケースも適宜、説明しています。 本書は、機能拡張のサイクルを加速させるJava SEのアップデートを確認したい 読者にとって、最適な一冊です。
  • JavaScript関数型プログラミング 複雑性を抑える発想と実践法を学ぶ
    -
    JavaScript関数型へスキルアップ。 もう1つのパラダイムへ転換可能に! 関数型思考を新たに身につけるのは一筋縄ではいきません。本書では、この関数型思考の実践を第1の目標にしています。関数型のメリットに触れながら、ECMAScript 2015(ECMAScript 6)をベースに、再利用性を高める実践テクニックを網羅的かつ段階的に解説していきます。また、より現場指向のテクニックとして、テストや最適化の手法、非同期処理を扱う手法についても説明します。一般的なテクニックに飽き足らず、より上位レベルの技術の習得を目指すJavaScriptプログラマーに格好の一冊です。 ――原著への読者の声 「関数型手法を考える人におすすめの本」 「良書。ただし、ビギナー向けではない」 「関数合成とモナドの章は愛すべき内容」 ※ 本書は『Functional Programming in JavaScript』の翻訳書です。 ■章構成 ◆Part1 発想の転換とキーコンセプト ◇第1章 関数型で思考する ◇第2章 関数型言語としてのJavaScript ◆Part2 関数型のデザインとコーディング ◇第3章 データ構造の数を減らし、操作の数を増やす ◇第4章 モジュラー化によるコードの再利用 ◇第5章 複雑性を抑えるデザインパターン ◆Part3 関数型のスキルを磨く ◇第6章 関数型コードのテスト ◇第7章 関数型コードの最適化 ◇第8章 非同期イベント/データのための関数型手法
  • JavaScriptモダンプログラミング完全ガイド 堅牢なコードを効率的に開発できる!
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 舞台裏も他言語との違いも分かる! 関数型/オブジェクト指向/非同期の活用、モジュールによる拡張、落とし穴の回避などを解説[基本事項を中心に、中級~超上級レベルも学べます] 本書は、JavaScript標準であるECMAScript 6以降に対応した、完全かつ簡潔なガイドブックです。古いバージョンについては解説をスキップし、現在のはるかに強力なモダンJavaScriptの中核技術からスタートできます。近年、JavaScriptプログラマーの達人たちは、エラーが発生しやすい手法を回避するために、関数型/オブジェクト指向/非同期プログラミングを積極的に採用しています。そうした最新のテクニックやヒントを本書で習得し、開発生産性の飛躍的な向上をぜひ目指してください。Java、C#、C/C++など他言語の経験者、初中級者がモダンJavaScriptを本格的に学べる一冊です。◎本書は『Modern JavaScript for the Impatient』の翻訳書です。
  • Scalaスケーラブルプログラミング 第4版
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 言語設計者によるScalaのバイブル 第4版! バージョン2.13に対応。全35章の包括的チュートリアル Scalaは、1行コードから大規模プログラムまで書けるスケーラブルな言語です。 オブジェクト指向と関数型をバランスよく融合し、並行処理やパーサー・ コンビネーターなどライブラリーも豊富に提供されています。 本書では、言語設計者自らが、Scalaの考え方と使い方を ステップ・バイ・ステップで解説。 取り上げるテーマは、オブジェクト指向、関数型、制御構造、クロージャー、 トレイト、パターンマッチ、Futureなど。 第4版では、バージョン2.13に合わせて改訂し、 新しいコレクションライブラリーに対応しています。 「Scalaのスタイルやパターンを学びたい人は必読」 「言語の“なぜ”を深く追求している」。 ―(原書への)読者の声 ◎本書は「Programming in Scala, Fourth Edition」の翻訳書です。
  • CentOS 8 実践ガイド[サーバ構築編]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「<em>CentOS 8による企業のIT基盤を支える必須技術を集約</em>」  CentOS 8の運用管理、サーバ構築にかかわるシステム管理者を対象に、従来型のデータベース、Webサーバ、メールといったサーバシステムの構築から最先端の仮想化、コンテナ基盤、IaS、GPU・AIサーバ、といったクラウドネイティブ型サーバ構築に至るまで、実際のIT基盤の提案、構築、日常の運用業務など、さまざまなシーンで役立つ情報を網羅しています。 CentOS 8.3対応
