KS情報科学専門書一覧

  • Pythonで学ぶ実験計画法入門 ベイズ最適化によるデータ解析
    -
    ★ 実験を効率化する強い味方 ★ もう実験で疲弊しない。次に試す実験条件は、データと統計学が教えてくれる! ベイズ最適化とPythonを駆使して、効率よく研究・開発を進めよう! 《すぐに試せるサンプルデータセット・サンプルコード付き》 ■ データ解析の初歩から、モデルの設計、実践的な応用事例までを導く。 ■ 実験時間や人数が限られる今、絶対に役立つスキルが身につく! ■ 入門書であり、実践書。フルカラー! 【目次】 第1章 データ解析や機械学習を活用した分子設計・材料設計・プロセス設計・プロセス管理 ・ケモ・マテリアルズ・プロセスインフォマティクス ・分子設計 ・材料設計 ・なぜベイズ最適化が必要か ・プロセス設計 ・プロセス管理 ・データ解析・人工知能(モデル)の本質 第2章 実験計画法 ・なぜ実験計画法か ・実験計画法とは ・適応的実験計画法 ・必要となる手法・技術 第3章 データ解析や回帰分析の手法 ・データセットの表現 ・ヒストグラム・散布図の確認 ・統計量の確認 ・特徴量の標準化 ・最小二乗法による線形重回帰分析 ・回帰モデルの推定性能の評価 ・非線形重回帰分析 ・決定木 ・ランダムフォレスト ・サポートベクター回帰 ・ガウス過程回帰 第4章 モデルの適用範囲 ・モデルの適用範囲とは ・データ密度 ・アンサンブル学習 第5章 実験計画法・適応的実験計画法の実践 ・実験候補の生成 ・実験候補の選択 ・次の実験候補の選択 ・ベイズ最適化 ・化学構造を扱うときはどうするか 第6章 応用事例 ・複雑な非線形関数を用いた実験計画法・適応的実験計画法の実践 ・分子設計 ・材料設計 ・プロセス設計 第7章 さらなる深みを目指すために ・Gaussian Mixture Regression(GMR) ・GMR-Based Optimization(GMRBO)(GMRに基づく適応的実験計画法) ・複雑な非線形関数を用いたGMRBOの検証 第8章 数学の基礎・Anaconda・Spyder ・行列やベクトルの表現・転置行列・逆行列・固有値分解 ・最尤推定法・正規分布 ・確率・同時確率・条件付き確率・確率の乗法定理 ・AnacondaとRDKitのインストール・Spyderの使い方
  • イラストで学ぶ ロボット工学
    4.0
    あれから3年、ホイールダック2号が帰ってきた!大好評書『イラストで学ぶ人工知能概論』の第2弾。ホイールダック2号@ホームの開発ストーリー仕立てだから、ロボット工学の基本がいとも簡単に理解できる! 重要な数学的記述を可能な限り解説したので、マニピュレータ制御における数学的・物理的なイメージが掴める! 計算力が身につく章末問題が充実しているので完全無敵!
  • これからのロボットプログラミング入門 Pythonで動かすMINDSTORMS EV3
    -
    ★ビジュアルプログラミングからオブジェクト指向プログラミングへ★ LEGO MINDSTORMS EV3を用いるロボットプログラミングもPythonで! さあ、はじめよう! EV3ソフトウェアからEV3 MicroPythonへ。ソースコードの解説がていねいだから大丈夫。プログラムを書いて、すぐロボットが動くからSTEM教育の導入としても最適。センサ、機構、ライントレース、Open Roberta Labなどの発展的な話題も豊富。 いま、テキストベースのプログラミング言語Pythonが注目されています。人工知能(AI)を応用したアプリケーション開発やビッグデータ解析、ロボットアプリケーション開発などの分野でよく使用されており、さらに初心者のプログラミング学習にも向いています。したがって、Pythonを学ぶことは、ロボットプログラミングを始めたい人にとって大いに意味があります。 本書では、EV3ソフトウェアとPythonでプログラムを書きます。2つのプログラムの対応がよくわかるように、EV3ソフトウェアのプログラムを説明した後に、Python のプログラムを説明します。Pythonのプログラムの説明では、EV3ソフトウェアのプログラム中のブロックに相当する手続きがどこで使われているかについても説明します。 【主な内容】 1章 はじめに 2章 プログラミングの準備をしよう 3章 ロボットプログラミングをはじめよう 4章 ロボットを動かしてみよう (基本プログラム/ ステータスライトを光らせる/ 音を鳴らす/ ディスプレイに文字を描画する/ モーターを回転させる) 5章 センサーを使って動かそう (EV3 で使用できるセンサー/ タッチセンサーを使おう/ カラーセンサーを使おう/ ジャイロセンサーを使おう/ 超音波センサーを使おう/ モーター回転センサーを使おう) 6章 オリジナルロボットを作ろう (ロボット製作のための力学・機構/ 力学・機構のための数学的準備/ 力学の基礎/ 基本的な機構/ 車輪移動機構/ ロボットアームとエンドエフェクター) 7章 実践してみよう (ボタンを押してすぐに実行する/ 複雑な動作をプログラミングするためのテクニック/ ライントレース/ 線の検出) 8章 Open Roberta Lab (Open Roberta Labとは/ 画面の説明/ プログラミング/ 保存と読み込み/ シミュレーター/ ロボットの設定/Open Roberta Lab からEV3 を動かす) 付録A リファレンス
