情報科学 - IT・コンピュータ - オーム社一覧

  • 実践ソフトウェアエンジニアリング (第9版)
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ソフトウェアエンジニアリング・スタンダードの第9版 「ソフトウェア技術者なら、この財産を活用しない手はない」とマイクロソフト榊原彰氏よりの推薦文にあるように、その通りに期待できる内容です。 「本書は米国においての第1版が発行(1982年)されて以来、世界累積300万部を超えるベストセラーの最新刊である第9版の邦訳書です。ソフトウェア同様、改良が続けられているソフトウェアエンジニアリングの「最良の手法」を解説している書籍であり、現役のソフトウェアエンジニアならびに学生諸氏におすすめする1冊です。 原書:Roger S. Pressman, Bruce R. Maxim, Software Engineering,McGraw-Hill, 2020 著者について/まえがき/訳者まえがき 第1章 ソフトウェアとソフトウェアエンジニアリング 第1部 ソフトウェアプロセス 第2章 プロセスモデル 第3章 アジャイルとプロセス 第4章 推奨のプロセスモデル 第5章 ソフトウェアエンジニアリングの人間的側面 第2部 モデリング 第6章 プラクティスの指針となる原則 第7章 要求エンジニアリング 第8章 要求モデリングの推奨手法 第9章 設計の概念 第10章 アーキテクチャ設計の推奨手法 第11章 コンポーネント設計 第12章 ユーザエクスペリエンス設計 第13章 移動体端末におけるソフトウェアの設計 第14章 パターンに基づく設計 第3部 品質とセキュリティ 第15章 品質の概念 第16章 レビューの推奨手法 第17章 ソフトウェア品質保証 第18章 ソフトウェアセキュリティエンジニアリング 第19章 ソフトウェアテスト―コンポーネントレベル 第20章 ソフトウェアテスト―統合レベル 第21章 ソフトウェアテスト―移動体端末と特定ドメインに対するテスト 第22章 ソフトウェア構成マネジメント 第23章 ソフトウェアメトリクスと分析 第4部 ソフトウェアプロジェクトのマネジメント 第24章 プロジェクトマネジメントの概念 第25章 実行可能で役立つソフトウェア計画 第26章 リスクマネジメント 第27章 ソフトウェアサポート戦略 第5部 先端的な話題 第28章 ソフトウェアプロセス改善 第29章 ソフトウェアエンジニアリングの新興トレンド 第30章 おわりに 付録/参考文献/索引/訳者プロフィール
  • Rによるやさしいテキストマイニング [活用事例編]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Rによるテキストマイニングを豊富な事例で解説!  本書は、テキストマイニングの初心者に向けて活用事例を解説した入門書です。実務ですぐに応用したい人や、すでにほかの分析ツールを使っている方が参考にできる活用事例も豊富に掲載しています。  また、実際のレポートや、データの収集からテキスト整形などの前処理、分析対象とする単語や品詞の頻度集計、分析対象に合わせた統計手法の選定、分析結果の可視化まで、分析プロジェクトにおける一連の流れを省略せずに解説しました。  読者が実際にRによるテキストマイニングの分析ができるように最大限配慮しています。 はじめに Part I Rによるテキストマイニング 第1章 テキストマイニングの活用 第2章 Rの活用 Part II 日本語テキストマイニングの活用事例 第3章 授業評価アンケートの分析 第4章 オンラインレビューを用いたクチコミ分析 第5章 スクレイピングによる特徴語抽出 第6章 Twitterにおける話題と感情の抽出 第7章 警察白書のトピック分析 第8章 文学作品の著者推定 Part III 英語テキストマイニングの活用事例 第9章 政治演説の言語分析 第10章 文学テキストの類型化 おわりに
  • 基礎から学ぶ 人工知能の教科書