  • CentOS8 実践ガイド [システム管理編]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 現在のLinuxの適用領域は、LAMPのようなWebサーバやデータベースサーバに留まらず、ビッグデータ処理やAIを利用したデータ分析、HPC、ソフトウェア定義型分散ストレージなど、その用途を拡大させています。それとともに、ハードウェアも高機能化し、オペレーティングシステムであるCentOSでも、数百のメニーコア、数十テラバイトの大容量メモリ、ペタバイト級のストレージを搭載したハードウェアに対応し、コンピューティングにおいても、クラスタリング、仮想マシン、コンテナ、クラウド環境へも対応可能な機能を備えています。  CentOS 8は、CentOS 7でのシステムにおける大幅な改良を引き継ぎつつ、さらにさまざまな新機能を搭載しました。主なツールとしては、統合OS管理(Cockpit)、コンテナ管理(Podman)、仮想マシンイメージ作成(Image Builder)、ストレージ管理(Stratis)、パケットフィルタリング(nftable)、セッション録画/再生(tlog)などがあります。  本書では、これらの最新のツールを使いながら、IT現場の技術者にとって必要な、システム管理に伴うさまざまな手法を解説しています。 CentOS 8 1911(2020年1月バージョン)対応
  • ソフトウェアグローバリゼーション入門 国際化I18Nと地域化L10Nによる多言語対応
    -
    Webアプリケーションやスマートフォンが広く使われる現在、世界中で使われるソフトウェアを開発・配布するための障壁は薄まりつつあります。しかし、多くの人たちに使ってもらうには、さまざまな言語や文化に対応した、グローバルなソフトウェアを開発しなければなりません。本書はソフトウェア開発におけるグローバリゼーション(Globalization, G11N)をテーマにしています。その概要と開発プロセスについて触れた後、二つの大きな分類である国際化(I18N)と地域化(L10N)について、それぞれ詳しく解説しています。 ※本書は達人出版会で発売中の同名タイトルの電子書籍に、国内発のグローバル企業/アプリを対象にした新章「企業におけるグローバリゼーションの実践」を書き下ろしで追加しています。
  • [第2版]Python機械学習プログラミング 達人データサイエンティストによる理論と実践
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 機械学習本ベストセラーの第2版! 著者陣の経験に基づく洞察とより専門的な知識を学べる 機械学習の各コンセプトについて、理論や数学的背景、Pythonコーディングの実際を網羅的に解説。初期の機械学習アルゴリズムから、ニューラルネットワーク(CNN/RNN)までの手法を取り上げます。Python関連ライブラリとしてはscikit-learnやTensorFlowなどを使用。第2版では、第1版への読者のフィードバックを随所に反映し、ライブラリの更新に対応。13章以降はほとんど新規の書き下ろしです。本書は、機械学習を本格的に理解・実践するのに不可欠な一冊となっています。 ◎本書は『Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, 2nd Edition』の翻訳書です。 ◎微積分/線形代数、Pythonの文法、データ分析用ライブラリについてある程度理解している必要があります。 ■「はじめに」より抜粋 機械学習の実践的なサンプルコードを調べて試してみるのは、この分野に飛び込むのにうってつけの方法である。幅広い概念が明確になるからだ。本書では、Python言語と機械学習ライブラリを使って機械学習の実装を体験してみるほか、アルゴリズムの背後にある数学的な概念を紹介する。それらの概念は、機械学習をうまく利用するために欠かせないものである。したがって、本書は単なる実用書ではない。本書では、機械学習の概念を必要に応じて詳しく説明する。
  • 徹底理解ブロックチェーン ゼロから着実にわかる次世代技術の原則
    3.7
    どのようなデータの固まりがどのようにつながっているか。その機能や仕組みはどうなっているのか。分散システム、P2P、所有権、二重支払い、ハッシュ、非対称暗号鍵、分散コンセンサス…ブロックチェーンの重要ポイントを1つ1つ説き明かす!「非対称暗号鍵は郵便箱」「データ格納は蔵書管理」といった例えを用いて技術の仕組みをイメージしやすくしています。取り上げるテーマは、ブロックチェーンの目的、可能性、必要性、各種機能、限界/克服など。本書はブロックチェーンの基礎的な概念をしっかりと理解したい人に格好の一冊です。─原著への読者の声─「理解を確実にするのにたいへん役に立つ」「徹底的な理解が目的なら上位3冊に入る」「ブロックチェーンのベストブック」─原著は米Amazonの複数カテゴリーで第1位。カテゴリーは「Banking」「Storage & Retrieval」(2018/6/12時点)。本書は「Blockchain Basics: A Non-Technical Introduction in 25 Steps」の翻訳書です。─本書が必要になるとき─>ブロックチェーンの基礎を理解したいときに。>ブロックチェーンの技術詳細に踏み込む前に。>ブロックチェーンの社会的/経済的なビジョンや影響を考える前に。─次のような本ではありません─>Bitcoinあるいは暗号化の解説書ではありません。>ブロックチェーンの数学的基礎あるいはプログラミングの解説書ではありません。>ブロックチェーンの法的影響あるいは社会的・経済的影響の解説書ではありません。
  • TensorFlow機械学習クックブック Pythonベースの活用レシピ60+
    -