  • 意思決定分析と予測の活用 基礎理論からPython実装まで
    4.0
    《予測を「作る」から「使う」へ》 ・具体的な数値例,Pythonプログラミングを通して,手を動かしながら学ぶ! ・決定分析の基本と活用を中心に,効用理論,確率予測までを解説! ・リスクや不確実性がある中での意思決定に興味がある人に最適! 【サポートページ】 https://logics-of-blue.com/decision-analysis-and-forecast-book-support/ 【キーワード】 ▼決定分析の基本  決定問題・期待値・展開型分析・相互情報量・KL情報量・情報の価値 ▼決定分析の活用  予測の評価・コスト/ロスモデル・標準型分析・ベイズ決定・逐次決定 ▼効用理論入門  選好・効用関数表現・期待効用最大化の原理・vNMの定理・リスク態度 ▼確率予測とその活用  確率予測の基本・信頼度・ブライアスコア・ROC曲線・最適な決定方式 【目次】 第1部 序論  第1章 意思決定における予測の活用  第2章 決定分析の役割 第2部 決定分析の基本  第1章 決定分析の初歩  第2章 Pythonの導入  第3章 決定分析におけるPythonの利用  第4章 期待値に基づく意思決定  第5章 情報の量  第6章 情報の価値 第3部 決定分析の活用  第1章 予測の評価  第2章 コスト/ロスモデルと予測の価値  第3章 決定分析の事例  第4章 標準型分析  第5章 逐次決定問題における予測の活用 第4部 効用理論入門  第1章 選好と効用関数表現  第2章 期待効用理論 第5部 確率予測とその活用  第1章 確率予測の基礎  第2章 確率予測の活用
  • イラストで学ぶ 機械学習 最小二乗法による識別モデル学習を中心に
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 最小二乗法で、機械学習をはじめましょう!! 数式だけではなく、イラストや図が豊富だから、直感的でわかりやすい! MATLABのサンプルプログラムで、らくらく実践! さあ、黄色本よりさきに読もう!
  • イラストで学ぶ 情報理論の考え方
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 けっしてやさしくはない。だが、知っておきべきである。2進数から誤り訂正符号までを明快に説く、初学者にとって最良の教科書。抽象的でとっつきにくいシャノンの情報理論をイラストとともに学ぼう!筆者が長年講義した内容から、学生の反応が良かったものを厳選し、わかりやすく説明しています。情報理論の本質ともいえる「典型系列」について章を設け、詳しく解説しています。
  • イラストで学ぶ 人工知能概論 改訂第2版
    -
    ★初学者向けの名著を100ページ増の大改訂! ホイールダック2号は深層学習を手に入れた!★ ・全面的に記述を見直すも、第1版との連続性を最大限保ち、ますますパワーアップ! ・「ニューラルネットワーク」の章を新設し、深層学習の歴史的位置づけ、CNN、RNNをわかりやすく解説した! ・「確率的生成モデル」の章を新設し、強化学習・状態推定・教師なし学習などに関わる解説に芯を通すことができた! まずは、この1冊から始めよう! 【主な内容】 第1章 人工知能をつくり出そう  第2章 探索(1):状態空間と基本的な探索 第3章 探索(2):最適経路の探索 第4章 探索(3):ゲームの理論 第5章 計画と決定(1):動的計画法 第6章 確率モデル(1):確率とベイズ理論の基礎  第7章 確率モデル(2):確率的生成モデルとナイーブベイズ 第8章 計画と決定(2):強化学習 第9章 状態推定(1):ベイズフィルタ 第10章 状態推定(2):粒子フィルタ 第11章 学習と認識(1):クラスタリングと教師なし学習  第12章 学習と認識(2):パターン認識と教師あり学習  第13章 学習と認識(3):ニューラルネットワーク  第14章 言語と論理(1):自然言語処理  第15章 言語と論理(2):記号論理  第16章 言語と論理(3):証明と質問応答  第17章 まとめ:知能を「つくる」ということ
  • イラストで学ぶ ディープラーニング 改訂第2版
    3.0
    おお!もう第2版! 深層学習ベストセラーがさらにパワーアップ。リカレントニューラルネットワーク、GAN、深層強化学習の「章」が新たに加わり、ツールの最新事情も反映された。50ページ以上増強されたお得な一冊!