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能の構成技術を網羅的に概観する、やさしい教科書 本書は、人工知能のしくみを一から丁寧に解説する入門書です。 「人工知能とはなにか」という定義からはじまり、機械学習や画像処理といったさまざまな技術のしくみを、できるだけ数式を使わずに平易に説明します。 深層学習が火付け役となった人工知能ブームによって、人工知能は多くの方にとって馴染みのある存在になってきました。しかし、 ・ 機械学習 ・ ニューラルネットワーク ・ 進化的計算 ・ 自然言語処理 ・ 画像認識 などの個別のトピックのみが取り上げられることも多く、人工知能全体の体系はよくわからない、という方も多いのではないでしょうか。 本書では、上述したようなトピックを網羅的に扱い、人工知能を構成する技術の全体像を概観します。できるだけ数式を用いずに、平易に解説するよう心がけました。 業務上AIに関する知識が必要になった社会人や、情報系の学部・学科に所属する大学生はもちろん、人工知能に興味のある高校生にも読んでいただける内容です。 なお、各章の最後には、Pythonを使った演習を設けています。 エンジニアの方や、エンジニアを志す学生の方は、ぜひ演習問題にも取り組んでみてください。 第1章 人工知能とは 第2章 人工知能研究の歴史 第3章 学習 第4章 知識表現と推論 第5章 ニューラルネットワーク 第6章 深層学習 第7章 進化的計算と群知能 第8章 自然言語処理 第9章 画像認識 第10章 エージェントと強化学習 第11章 人工知能とゲーム 第12章 人工知能はどこに向かうのか
  • Pythonではじめる数理最適化 ―ケーススタディでモデリングのスキルを身につけよう―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで実務に使える数理最適化のスキルを身につけよう!  本書は、Pythonを用いた数理最適化の入門書です。さまざまな課題をPythonを使って実際に解いてみることで、数理モデルを実務で使いこなす力を身につけます。  第1章と第2章はチュートリアルです。中学校で習う連立一次方程式や、高校で習う線形計画法を題材として、数理最適化の流れや考えかたを説明します。シンプルな課題設定なので、数学的な難しさを感じることなくPythonに集中して基礎を学習することができます。  第3章~第7章では、実際に起こりうるさまざまな課題を数理最適化によって解いていきます。学校のクラス編成やサークル活動における車のグループ分けなどの学生にとっても身近な課題や、配布クーポンの効果最大化や効率のよい配送計画の立案などのビジネスにおいてたびたびぶつかる課題などを解いていくことで、手順や注意点、効率のよい方法などが学べます。 はじめに/目次 第Ⅰ部 数理最適化チュートリアル  第1章 数理モデルとは   1.1 数理モデルの最も簡単な例   1.2 モデル   1.3 数理モデル   1.4 数理最適化モデル   第1章のまとめ  第2章 Python数理最適化チュートリアル   2.1 連立一次方程式をPythonの数理最適化ライブラリで解く   2.2 線形計画問題をPythonの数理最適化ライブラリで解く   2.3 規模の大きな数理最適化問題をPythonの数理最適化ライブラリで解く   第2章のまとめ 第Ⅱ部 数理最適化のケーススタディ  第3章 学校のクラス編成   3.1 導入   3.2 課題整理   3.3 数理モデリングと実装   3.4 数理モデルの検証   第3章のまとめ  第4章 割引クーポンキャンペーンの効果最大化   4.1 導入   4.2 課題整理   4.3 データ理解   4.4 数理モデリングと実装   4.5 結果の評価   第4章のまとめ  第5章 最小コストで行う輸送車両の配送計画   5.1 導入   5.2 課題整理   5.3 数理モデリング   5.4 実装と数値実験   第5章のまとめ  第6章 数理最適化APIとWebアプリケーションの開発   6.1 導入   6.2 数理モデリングと実装   6.3 最適化 API を作る   6.4 Webアプリケーションを作る   第6章のまとめ  第7章 商品推薦のため興味のスコアリング   7.1 導入   7.2 課題整理   7.3 データ分析   7.4 数理モデリングと実装   7.5 数理モデルの検証   7.6 まとめ  Appendix メソッド・関数早見表  索引
  • 強化学習と深層学習 C言語によるシミュレーション