    新世代の数値計算ライブラリを操る! 線形回帰からCNN/RNNまで網羅的に実践 -- TensorFlowは、数値処理用のオープンソースライブラリ。AI分野を中心に活用が進んでいます。本書ではまず、変数/プレースホルダといったTensorFlowの基本や、オープンデータを扱う方法を説明。以降は、機械学習のさまざまな手法をレシピとして示していきます。具体的には次のとおりです。線形回帰、SVM、最近傍法、ニューラルネットワーク、自然言語処理、畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、運用環境のための手法、遺伝的アルゴリズム、k-means、常微分方程式などです。※本書は『TensorFlow Machine Learning Cookbook』の翻訳書です。 ※コードの検証にPython 3.5/3.6とTensorFlow 1.1/1.2を使用(各環境/各コードの動作を完全に保証するものではありません)。
  • TensorFlowではじめるDeepLearning実装入門
    3.5
    本書は、深層学習をこれから勉強するにあたり実装だけではなく深層学習の構造も学びたい方、チュートリアルに掲載されているものよりも詳細な内容を知りたい方を対象に書かれています。Pythonによる基本的なプログラミング知識を前提とするので、そうした部分が曖昧な方は他の書籍と合わせて読むことをお勧めします。また、本書はTensorFlowのラッパーであるKerasやtf.kerasパッケージは用いません。後半ではハイレベルなAPIを用いますが、前半はTensorFlowの低レベルなAPIを用いて解説することで、内部構造についてより理解を深めてもらうような構成をとっています。

    試し読み

    フォロー
  • ディープラーニング構築テンプレート[AIプロジェクトの必須事項と技術的指針]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ディープラーニングは、近年のAIテクノロジーの中心的な存在です。企業でもこの技術を活用しようとする動きが増えてきていますが、ディープラーニングのシステム化に成功するには、そのための十分な知識が必要です。本書では、ディープラーニングフレームワークの開発者であり、さまざまなAIプロジェクトでの経験を有するアダム・ギブソン氏が、ディープラーニングなどAIを活用したシステム化のキーポイントを説明します。また、ディープラーニングの使いこなしに役立つ本質的な技術的知識も解説。今まさに現場でAI技術の実装を行っている方、AIプロジェクトの管理を行っている方に格好の内容となっています。
  • ディープラーニング実装入門 PyTorchによる画像・自然言語処理
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ●本書の特徴 現在のコンピューティングの世界において、機械学習の分野は最も注目されている領域と言えるでしょう。機械学習の登場により、従来とは比べものにならないくらいの高精度かつ複雑なデータの分析が可能となりました。 本書は、機械学習の手法の中でもとくにディープラーニングに注目し、その実践のための知識を基礎からまとめています。概念としての「人工知能」「機械学習」「ディープラーニング」の紹介から、数学知識のまとめ、プログラミングとフレームワークの利用方法、環境の構築までを解説していきます。 機械学習基盤の構築について、理論から実践までの要素を紹介することから、実際の業務にも応用可能な本格的システムを作るための知識を一気通貫に習得可能です ●Python/PyTorchによる機械学習の実現 本書では、機械学習を実現するためのプログラミング言語としてPythonを取り上げ、ディープラーニングを実現するライブラリとしてPyTorchを用います。PyTorchは機械学習のさまざまな機能を備えており、煩雑な処理を極めて簡潔に書けます。本書では、PyTorchを利用した画像の解析とテキスト分析を例に、ディープラーニングの実践について詳しく見ていきます。 また、本書では開発したソフトウェアを動作させる環境についても言及します。クラウドを利用した実行基盤の実現についても多くのページを割き、スケーラビリティを有するシステムの構築についても学ぶことが可能です。 本書は、執筆者の人工知能の分野での教育活動やコンサルテーションの豊富な経験をもとに執筆されており、機械学習の分野における「学び」を、読者が基礎からひととおり体験できるように構成されています。
  • Deep Learning Javaプログラミング 深層学習の理論と実装
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 深層学習のアルゴリズムをJavaで実装! 「ゼロからの実装」や「ライブラリの活用」を解説 本書では、まず深層学習に関連する機械学習アルゴリズムを復習します。 その後、深層学習アルゴリズムの主要な理論を解説し、 Javaでゼロから実装する方法を示します。 さらに、Javaライブラリを利用した実装方法も解説します。 深層学習用Javaライブラリとして使用するDeeplearning4jは オープンソースの分散処理ソフトウェアApache Spark/Hadoopに 統合されているものです。 そのほか、人工知能やディープラーニングの変遷や今後の展望について説明し、 番外編としてTheano/TensorFlow/CaffeをPythonで利用する方法も解説します。 「概要だけではなく、数式やアルゴリズムの根本まで解説」 「コード例は非常に読みやすい」----原著への読者の声 ※ 本書は『Java Deep Learning Essentials』の翻訳書です。