  • イラストで学ぶ 認知科学
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ★ 人間は巧妙にできている。――実に面白い!!★   ・全ページフルカラーのこれまでにない入門書! 見開き構成でわかりやすい! ・感覚、記憶、意思決定、情動、コミュニケーション、言語理解など、人間が行う心的活動を情報処理のプロセスと捉えて、体系的に解説した。 ・実験心理学や神経科学をはじめとして、言語学、コンピュータサイエンス、哲学の側面からも認知科学を網羅的に解説した。 ・数理工学モデルも含め、認知プロセスの「モデル」を多く紹介。情報系の学生にも最適な一冊! 【主な内容】 1章 認知科学概論 2章 感覚 3章 知覚・認知 4章 記憶 5章 注意 6章 知識 7章 問題解決 8章 意思決定 9章 創造 10章 言語理解 11章 情動 12章 社会的認知 13章 コミュニケーション 14章 錯覚 15章 脳
  • イラストで学ぶ ヒューマンインタフェース 改訂第2版
    -
    【モノ作りにかかわる全技術者必携の最強テキスト】体系的に整理された定本の改訂版。最新動向を盛り込み、さらにパワーアップ! イラストをカラー化し、さらに見やすく! ・GUI設計・ヒューマンエラー対策などで、基本的な考え方だけではなく、具体的・実践的なスキルまで解説しました。・人工知能分野の進展にあわせて、「スマートスピーカ」「画像認識」「音声認識」「ディープラーニング」などの関連項目を新たに解説しました。・スマートフォンを意識したGUI設計・アプリケーション開発に関する解説を充実させました。【主な内容】第1章 ヒューマンインタフェース概論/第2章 コンピュータとヒューマンインタフェース/第3章 人間の情報処理モデル/第4章 ヒューマンエラー/第5章 人間サイドからの設計/第6章 入力系設計/第7章 出力系設計/第8章 インタラクション系設計/第9章 GUI設計/第10章 ユーザのアシスト/第11章 ユーザビリティ評価/第12章 インタラクションの拡張/第13章 モバイルコンピューティングにおけるヒューマンインタフェース/第14章 ユニバーサルデザイン/第15章 ヒューマンインタフェースの新しい動きと諸課題
  • イラストで学ぶ 離散数学
    -
    この一冊からはじめよう! ボケが止まらないネコ教授と、生意気な生徒クロが楽しくナビゲートする画期的な書。 集合、論理、写像、関係、帰納法、順列、グラフ、無限集合の基本を網羅した。 定理の証明は正確かつ細部まで記述し、練習問題付き。 【推薦の言葉】 鮮やかな筆さばきが光る本書を読んだ方々が、離散数学の魅力を堪能し、将来、これらの理論を生活や勉学、研究に役立てていかれることを期待します。 ――数学者・秋山仁先生 【主な内容】 第1章 離散数学の魅力――まず面白さを感じて下さい 1.1 ピックの定理 1.2 オイラー路とオイラー閉路 1.3 ハミルトン路とハミルトン閉路 1.4 ポーサのスープの問題 1.5 鳩の巣原理 1.6 エルドシュ・スズカーズの単調部分列の定理 第2章 集合――数学の大本 2.1 集合とは何か 2.2 ベン図と和集合,共通集合,部分集合など 2.3 普遍集合とド・モルガンの法則 2.4 有限集合と包除原理 2.5 冪集合 第3章 論理――科学的思考の基礎 3.1 命題論理 3.2 述語論理 第4章 対応と写像――ここを押さえておかないと道に迷う 4.1 集合の直積 4.2 対応 4.3 写像 第5章 関係――「恋人」も「ライバル」も「親の仇」もすべて「関係」だ 5.1 関係の基本 5.2 半順序 5.3 ハッセ図 5.4 厳密半順序 5.5 同値関係 第6章 帰納法と関係の閉包――自然数といえば帰納法 6.1 帰納法 6.2 関係の閉包 6.3 集合の対等性 第7章 順列と組合せ――この先には賞金 100 万ドルの未解決問題が! 7.1 順列と組合せ 7.2 二項定理 第8章 グラフ――離散数学界のセンターポジション 8.1 グラフとは何か 8.2 グラフの用語 8.3 さまざまなグラフ 8.4 ピックの定理の証明 8.5 オイラー路とオイラー閉路 第9章 無限集合――「対角線論法」を知らずして「面白い証明」を語るなかれ 9.1 素数 9.2 集合の濃度 9.3 可算濃度 9.4 実数集合Rの濃度と対角線論法 9.5 複素数の濃度
  • 機械学習スタートアップシリーズ これならわかる深層学習入門