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 人工知能研究における諸分野を、C 言語による具体的な処理手続きやプログラム例によりやさしく解説する!!  強化学習は、一連の行動の結果だけから行動知識を学習する手法です。 本書では、この強化学習と深層学習の基礎を紹介した上で、深層強化学習のしくみを具体的に説明します。単に概念を説明するだけでなく、アルゴリズムを実際にC言語のプログラムとして実装することで、実際にプログラムを動かすことで具体的な処理方法の理解を深めます。 主要目次 第1章 強化学習と深層学習 第2章 強化学習の実装 第3章 深層学習の技術 第4章 深層強化学習
  • 人間知能と人工知能 あるAI研究者の知能論
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能に向けて、人間知能のメカニズム解明  現在は、人工知能ブームであり、機械学習・進化学習が花盛りです。本書は、生物は進化のなかでどのように知能を発展させてきたか、そして人工知能はどういうものであるかについて、著者の長年の研究にもとづいた最新の成果をまとめたものです。  コンピュータですぐに実践できるといった派手さのない書籍ですが、人工知能と言われるものが増えていくと考えられる現在、自分たち人間の知能がいったいなんであるかを認識しておくことは大切なことです。 まえがき 第1章 知能とは何か 1.1 知能の構造 1.2 知能構造の進化 1.3 知能への期待 1.4 外界との関わり 1.5 知能化メカニズムの諸様相 1.6 知能をつくる細胞組織 第2章 生命の時代[知能化メカニズムの基盤=生命構造] 2.1 生命構造の各部機能 2.2 教師あり学習─制御学習 第3章 記号化の時代[知能化メカニズムの基盤=原生言語] 3.1 記号化の始まり 3.2 形態素表現への進化 3.3 生命構造の機能拡大─複文の生成 3.4 文化継承としての知能深化 第4章 論理の時代[知能化メカニズムの基盤=意味言語] 4.1 意味言語への進化 4.2 意味言語の基本形式 4.3 ニューラルネットワークによる遷移知および推論の実現 4.4 遷移知の源 4.5 知能活動の原型─規格型の問題解決 4.6 物語生成と表現能力 4.7 意味言語ベースの知能化メカニズム 第5章 知能進化の新たな段階[問題の多様な現れ方] 5.1 知能活動の高度化の例 5.2 高度化問題へのアプローチ 5.3 統合知能論 むすび 参考文献 索  引
  • Rによる多変量解析入門 データ分析の実践と理論
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 多変量解析手法の理論と実践をバランスよく習得できる!  様々な媒体、経路を通じて大規模データが、驚くほど低コストで入手できるようになった現在、多変量解析手法に習熟したデータサイエンティストに対する学術界、ビジネス界からのニーズは非常に高まっており、これに対して大学や企業では、高いデータ解析力を持った人材の育成に注力し始めています。しかし、多くの多変量解析についての学習書は、理論的な説明に終始し、実務場面でどのように利用されているかについて、殆ど配慮がないのが現状です。  そこで本書は、多変量解析手法の理論と実践をバランスよく解説することで、統計が得意ではない大学生や実務者にも利用しやすい構成とし、本書1冊で多変量解析手法を実務に応用できるまで習得できる内容となっています。 第I部 多変量解析の基礎 第1章 多変量解析の基礎を学びたい―R による多変量データの基本的な統計処理 第2章 R によるデータハンドリングを学びたい ―アンケートデータと ID-POS データのハンドリング 第II部 量的変数の説明・予測 第3章 現象を説明・予測する統計モデルを作りたい (1) ―重回帰分析 第4章 現象を説明・予測する統計モデルを作りたい (2) ―階層的重回帰分析 第5章 さまざまな集団から得られたデータを分析したい―マルチレベルモデル 第6章 複雑な仮説を統計モデルとして表したい (1)―パス解析 第III部 心理尺度の分析 第7章 心理尺度を開発したい (1) ―探索的因子分析 第8章 心理尺度を開発したい (2) ―確認的因子分析 第9章 複雑な仮説を統計モデルとして表したい (2) ―潜在変数を伴うパス解析 第IV部 質的変数の説明・予測 第10章 クロス集計表をもっとていねいに分析したい―対数線形モデル 第11章 カテゴリに所属する確率を説明・予測したい―ロジスティック回帰分析 第V部 個体と変数の分類 第12章 似たもの同士にグループ分けしたい―クラスター分析 第13章 質的変数間の連関を視覚化したい―コレスポンデンス分析 第VI部 多変量解析を使いこなす 第14章 データが持つ情報を視覚化したい―パッケージggplot2による描画 第15章 多変量解析を実践で生かしたい―手法の組み合わせ