  • Dockerコンテナ開発・環境構築の基本
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 2017年から2018年にかけて、コンテナ型仮想化技術を実現するDockerやコンテナアプリケーション基盤を支える、Kubernetesを始めとするコンテナアプリケーション開発プラットフォームに関連するマネージドサービスが、クラウドプロバイダーやベンダー企業からリリースされています。それに伴い、従来のアプリケーション開発からコンテナアプリケーション開発へとシフトし始めています。  コンテナアプリケーション開発は、基盤や運用を含め一つのパラダイムシフトでもあり、従来のアプリケーション開発とは、さまざまな点において異なります。本書では、プリケーションエンジニア、インフラエンジニア、オペレーションエンジニアの方々を対象に、これまでのアプリケーション開発とコンテナアプリケーション開発の違い、コンテナアプリケーション開発に必要となるDocker、Kubernetesや自動化で必要となるCI/CD、コンテナアプリケーションの運用方法を基本から解説しています。
  • Docker実践ガイド 第2版
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書では、技術者だけでなく、IT基盤の方向性の検討や戦略の立案、意思決定を行う立場の方が、導入前の検討を実践できる内容を盛り込みました。具体的には、コンテナの特徴、導入時の検討項目、注意点などのチェックリストを設け、システム構成例などを解説図にまとめ、要点を把握しやすいようにしました。また、大規模データセンター向けのコンテナ基盤構築の経験がない技術者でも、その基礎を理解できるよう、Dockerのインストール手順、使用法などを具体的に記載しています。  また、今回出版される第2版では、新たに商用版Docker EEの検討項目、構築手順、使用法、セキュリティ管理手法の掲載に加え、Dockerを取り巻くエコシステムについて、2019年時点での最先端のトピックを取り上げました。内容の詳細は目次を参照していただきたいのですが、コンテナの連携を行うDocker Compose、クラスタ化を実現するDocker Swarm、コンテナ向けの仮想化基盤を構築するDocker Machine、GUI管理ツール、CRIUを使ったライブマイグレーション、コンテナ専用OSのCoreOSとRancher OS、コンテナ基盤におけるネットワーキング、周辺機器の使用例、インターネットに接続しない社内コンテナ環境の構築、そして、複数コンテナによるオーケストレーションを実現する人気のKubernetesなどの解説を網羅しています。
  • Python機械学習ライブラリ scikit-learn活用レシピ80+
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 必須のPython機械学習ライブラリを使いこなそう!機械学習の各手法を80超のレシピとして幅広く解説。具体的には、次のテーマを取り上げます ― ◎機械学習の基本的な枠組み、◎モデル構築前のワークフローと前処理、◎次元削減、◎線形モデルの構築、◎ロジスティック回帰、◎距離指標によるモデル構築、◎交差検証とモデル構築後のワークフロー、◎サポートベクトルマシン、◎決定木とアンサンブル学習、◎テキストと多分類、◎ニューラルネットワーク、◎単純な評価器の作成 ― 原著 2nd Edition待望の翻訳!本書は『scikit-learn Cookbook - Second Edition』の翻訳書です。本書の対象読者として、機械学習のPythonプログラミングについてある程度知識または経験のある方を想定しています。
  • Python基礎&実践プログラミング[プロへのスキルアップ+プロジェクトサンプル]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 基本的なコードから1つ1つ試せる! プログラミング・スキルを着実にレベルアップ。 初中級テクニックと実践力を強化しよう。 本書ではPythonのさまざまな側面をカバーしています。 文法&基本テクニック、目的別テクニック、 そして、実践的なプログラムの発想と実装まで。 【文法&基本】インストール、初歩、リスト/タプル/辞書、イテレータ… 【目的別テクニック】ファイル操作、GUI、DB、ネットワーク、Webアプリ、テスト… 【開発プロジェクトサンプル】マークアップ処理、ファイル共有、GUI、ゲーム
  • Pythonスクレイピングの基本と実践 データサイエンティストのためのWebデータ収集術