    4.5
    機械学習の予備知識がない読者を、研究の最前線までしっかり連れて行く、ひとりでも学べる入門書! 深層学習の理論を初めて学ぶ人はもちろん、今度こそ理解したい人のために。 【甘利俊一先生推薦】 「世の中に人工知能の解説書は多いが、基礎から始め、その仕組みを理論的に明快に説明したのは本書が初めてといってよい」
  • 機械学習スタートアップシリーズ ゼロからつくるPython機械学習プログラミング入門
    -
    ★★理論と実装のバランスがよい、「機械学習 with Python」の決定版★★ ■機械学習モジュールが普及することにより、かえって学びづらくなった機械学習アルゴリズムの基本を徹底マスター! ■scikit-learnを使わない、numpyとpandasのみのコーディングで、実装力がスキルアップ! ■ブラックボックスの中身を理解し、一生モノの知識を身につけよう! 【本書のサポートページ】すぐに実践できるコードがWeb公開! https://github.com/hhachiya/MLBook  【機械学習スタートアップシリーズ】 https://www.kspub.co.jp/book/series/S042.html 【主な内容】 第1章 機械学習とは何か 第2章 Python入門 第3章 数学のおさらい(線形代数、最適化、確率、統計) 第4章 回帰分析(線形回帰分析、ロジスティック回帰分析) 第5章 分類(線形判別分析、サポートベクトルマシン、ナイーブベイズ法、決定木) 第6章 カーネルモデル 第7章 ニューラルネットワーク 第8章 強化学習 第9章 教師なし学習(主成分分析、因子分析、クラスター分析)
  • 機械学習スタートアップシリーズ Pythonで学ぶ強化学習 [改訂第2版] 入門から実践まで
    4.0
    「Pythonで強化学習が実装できる!」と好評を得た入門書の改訂版。読者からの要望・指摘を反映させた。主に、Policy GradientとA2Cの記述・実装を見直した。・Pythonプログラミングとともに、ゼロからていねいに解説。・コードが公開されているから、すぐ実践できる。・実用でのネックとなる強化学習の弱点と、その克服方法まで紹介。【おもな内容】Day1 強化学習の位置づけを知る 強化学習とさまざまなキーワードの関係 強化学習のメリット・デメリット 強化学習における問題設定:Markov Decision Process Day2 強化学習の解法(1): 環境から計画を立てる 価値の定義と算出: Bellman Equation 動的計画法による状態評価の学習: Value Iteration 動的計画法による戦略の学習: Policy Iteration モデルベースとモデルフリーとの違いDay3 強化学習の解法(2): 経験から計画を立てる 経験の蓄積と活用のバランス: Epsilon-Greedy法 計画の修正を実績から行うか、予測で行うか: Monte Carlo vs Temporal Difference 経験を価値評価、戦略どちらの更新に利用するか:Valueベース vs PolicyベースDay4 強化学習に対するニューラルネットワークの適用 強化学習にニューラルネットワークを適用する 価値評価を、パラメーターを持った関数で実装する:Value Function Approximation 価値評価に深層学習を適用する:Deep Q-Network  戦略を、パラメーターを持った関数で実装する:Policy Gradient 戦略に深層学習を適用する:Advantage Actor Critic (A2C) 価値評価か、戦略かDay5 強化学習の弱点 サンプル効率が悪い 局所最適な行動に陥る、過学習をすることが多い 再現性が低い 弱点を前提とした対応策Day6 強化学習の弱点を克服するための手法 サンプル効率の悪さへの対応: モデルベースとの併用/表現学習 再現性の低さへの対応: 進化戦略 局所最適な行動/過学習への対応: 模倣学習/逆強化学習Day7 強化学習の活用領域 行動の最適化 学習の最適化
  • 機械学習スタートアップシリーズ ベイズ推論による機械学習入門
    5.0
    最短経路で平易に理解できる、今までにない入門書! ベイズ主義機械学習(ベイズ学習)の基本原理にのっとり、「モデルの構築→推論の導出」という一貫した手順でアルゴリズムの作り方を解説。どこまでも分かりやすい!