  • IT Text(一般教育シリーズ)  一般情報教育
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ●AI・データサイエンス時代に対応した、新しい一般情報教育の標準テキスト ●これからのカリキュラムに対応して、情報基礎からデータサイエンスまでを網羅 本書は、情報処理学会一般情報教育委員会で編纂した、これからの一般情報教育に対応した標準テキストです。情報ネットワークや情報機器の基礎知識から、プログラミングの考え方、情報倫理、データサイエンス等、社会生活で不可欠な教養ともいえる知識を幅広く網羅します。 半期2単位の授業で使用することを前提に、内容をコンパクトに、かつわかりやすく構成しています。各大学・高専で一般情報教育の見直しが行われている中で、まさに最適の教科書としてご利用いただけます。 第1部 情報リテラシー 第1章 情報とコミュニケーション 第2章 情報倫理 第3章 社会と情報システム 第4章 情報ネットワーク 第2部 コンピュータとネットワーク 第5章 情報セキュリティ 第6章 情報のデジタル化 第7章 コンピューティングの要素と構成 第8章 アルゴリズムとプログラミング 第3部 データサイエンスの基礎 第9章 データベースとデータモデリング 第10章 モデル化とシミュレーション 第11章 データ科学と人工知能(AI) 参考文献
  • アイデア実現のための Raspberry Piデザインパターン 電子回路からMathematicaによるArduinoコラボまで
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Raspberry Piでアイデアを自由自在に実現するためのデザインパターンを整理。 本書は、Raspberry Piを使ってアイデアを自由自在に実現するための、デザインパターンを整理した書籍です。 Raspberry Piの入門書を読んだだけでは、思いついたアイデアをもとに、実際に動く電子工作を製作することはほぼ不可能です。本書では、アイデア実現に必要なソフトウェア、ハードウェア、部品の集め方、配線などのノウハウを、パターンメイドの方法でわかりやすく紹介しています。 ハードウェアを買い集めて、実際にハードウェアとソフトウェアを組んでみようと思い立った際に、ぜひ一読ください。 ステップ1 とりあえずRaspberry Piを動かしてみる ステップ2 何かをRaspberry Piにつなげるしくみ ステップ3 つなげた何かを動かす準備 ステップ4 手先を動かすことが必要 ステップ5 点灯させて押してみる ステップ6 Arduinoとコラボする ステップ7 動きを計ってみる ステップ8 何かを表示してみる ステップ9 何かを動かしてみる ステップ10 電源は大事 ステップ11 Node.jsとコラボする ステップ12 Mathematicaの使いこなし ステップ13 手順も技術の1つ
  • 暗号と量子コンピュータ ―耐量子計算機暗号入門―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 来る量子コンピュータ時代の暗号を徹底解説! 暗号技術は、われわれの生活のさまざまな場面で利用されており、情報化社会の安全基盤として重要性を増しています。たとえば、暗号技術がなければネットショッピングも安心してできませんし、ブロックチェーンを用いた仮想通貨も生まれることはありませんでした。  ですが、現在これらのサービスに用いられている暗号技術は従来型のコンピュータによる計算を前提として開発されています。