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ◇スクレイピング・テクニックの基礎と実践を学べる。Webからデータを収集、適切なデータセットを作成しよう!―本書では、HTTP/HTML/CSSといった基本技術の仕組み、フォーム/ログイン/Cookie/JavaScriptへの対応、クローラーの開発、ベストプラクティスを解説。データサイエンス指向の15のサンプルも収録。Pythonの各種ライブラリを活用![requests、Beautiful Soup、Selenium、records、matplotlib、pandas、scikit-learn … etc.]◇Webページから情報を取得するスクレイピングは、データサイエンスに必須の技術です。本書では、Pythonを使ったスクレイピングの基本と実践を解説。有用なツール、ベストプラクティス、実用サンプルについても説明。本当に興味深いプロジェクトは、情報という宝の山を探索することから始まります。本書を携えて探索の旅を進めていきましょう。◇本書は『Practical Web Scraping for Data Science: Best Practices and Examples with Python』の翻訳書です。◇Pythonプログラミングの基礎を理解していることを前提に解説しています。
  • Pythonデータ分析/機械学習のための基本コーディング! pandasライブラリ活用入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Pythonデータ分析+機械学習への第一歩! 本格学習の前に、基礎を固め、全容を把握。― データの取り込み・整備・集約から、可視化、モデル化、正規化、高速化など、一連の基本作法を学べます。付録では、Python環境のインストール、Pythonの文法などを確認できます。使用するライブラリは、pandasを中心に、matplotlib、seaborn、numpy、statsmodels、sklearnなど。本書は『Pandas for Everyone: Python Data Analysis』の翻訳書です。
  • PyTorch自然言語処理プログラミング word2vec/LSTM/seq2seq/BERTで日本語テキスト解析!
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 日本語テキスト解析処理を快速プログラミング! 単語/文書の分類、機械翻訳などを実装。 自然言語処理は、検索エンジン、自動要約、機械翻訳、音声認識などで利用される技術です。 PyTorchでは、特にTransformersというBERT系モデルを提供することで、 より簡単にBERTを利用できるようになっています。 本書では、自然言語処理で特に重要なディープラーニング技術である word2vec、LSTM、seq2seq、そしてBERTを取り上げます。 まず第1章でPyTorchの基本を説明します。そのあと各技術の考え方を説明し、 PyTorchを使ったそれぞれのプログラミング手法を解説します。 それらのプログラミングでは、以下のことなどを目的にしています。 ・単語や文書の類似度を測る ・文章内の単語の品詞を分類する ・日英の機械翻訳を実行する ・文書を分類する ・質問/回答タスクを実行する 【本書の構成】 第1章 PyTorchの基礎 第2章 word2vecによる分散表現 ~単語をベクトルで表現~ 第3章 LSTMによる時系列データ解析 ~文を単語の系列として解析~ 第4章 seq2seqモデルによる機械翻訳 ~ある系列を別の系列に変換~ 第5章 事前学習済みモデルBERTの活用 ~タスクに応じてモデルを調整~ 付録A プログラミング環境の構築(Windows) 付録B 本書で解説した主要プログラム集 ※本書の内容はPython/PyTorch/機械学習の基本事項を 理解されていることを前提としています。
  • ビッグデータ分析基盤の構築事例集 Hadoopクラスター構築実践ガイド
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Apach Hadoop 3/MapR 6.0とエコシステムによるビッグデータ分析基盤の構築の実践ガイド  Hadoop基盤の方向性の検討や戦略の立案、および、意思決定を行う企画部門 や、実際に基盤構築を行う技術者が、導入前の検討を実践できる内容を盛り込みまし た。具体的には、ビッグデータ処理システムの経緯、目的、Hadoopとその周辺 ソフトウェアの特徴、導入時の検討項目、注意点、システム構成例などの要点を知る ことができます。また、大規模なデータ処理基盤の構築の経験がない技術者でも、 Hadoopをインストールし、使用できるように、一連の手順をステップバイステップで 具体的に記載しています。  エコシステムとしては、日本の企業においても 導入が積極的に行われているインメモリ型の分析、および、機械学習のフレームワーク を提供するSpark、機械学習エンジンのMahout、従来のRDBMSのSQL文のようなデータ操作を実現するHive、Impala、列指向の分散データベースであるHBase、データの加工や 抽出を行うPig、RDBMSとHadoop間でのデータ転送を実現するSqoop、SNSやログなどの さまざまな種類データをHadoopに取り込むFlumeといった、利用頻度の高いHadoop周辺 ソフトウェアの具体的な構築手順と使用例を網羅しました。これらの多くの事例により、 最新のビッグデータ処理基盤で提供される機能や基本的な使用法を理解できます。
  • プログラマーなら知っておきたい40のアルゴリズム 定番・最新系をPythonで実践!