  • しっかり学ぶ数理最適化 モデルからアルゴリズムまで
    5.0
    最適化問題へのモデル化と、基本的なアルゴリズムを俯瞰し、最適化という考え方の基礎をしっかりと固める。大事なことは、いつの時代も変わらない。イメージしやすい具体的な例や、理解の定着にかかせない演習問題も充実! 【推薦の言葉】 数理最適化は、問題解決のための数学である。今では、その成果を実装したソルバーが簡単に手に入るようになった。直面する問題を解決するには、まずそれをモデル化し、適切な最適化手法を適用するという手順を踏む。 本書は、豊富な実例を通して、モデル化の勘どころを説明し、さらに広範な最適化手法それぞれを、基本から分かりやすく解説している。この分野全般を知るための「最適解」として推薦したい。 ――茨木俊秀(京都情報大学院大学学長) 【サポートページ】 https://sites.google.com/view/introduction-to-optimization/main 【主な内容】 第1章 数理最適化入門 1.1 数理最適化とは 1.2 最適化問題 1.3 代表的な最適化問題 1.4 本書の構成 第2章 線形計画 2.1 線形計画問題の定式化 2.2 単体法 2.3 緩和問題と双対定理 第3章 非線形計画 3.1 非線形計画問題の定式化 3.2 制約なし最適化問題 3.3 制約つき最適化問題 第4章 整数計画と組合せ最適化 4.1 整数計画問題の定式化 4.2 アルゴリズムの性能と問題の難しさの評価 4.3 効率的に解ける組合せ最適化問題 4.4 分枝限定法と切除平面法 4.5 近似解法 4.6 局所探索法 4.7 メタヒューリスティクス
  • 実践Data Scienceシリーズ RとStanではじめる ベイズ統計モデリングによるデータ分析入門
    4.7
    「基本をより実践的に!」学べる新シリーズの第一弾は、「統計モデリングの世界」へのファーストブック。基礎から学べる超入門!・チュートリアル形式だから、すぐに実践できる!・統計、確率、ベイズ推論、MCMCの基本事項から、やさしくサポート!・brmsやbayesplotなどのパッケージの使い方も、しっかり身につく!・一般化線形モデル(GLM)→一般化線形混合モデル(GLMM)→動的線形モデル(DLM)→動的一般化線形モデル(DGLM)を体系的に学べる!【本書のサポートページ】https://logics-of-blue.com/r-stan-bayesian-model-intro-book-support/ 【実践Data Scienceシリーズ】 「基本をより実践的に!」を合言葉に、データサイエンスで用いられる各種手法の基本を、プログラミングの実装とともに解説していきます。はじめて学ぶ大学生、大学院生、ソフトウェアエンジニアに向けた注目の新シリーズです。【主な内容】1部 【理論編】ベイズ統計モデリングの基本 1.はじめよう! ベイズ統計モデリング 2.統計学の基本 3.確率の基本 4.確率分布の基本 5.統計モデルの基本 6.ベイズ推論の基本 7.MCMCの基本/2部 【基礎編】RとStanによるデータ分析 1.Rの基本 2.データの要約 3.ggplot2によるデータの可視化 4.Stanの基本 5.MCMCの結果の評価 6.Stanコーディングの詳細/3部 【実践編】一般化線形モデル 1.一般化線形モデルの基本 2.単回帰モデル 3.モデルを用いた予測 4.デザイン行列を用いた一般化線形モデルの推定 5.brmsの使い方 6.ダミー変数と分散分析モデル 7.正規線形モデル 8.ポアソン回帰モデル 9.ロジスティック回帰モデル 10.交互作用/4部 【応用編】一般化線形混合モデル 1.階層ベイズモデルと一般化線形混合モデルの基本 2.ランダム切片モデル 3.ランダム係数モデル/5部 【応用編】状態空間モデル 1.時系列分析と状態空間モデルの基本 2.ローカルレベルモデル 3.状態空間モデルによる予測と補間 4.時変係数モデル 5.トレンドの構造 6.周期性のモデル化 7.自己回帰モデルとその周辺 8.動的一般化線形モデル:二項分布を仮定した例 9.動的一般化線形モデル:ポアソン分布を仮定した例
  • 実践Data Scienceシリーズ PythonではじめるKaggleスタートブック
    4.8