そのため、近年注目されている量子コンピュータによる異なったアルゴリズムで計算を行うと、現在の暗号は高速に解かれてしまうのではないか、という懸念があります。具体的には、素因数分解を前提としたRSA暗号などは危殆化する状況にあります。  本書は、量子コンピュータが暗号技術に与える影響について多角的な切り口から考察し、読者に、来る量子コンピュータ時代における暗号技術の基礎知識を提供します。読者は、量子コンピュータが与える情報化社会へのインパクトを知るとともに、自身のかかわる情報セキュリティにおいて、今後知っておくべき、対策する必要がある必須の情報を得ることができます。  情報セキュリティに携わる技術者・エキスパートのみならず、暗号や量子コンピュータに興味をもつ一般の方にも向けて、やさしくていねいに解説しています。 1章 社会で利用される暗号技術 2章 暗号の危殆(きたい)化リスク 3章 量子コンピュータについて 4章 量子コンピュータによる暗号解読 5章 ブロックチェーンなど暗号応用技術に対する量子コンピュータの影響 6章 暗号のディレンマ - 設計者と攻撃者の攻防 7章 耐量子計算機暗号とは 8章 耐量子計算機暗号の標準化活動 9章 今後の課題 参考図書 索引
  • Rで学ぶデータサイエンス データマイニングの基礎から深層学習まで
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 主要なデータマイニング手法の理論の基礎を学べる!!  データマイニングとは,玉石混淆であるたくさんのデータから必要な情報を読み出す作業です。データマイニングの手法として理解しておく必要があるものには,比較的基本的な知識である回帰分析、主成分分析、判別分析等からクラスタリング、サポートベクターマシン(SVM)、ベイズ推定、ニューラルネットワークなどがあります。最近ではこれらの応用として、深層学習等についても解説します。 第I部 多変量解析 第1章 データマイニング 第2章 回帰分析 第3章 主成分分析 第4章 判別分析 第5章 クラスタリング 第II部 機械学習 第6章 機械学習 第7章 サポートベクターマシン 第8章 ベイジアンネットワーク 第9章 ニューラルネットワーク 第10章 自己組織化マップ 第11章 深層学習 参考文献
  • Rによるデータマイニング入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、大量データを解析するデータマイニングについて、理論の基礎から解析手法まで、Rを使ったアルゴリズムの例題を交えてていねいに解説します。主な構成は、第1部でRを使ったデータマイニングの簡単な分析と探索的データ解析およびデータの可視化について解説、第2部でデータマイニングの一連の流れについて解説、第3部でRを使った、データマイニング手法をサンプルデータでコードを示して解説、現実のデータマイニング事例を紹介という流れで解説します。
  • Rによるやさしいテキストマイニング 機械学習編
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習で捗るテキストマイニング! 機械学習を用いた本格的なテキストマイニングをやさしく解説! 本書は、フリーの分析ツールであるRを用いて、機械学習による大規模なテキストデータ解析の手法などをわかりやすく解説した書籍です。 (1) ウェブからのテキストデータの自動収集、(2) 生の「きたない」データを分析しやすい「きれいな」データにするための前処理、(3) 大規模データを解析するための機械学習の手法、(4) 分析結果を顧客や上司に分かりやすく伝えるための可視化の手法を丁寧に解説しています。 解説は、数式が苦手な読者もすんなりと読めるように、手法の原理を直感的に理解できるイラスト・図面を多用した構成としています。 主要目次 Part I テキストマイニング 第1章 自然言語処理 第2章 テキスト処理 第3章 スクレイピング Part II 機械学習 第4章 データハンドリング 第5章 教師あり学習―回帰 第6章 教師あり学習―分類 第7章 教師なし学習
  • 医療AIとディープラーニングシリーズ 2021-2022年版 標準 医用画像のためのディープラーニング-実践編-