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 さまざまなアルゴリズムを一挙に把握できる。 問題解決力、データ活用力をレベルアップ! ソートや検索といった基本的なアルゴリズムから、 大規模処理・暗号化、機械学習・説明可能性の手法など最新系もカバー。 本書は、アルゴリズムの基本事項から始まり、検索やソートなどの実例を示します。 より複雑なアルゴリズムとしては、線形計画法、ページランキング、グラフアルゴリズム を説明。機械学習アルゴリズム背後のロジックも理解できるようにします。 ケーススタディとして、不正分析やレコメンデーションエンジンを取り上げ、 さらには大規模処理・並列処理・暗号化のアルゴリズムも紹介します。 本書は、さまざまなアルゴリズムを活用したい方にとってその手掛かりとなる 格好のガイドブックです。
  • プロフェッショナルPython ソフトウェアデザインの原則と実践
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 クリーンで柔軟性の高いプログラムを開発できる。 プロの品質を実現するデザイン手法を多面的に解説。 <抽象化、カプセル化、パフォーマンス、テスト、拡張性と柔軟性、 クラスの継承、疎結合、リファクタリング、デザインパターン .etc> プログラマーが考慮すべきソフトウェアデザインのアプローチとして、 さまざまな手法がこれまで登場し発展してきました。 たとえば、1960年代の構造化プログラミング以降で発展した「関心の分離」や「抽象化」、 オブジェクト指向の中心概念の1つ「カプセル化」などが挙げられます。 これらは、いずれもソフトウェアの開発/運用をより容易にし、拡張性・保守性を高めるものです。 本書では、それらのアプローチをどのように理解し、 Pythonでどのように実践していけばよいのかを解説します。 本書の内容を習得することで、初中級者はコーディングスキルを大きく向上させ、 プロフェッショナルなプログラミングへの道を見通せるようになります。 ベテランの開発者が最近のトレンドを押さえて昔の知識を更新するのにもよいでしょう。
  • マイクロサービスパターン[実践的システムデザインのためのコード解説]
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 マイクロサービスは、現在最も注目されるソフトウェアのアーキテクチャスタイルです。巨大なモノリシック(一枚岩)システムを、独立した複数のサービスへと分割することによって、それらのサービスはRESTやメッセージングを介して協業できるようになります。機能別に分割されたサービスはそれぞれ個別に開発/デプロイ/管理され、疎結合となっており、保守性や運用性が飛躍的に向上します。 マイクロサービスは巨大なエンタープライズシステムのモダナイゼーションに役立つアーキテクチャスタイルですが、その実践は簡単なことではありません。本書は、システムのマイクロサービス化の成功に向けた極めて実践的な解説書です。豊富なサンプルコードを示しながら、ストーリー仕立てで具体的な解説を試みます。システムやプロセス間通信の設計や、ビジネスロジックの開発、データの永続化などを解説し、さらにテストやデプロイ、開発プロジェクトのマイクロサービスへの移行などについても考察しています。 マイクロサービスについて詳しく知り、その実現のための具体的な方法を知りたい、開発の失敗を避けるための生きた知識を得たいという方のために、本書はさまざまな知見を提供します。
  • Microsoft Azure実践ガイド
    3.8
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Microsoft Azureの基本サービスである、仮想マシン、PaaS、ネットワーク、ストレージ、データベースを対象として、各種サービスの使い方、仕様、複数のサービスを組み合わせたシステム構築手法などを解説します。 最初に企業システムでの活用を前提として、冗長構成をとったサンプルシステムの構築からスタートし、仮想マシン、PaaS、仮想ネットワーク、オンプレとAzureのネットワーク接続、さまざまなストレージの活用、データベース(SQL Database、MySQL/PostgreSQL、Cosmos DB、Data Warehouse、Data Lake)、セキュリティ管理まで、具体例を示しながら主だった機能を網羅的に取り上げます。 また、AzureにおけるInfrastructure as Codeの基本となる、APIを利用したプロビジョニングや構成管理の自動化、そしてAzureのリファレンスアーキテクチャを参考に、Windows/Linux、.NETとSQL Server/MongoDB、Express、Angular、Node各サービスを組み合わせたシステム設計を詳細に解説します。
  • Machine Learning実践の極意 機械学習システム構築の勘所をつかむ!