    シリーズの第2弾は、初学者向けのKaggle入門書の決定版! ★「Kaggleで勝つ」準備をしよう!★ 初学者が「Kaggleに何となく興味ある」状態から「実際のコンペに参加できる」状態になれるような内容を目指しました。 ・サンプルコードの詳細な解説があるから、しっかり身につく! ・優勝チームと専業Kagglerのコンビによる、安定のわかりやすさ! ・充実の本音対談で、やさしくサポート! ・初学者や手探りでやっているが体系的な知識を得たい人に最適。 【本書のサポートページ】 https://github.com/upura/python-kaggle-start-book 【実践Data Scienceシリーズ】 https://www.kspub.co.jp/book/series/S069.html 【主な内容】 第1章 Kaggleを知る 1.1 Kaggleとは 1.2 Kaggleで用いる機械学習 1.3 Kaggleのアカウントの作成 1.4 Competitionsページの概要 1.5 環境構築不要な「Notebooks」の使い方 第2章 Titanicに取り組む 2.1 まずはsubmit! 順位表に載ってみよう 2.2 全体像を把握! submitまでの処理の流れを見てみよう 2.3 次の一手を見い出す! 探索的データ分析をしてみよう 2.4 ここで差がつく! 仮説に基づいて新しい特徴量を作ってみよう 2.5 勾配ブースティングが最強?! いろいろな機械学習アルゴリズムを使ってみよう 2.6 機械学習アルゴリズムのお気持ち?! ハイパーパラメータを調整してみよう 2.7 submitのその前に! 「Cross Validation」の大切さを知ろう 2.8 三人寄れば文殊の知恵! アンサンブルを体験しよう. 第3章 Titanicの先に行く 3.1 複数テーブルを扱う 3.2 画像データを扱う 3.3 テキストデータを扱う 第4章 さらなる学びのために 4.1 参加するコンペの選び方 4.2 初学者にお勧めの戦い方 4.3 分析環境の選択肢 4.4 お勧めの資料・文献・リンク 付録A サンプルコード詳細解説 A.1 第2章 Titanicに取り組む A.2 第3章 Titanicの先に行く
  • GPUプログラミング入門 -CUDA5による実装
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 初学者にも、上級者にも、必ず役立つ! 世界初の入門書!・NVIDIA社協力のもと、新アーキテクチャ「Kepler」および「CUDA5」をもとに解説。・数値計算への応用例も多彩で、付録にサンプルプログラムを26ページ掲載。・FortranによるCUDAプログラミングも紹介。
  • スタンフォード ベクトル・行列からはじめる最適化数学
    -
    《これが世界標準! 世界もここから始めてる!!》 データサイエンス・機械学習を学ぶ「はじめの一歩」として、スタンフォード大学にて使用されている教科書“Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares”がついに翻訳!! ・豊富な事例を示しながら、ベクトル・行列の基本から最小二乗法による機械学習までをていねいに解説! ・データサイエンス・機械学習に必要な数学の学び直しにうってつけ! ・章末問題が298問掲載されているから、完全に理解できる! ・Julia言語によるプログラミング課題が原著者のウェブサイトから入手できる!  ・プログラミング課題を日本語に翻訳したものを、訳者のGitHubにて無料公開! 【プログラミングの補足資料と追加の演習問題の入手先】 ・原著者のウェブサイト:http://vmls-book.stanford.edu ・補足資料の日本語訳:https://github.com/tttamaki/julia_companion_jp 【推薦の言葉:原著刊行にあたって】 データサイエンスの学生だけでなく,すべての学生に必読の入門書 ――ローラン・EI・ガウイ(カリフォルニア大学バークレー校) これが正攻法! ――ギルバート・ストラング(マサチューセッツ工科大学) この本は多くの授業で使われるだろう.これだけ演習問題が大量にあるのだから ――トレバー・ヘイスティ(スタンフォード大学) 【主な内容】 第1部 ベクトル 1章 ベクトル 2章 線形関数 3章 ノルムと距離 4章 クラスタリング 5章 線形独立 第2部 行列 6章 行列 7章 行列の例 8章 線形連立方程式 9章 線形動的システム 10章 行列積 11章 逆行列 第3部 最小二乗法 12章 最小二乗法 13章 最小二乗当てはめ 14章 最小二乗識別 15章 多目的最小二乗法 16章 制約付き最小二乗法 17章 制約付き最小二乗法の応用 18章 非線形最小二乗法 19章 制約付き非線形最小二乗法 付録A 記法 付録B 計算量 付録C 微分と最適化 付録D さらなる話題
  • ゼロから学ぶPythonプログラミング Google Colaboratoryでらくらく導入
    5.0