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 医用画像におけるディープラーニング(Deep Learning)をまとめた本格的なシリーズ  初版(2019年7月発行)以降の変更点を取り込んだ最新版!  医用画像に人工知能を本格的に導入するためのわかりやすい解説書。 ・TensorFlow+Kerasで行う ・Anaconda上で環境構築する ・データはだれでも入手できるデータを使う を基本的な方針としてまとめました。  少しでもプログラミングができれば、だれでも読み込める内容になっています。 Chapter 1 環境構築 Chapter 2 データの準備/前処理 Chapter 3 Shallow network の利用 Chapter 4 畳み込みニューラルネットワークの利用 Chapter 5 画像の領域分割( U-Net) Chapter 6 動画像のシーン分割と分類 Chapter 7 画像のノイズ除去 Chapter 8 画像の超解像 Chapter 9 画像の特徴抽出 Chapter 10 画像の変換や生成 Chapter 11 評価方法
  • Excelで学ぶ進化計算―ExcelによるGAシミュレーション―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Excelで進化計算が学べる!! 進化論的手法は、生物の進化のメカニズムをまねてデータ構造を変形、合成、選択する工学的手法です。この方法により、最適化問題の解法、人工知能の学習、推論、プログラムの自動合成などに広く応用されるものです。 本書ではGA やGP の基本原理からExcelを用いた実践(Excel のシミュレータ)について解説します。 ExcelシミュレーションはExcel2013/2016対応。 主要目次 まえがき 第I部 進化計算入門 第1章 進化計算の基本的な考え方 第2章 関数の最適化をしてみよう 第3章 GAを使ってみよう 第4章 GAをより複雑な問題に適用しよう 第II部 進化計算の実際的な応用例 第5章 進化計算で巡回セールスマン問題を解いてみよう 第6章 進化計算でスケジューリングしてみよう 第7章 進化計算をデザインに応用しよう 第III部 進化計算の発展 第8章 GAからGPへ 第9章 今後の展望 関連図書 索 引
  • AI・データ分析モデルのレシピ
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 マーケティングプロジェクトを成功に導く分析プロセスがサクッと学べる!  ビジネスの現場では多くのデータやAIの活用に関する取り組みが行われています。このようなプロジェクトが増える一方で、思うような結果が得られずにプロジェクトを中止せざるを得なかったとの声も聞こえてきます。  そこで本書では、正しく的確にAIを活用したデータ分析を導入できるよう、具体的な活用シーンに示しながら、「要件定義」「分析マスターデータ作成」「基礎集計・可視化」「モデリング」「評価・実装」の分析プロセスにおける知識やテクニックを丁寧に解説します。 Part 1 プロセスの一般論 Part 2 顧客データ × クラスタリング分析モデル Part 3 広告効果データ × 重回帰分析モデル Part 4 キャンペーンデータ × ロジスティック回帰分析モデル Part 5 調査データ × コレスポンデンス分析モデル Part 6 Eコマースデータ × 協調フィルタリング分析モデル Appendix AI開発の成功パターン(EDA)と失敗パターン(LISA)
  • 機械学習エンジニアのための知財&契約ガイド
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習エンジニアが知らないでは済まされない知財と契約の基礎知識をコンパクトに、わかりやすく整理 本書は、エンジニア・研究者、学生を対象に、知らないでは済まされない機械学習にかかわる知財と契約の基礎知識をコンパクトに、わかりやすくまとめた書籍です。 GoogleやAppleの創業者がエンジニアであり、スタートアップ企業から始まっているように、いまや、そして特に機械学習に関連する分野では、エンジニア自身が知財活動や法務活動に積極的にかかわることが必要不可欠です。いいかえれば、何かことが起こればエンジニア自身が矢面に立たされたり、少なくとも責任の一端をとらされたりすることは避けられません。 本書は、このような背景を踏まえて、機械学習の研究開発に関連してエンジニアが知っておくべき法律的な考え方や知識を、主に実務的な観点を交えつつ、一から丁寧に解説しています。 第1章 AI・データと法的な保護 第2章 契約-当事者のインセンティブのデザイン 第3章 AI・データと特許 第4章 専門家とのコラボレーション 第5章 OSSと知的財産権