    4.0
    機械学習システム構築で経験を積んだ先鋭たちによる執筆! MLワークフローの基礎と実践ノウハウを解説―本書の中心テーマは、理論や数式、コーディングではありません。機械学習ワークフローにおける作業の基礎と応用について解説します。ワークフローはプロジェクト全体の流れを形作るものであり、成果物としてよりよいシステムの構築を目的とします。本書の前半は、ビジネス上の機械学習の利点や課題のほか、データの収集/整備、モデルの構築/評価/最適化など各作業の基本的な考え方を説明。後半は、実データによるケーススタディや予測スループットの改善、大容量データへの対応など応用力の強化を目的に解説します。機械学習ワークフローの全容を見通したい方、改めて理解しておきたい方などにお勧めの一冊です。―原著への読者の声―「よく書かれたオリジナルな本」「データと機械学習のベストプラクティスを提示」― ※本書は『Real-World Machine Learning』の翻訳書です。Pythonについては一定の知識がある方を想定しています。

    試し読み

    フォロー
  • Unity 3Dゲーム開発ではじめるC#プログラミング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 シンプルなゲームを作りながら、C#とUnityの概念や基本を理解できる!―Unityは、最も人気の高いゲームエンジンの1つで、開発環境も備えています。本書では、Unityのインストール方法などを示した後、シンプルな3Dゲームを構築しながら、プログラムの構成部品としてC#スクリプトを作成/活用する方法を解説します。前半は変数、メソッド、制御フローなどプログラミングの初級テーマを取り上げます。後半はカメラ制御、衝突、ライティングなどゲーム機構を説明し、さらにコレクションやジェネリックなどプログラミングの中級テーマもカバーします。本書では「実践」「クイズ」といったセクションも設けており、Unityゲーム開発におけるC#の基礎を把握するのに格好の一冊です。―◎制御フローやジェネリック/イベントなど様々なキーポイントをカバー。◎ゲーム機構やUIの実装、C#の中級トピックも把握できる―『Learning C# by Developing Games with Unity 2020, 5th Edition』を翻訳【本書は原著の第5版を翻訳】
  • Linuxサーバ入門 [CentOS 8対応]
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、ITプロを目指す初心者が、CentOS 8を通してLinuxのシステム管理とサーバ構築の基本操作を学習していくための入門書です。普段はWindowsやmacOSといったウィンドウ環境を利用している方を対象に、Linux(CentOS 8)におけるコマンドライン操作、ユーザー管理、パッケージ管理、ネットワークの基本設定、サーバーの管理・構築について、実際の操作を行いながら解説します。本書を読み終えた段階で、CentOSでの基本的なシステム管理やWebサーバやファイルサーバの構築が行えるようになることを目指しています。Chapter 1~Chapter 3までは、CentOSのインストールから始めて、コマンドラインの使い方を学習します。その後のChapter 4とChapter 5では、Linuxのシステム管理、ネットワークやセキュリティの基本的な設定を行います。Chapter 6以降は、より実践的なサーバ構築のテーマとして、ファイルサーバとしてSambaとNFS、WebサーバとしてApacheの構築を取り上げ、最後にSSHによるリモートアクセスの方法を解説します。
  • LeanとDevOpsの科学[Accelerate] テクノロジーの戦略的活用が組織変革を加速する
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ハイパフォーマンス組織を実現する方策のエッセンス!―本書では、LeanとDevOpsといった開発・運用スタイルがどのように実践されているのかを科学的に調査。こうしたスタイルが、開発組織や組織全体のパフォーマンスのほか、組織文化、リーダーシップ/マネジメントとどう関連しているかを明らかにする。 ■『これはアジャイル、リーン、DevOpsの概念的根拠に関して新境地を開く本ではない。むしろもっと貴重なものを提供してくれる』― Cameron Haight, VMware南北アメリカ大陸担当バイスプレジデント兼CTO ■『現代の、何につけてもソフトウェアが中心、という未曾有の世界で生き残りを図るCEO、CFO、CIOに必須の洞察力を授けてくれる本』― Thomas Limoncelli, The Practice of Cloud System Administrationの共著者 ■『本書では「速度か安定性か」という2分化の考え方に異論を投げかけるエビデンスを示す。「速度は安定性に依存する。効果的なプラクティスを実践すれば速度も安定性も高められる」と主張』― Martin Fowler, アジャイルソフトウェア開発、エクストリームプログラミングなどの提唱者 ◇米Amazonのカテゴリーでベスト10!―2018/08/17時点。Software Development、Operations Research、Information Managementの3カテゴリー◇ ◎本書は『Accelerate: The Science of Lean Software and DevOps』の翻訳書です。