    【初学者納得、玄人脱帽!】  SNSで大絶賛の名講義がついに書籍化! ・問題解決に必要な「プログラマ的感覚」が身につく!  ・基礎から解説し、プログラミングにはじめて触れる読者を、簡単な数値シミュレーションや機械学習まで導く。充実の目次! ・Google Colaboratoryで環境構築も簡単。教科書として最適! 【主な内容】 第1章 Pythonの概要とGoogle Colabの使い方 第2章 条件分岐と繰り返し処理 第3章 関数とスコープ 第4章 リストとタプル 第5章 文字列処理 第6章 ファイル操作 第7章 再帰呼び出し 第8章 クラスとオブジェクト指向 第9章 NumPyとSciPyの使い方 第10章 Pythonはどうやって動くのか 第11章 動的計画法 第12章 乱数を使ったプログラム 第13章 数値シミュレーション 第14章 簡単な機械学習 (詳細:https://www.kspub.co.jp/book/detail/5218839.html ) 【「はじめに」より抜粋】  なぜプログラミングを覚えるべきか。それは今後プログラミングが就職活動の必須スキルになるからではなく、ましてAI がブームだからでもない。「プログラマ的感覚」を身につけるためだ。(…)エクセルを使っていても、面倒な処理を見た時に「これは一括でできるマクロがあるに違いない」と思って探すかどうか。毎日決まった時間に、あるウェブサイトにアクセスして、ある値を読み取らないといけないという「仕事」が与えられた時に、「ウェブサイトにアクセスして値を読み込めるツールがあるに違いない。毎日決まった時間に何かを自動的に実行する方法があるに違いない。それらを組み合わせれば良い」と思えるかどうか。これが「プログラマ的感覚」である。  (…)細かい文法などは最初は気にせず、必要に応じて調べれば良い。「Python はこういうことができるんだな」「それはこれくらいの作業量でできるんだな」という「感覚」を頭の片隅に残すこと、それを目的として学習して欲しい。 【正誤表】 https://kaityo256.github.io/python_zero/errata/
  • Solidityプログラミング ブロックチェーン・スマートコントラクト開発入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ブロックチェーンを用いたスマートコントラクト構築に必須の言語であるSolidityの入門書。SE、エンジニア、アプリ開発者必携! 【目 次】 第1章 ブロックチェーン,イーサリアム,スマートコントラクト入門 第2章 イーサリアム,solidityのインストール 第3章 Solidity入門 第4章 グローバル変数と関数 第5章 式と制御構造  第6章 スマートコントラクトの作成 第7章 関数,修飾子,fallback 第8章 例外,イベント,ロギング 第9章 Truffleの基礎と単体テスト 第10章 コントラクトのデバッグ ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
  • はじめてのWebページ作成 HTML・CSS・JavaScriptの基本
    4.5
    ユーザーとして知っておきたいWebページの基礎を学び,シンプルなWebページを自分で構築できるようになる一冊。写真や動画の挿入法など,学んで楽しい技術を多数紹介する。大学の講義用テキストに最適です。※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。

    試し読み

    フォロー
  • Python数値計算プログラミング
    -
    《Pythonで数値計算の基本をより実践的に!》 □NumPy、SciPyを動かしながら、数値計算の基本を学ぶフルカラーテキスト! □浮動小数点演算の基礎から偏微分方程式の数値解法までを一冊に凝縮! □Pythonスクリプトはサポートページにて無料公開! 【サポートページ】 https://github.com/tkouya/inapy 【目次】 第1章 数値計算と数学ソフトウェア 第2章 数の体系,コンピュータ,浮動小数点数 第3章 Pythonことはじめ 第4章 丸め誤差の評価方法と多倍長精度浮動小数点計算 第5章 初等関数の計算 第6章 基本線形計算 第7章 連立一次方程式の解法1 ―直接法 第8章 連立一次方程式の解法2 ―疎行列と反復法 第9章 行列の固有値・固有ベクトル計算 第10章 非線形方程式の解法 第11章 補間と最小二乗法 第12章 関数の微分と積分 第13章 常微分方程式の数値解法 第14章 偏微分方程式の数値解法
  • ブロックチェーン技術概論 理論と実践
    -
    ブロックチェーンの決定版教科書! 基礎から実践まで、豊富なイラストでよくわかる。学生からSE、エンジニアまでブロックチェーンを学びたい全ての人のためのテキスト。 トラストレスとは? 分権とは? コンセンサスとは? 知っているようできちんと知らないキーワードがしっかりわかる。最新の暗号技術、匿名化技術、ゲーム理論、分散処理技術の基礎知識と合わせながら学ぶことができる。 大学の講義や企業の技術者教育に用いることができるよう、15章立てで構成。章末の演習問題付き。本文カラー。 〔 目 次 〕 Chapter 1 ブロックチェーン技術の原点 Chapter 2 ブロックチェーンの概要 Chapter 3 スマートコントラクトと分散台帳 Chapter 4 ブロックチェーンを構成する暗号技術の基礎 Chapter 5 ビットコインのシステム構成と仕組み Chapter 6 ビットコインの仕組みの詳細 Chapter 7 P2Pネットワーク Chapter 8 さまざまなノード実装 Chapter 9 トークンの表現と利用 Chapter 10 ブロックチェーンのスケーラビリティ Chapter 11 暗号技術とスマートコントラクト Chapter 12 ブロックチェーンと匿名化技術 Chapter 13 ブロックチェーンを利用したシステム構成 Chapter 14 ブロックチェーン特有のリスク Chapter 15 ブロックチェーンのビジネスへの導入 付録 数学的基礎
  • ブロックチェーン・プログラミング 仮想通貨入門
    -
    フィンテックの中核技術であるブロックチェーンについて、基礎から実装までをやさしく解説したプログラマ、エンジニア向け入門技術書。『Mastering Bitcoin』の次に読むべき1冊! 【目 次】1章 ツールの導入/2章 ビットコインとブロックチェーンの基本/3章 ビットコインの暗号技術/4章 ビットコイン・ワレット/5章 ブロックチェーン/6章 トランザクション など。※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。
  • ProcessingによるCGとメディアアート
    3.0
    フリーのCG作成環境、Processingの設定、操作手順から、アート作品づくりまでを1冊で。数理、サウンド、3DCGなど各分野の専門家が応用事例も広く紹介。収録コードを改良することから、プログラミングをはじめよう。※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。

    試し読み

    フォロー
  • POV-Rayで学ぶ はじめての3DCG制作 つくって身につく基本スキル
    -
    フリーソフトPOV-Rayを使った作品づくりを通して、初心者でもCGの基本をマスターできる一冊。オブジェクトの扱い方から始めて、色や光、背景の操作などを順番に習得する。さらに演習で、学んだ技術を定着させる。※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。

    試し読み

    フォロー
  • 問題解決力を鍛える!アルゴリズムとデータ構造
    4.7
    ★この本を買わずして何を買う!!★ 競技プログラミング経験が豊富な著者が、「アルゴリズムを自分の道具としたい」という読者に向けて執筆。入門書を標榜しながら、AtCoderの例題、C++のコードが充実。入門書であり実践書でもある、生涯役立つテキストを目指した。 【推薦の言葉】 プログラムが「書ける」ことと、効率の良い結果を得ることには大分ギャップがある。本書は、どのようにすれば効率のよい結果が得られるか? すなわちどのようなアルゴリズムを採用すればよいか? という点に対して、幅広くかつ明快に解説している。 また本書は、アルゴリズム初心者に対して、アルゴリズムへの興味を惹かれるように記述されている。アルゴリズム上級者への初めの一歩には最適であろう。 ――河原林健一(国立情報学研究所副所長) 【全体を通して、アルゴリズムの設計技法を重視した構成】 まず、1、2章でアルゴリズムと計算量について概観します。そして、3~7章が、早くも本書のメインパートといえる部分であり、「アルゴリズムの設計技法」について詳しく解説します。これらの設計技法に関する話題は、多くの書籍では、最後の方で簡単に説明しています。しかし本書は、現実世界の問題を解決するための実践的なアルゴリズム設計技法の鍛錬を目指しています。そこで、アルゴリズム設計技法について前半で詳しく解説する構成としました。そして、これらの設計技法が後半の章でも随所に使われていくことを示していきます。 その後、8~11章では、設計したアルゴリズムを効果的に実現するうえで重要となるデータ構造を解説します。データ構造について学ぶことで、アルゴリズムの計算量を改善したり、また、C++やPythonなどで提供されている標準ライブラリの仕組みを理解して、それらを有効に活用したりすることができるようになります。 そしていったん、12章でソートアルゴリズムについての話題を挟んだ後に、13~16章でグラフアルゴリズムについて解説します。グラフは、非常に強力な数理科学的ツールです。多くの問題は、グラフに関する問題として定式化することで、見通しよく扱うことができるようになります。また、グラフアルゴリズムを設計するとき、3~7章で学ぶ設計技法や、8~11章で学ぶデータ構造が随所で活躍します。 最後に、17章で PとNPに関する話題を解説し、世の中には「効率的に解くアルゴリズムを設計することができそうにない難問」が多数あることを見ます。18章で、これらの難問に取り組むための方法論をまとめます。ここでも、動的計画法 (5章) や貪欲法 (7章) といった設計技法が活躍します。

無料で読めるKS情報科学専門書