  • Ruby on Rails 6 実践ガイド
    4.3
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、2014年4月出版の『実践Ruby on Rails 4: 現場のプロから学ぶ本格Webプログラミング』をRuby on Railsのバージョン6向けにアップデートしたものです。本書では、1つの企業向け顧客管理システムを作る過程で、RailsによるWebアプリケーション開発の基礎知識とさまざまなノウハウを習得していきます。各章末には演習問題が設けられているので、理解度を確かめながら確実に読み進められます。著者が試行錯誤を繰り返した上でのベストプラクティスを提供し、読者は、実際に業務システムを構築しながらRailsのさまざまな機能、方法、作法、メソッド、テクニックを学ぶことができます。
  • Ruby on Rails 6 実践ガイド[機能拡張編]
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、2019年12月に出版された『Ruby on Rails 6実践ガイド』の続編です。本編で作成した企業向け顧客管理システムBaukis2の機能をさらに拡張し、実用性の高いシステムにしていきます。本書のテーマは多岐にわたります。クッキー、リクエスト元のIPアドレス、Ajax、データベーストランザクション、排他的ロック、ツリー構造のデータなど、さまざまなWebアプリケーションに必須の機能を実装しながら解説します。また、この機能拡張編では、HTMLフォームのさまざまなバリエーションを紹介しています。特にRailsで業務システムを開発する場合、要求仕様に応じて自由にHTMLフォームを設計・実装する力が求められます。本書では、さまざまなフォーム設計の事例を扱っていますので、一種のレシピ集として活用できます。
  • Rocky Linux & AlmaLinux実践ガイド
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 現在のLinuxの適用領域は、LAMPのようなWebサーバやデータベースサーバに留まらず、ビッグデータ処理やAIを利用したデータ分析、HPC、ソフトウェア定義型分散ストレージなど、その用途を拡大させています。それとともに、ハードウェアも高機能化し、オペレーティングシステムでも、数百のメニーコア、数十テラバイトの大容量メモリ、ペタバイト級のストレージを搭載したハードウェアに対応し、コンピューティングにおいても、クラスタリング、仮想マシン、コンテナ、クラウド環境へも対応可能な機能を備えています。  Rocky Linux 8 & AlmaLinux 8は、CentOS 7でのシステムにおける大幅な改良を引き継ぎつつ、さらにさまざまな新機能を搭載しました。主なツールとしては、コンテナ管理(Podman)、仮想マシンイメージ作成(Image Builder)、ストレージ管理(Stratis)、パケットフィルタリング(nftable)、セッション録画/再生(tlog)などがあります。  本書では、これらの最新のツールを使いながら、IT現場の技術者にとって必要な、システム管理に伴うさまざまな手法を解説しています。 Rocky Linux 8.5 & AlmaLinux 8.5対応
  • VMware vSphere7インテグレーションガイド
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ●仮想化システムの活用を基礎から解説 vSphereは現代のコンピュータシステムで広く使われている仮想化基盤ソフトウェアです。ハイパーバイザー型のコンピュータの仮想化を実現し、システムの運用にさまざまな利点や柔軟性をもたらします。本書では、このvShereの最新バージョンであるvSphere 7を題材に、システムにおける活用を解説します。仮想化の基本から説明し、新規にvSphere 7を導入する場合のほか、既存vSphereから移行する場合の手順、確認事項、注意点をまとめました。そのほかにも、システムの設計、運用、バックアップリカバリーなどを詳しく説明し、仮想化されたデータセンターSDDC(Software-Defined Data Center)の実現のための情報を提供します。 ●クラウド/コンテナの活用を見据えたvSphere 7 また、オンプレミスのシステムだけでなく、クラウドを使ったシステム構築とvSphereとの連携についても解説します。現在のvSphereはクラウドとの連携機能を充実させており、仮想マシンをオンプレミスとパブリッククラウドで相互運用できるようになりました。こうしたクラウド連携によるシステム運用についてもポイントを解説します。さらに、Kubernetesに代表されるシステムのコンテナ化にも対応し、より軽量で柔軟な仮想システムの運用を実現することもできます。 vSphereは仮想化の登場以来、つねに進化を続けており、vSphere 7でも多くの機能が提供されています。本書では、新しい時代のコンピューティングに対応した、仮想化環境の活用を実現するためのさまざまな情報を提供します。

最近チェックした本