  • 機械学習ガイドブック RとPythonを使いこなす
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習を理解し実践するために必要な要素を選抜して解説した、実践的ガイドブック!  本書は、機械学習の入門者から中級者までをおもな対象として、機械学習を理解し実践するために必要なさまざまな要素を選抜して解説した、機械学習のガイドブックです。  機械学習の概要から解説をはじめ、機械学習の歴史と主要なアルゴリズム、機械学習を実践するためのプログラミング言語であるRとPythonそれぞれの説明と連携、機械学習を正しく使いこなすためのさまざまな注意点、Kerasを活用したディープラーニングの実践、そして強化学習の例としてアルファゼロを取り上げています。付録には機械学習の理論的裏付けとなる数学の概要も取り上げています。  入門者の方はまず本書の第1章「機械学習とは何か、どんな働きをするのか」を読み、第5章「さあ機械学習の本質を体験してみよう」の実践を繰り返してみてください。だんだんと機械学習に関する多くのことが見えるようになってきて、中級者への道が開けるでしょう。  中級者の方には前半はやや簡単かもしれませんが、第8章「Kerasを使ったディープラーニングの実践」、第9章「さまざまなゲームの攻略法をゼロから学習するアルファゼロ」の内容が十分に理解できたのであれば、かなりのレベルに達したのだと思います。簡単かもしれない前半部分にも、参考になるさまざまな要素を仕込みました。  機械学習の入門から中級者への道をガイドする1冊となっています。 はじめに 第1章 機械学習とは何か、どんな働きをするのか 第2章 機械学習小史:機械学習ブームの基盤を作った主人公たち 第3章 ぜひ使ってみたい役に立つアルゴリズム 第4章 RとPython 第5章 さあ機械学習の本質を体験してみよう 第6章 機械学習を上手に使いこなすコツ 第7章 RとPythonの連携 第8章 Kerasを使ったディープラーニングの実践 第9章 さまざまなゲームの攻略法をゼロから学習するアルファゼロ 付録A 機械学習の基盤となる数学の概要 A.1 機械学習の数学的基盤となるベクトル空間 A.2 ベクトル空間、ノルム空間、内積空間、ユークリッド空間とその関係 A.3 ドット積、行列、行列積 A.4 さまざまな行列の性質とその演算 A.5 行列と線形写像、固有値、テンソル、カーネル関数と射影 A.6 確率空間、確率変数、確率分布 A.7 統計的推定 A.8 最適化の手法 付録B RとPythonのデータ分析に関連する基本的コマンドの比較 B.1 基本的機能 B.2 ベクトル、行列などの作成と操作および数値計算(NumPy機能の対応) B.3 データフレームの作成・操作など(Pandas機能の対応) おわりに 参考文献とそのガイド
  • 機械学習と深層学習 Pythonによるシミュレーション
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『機械学習と深層学習 C言語によるシミュレーション』のPython版登場!!  本書は人工知能研究における機械学習の諸分野をわかりやすく解説し、それらの知識を前提として深層学習とは何かを示します。具体的な処理手続きやプログラム例(Python)を適宜示すことで、これらの技術がどのようなものなのかを理解できるように紹介していきます。 まえがき 第1章 機械学習とは 1.1 機械学習とは 1.1.1 深層学習の成果 1.1.2 学習と機械学習・深層学習 1.1.3 機械学習の分類 1.1.4 深層学習に至る機械学習の歴史 1.2 本書例題プログラムの実行環境について 1.2.1 プログラム実行までの流れ 1.2.2 プログラム実行の実際 第2章 機械学習の基礎 2.1 帰納学習. 2.1.1 演繹的学習と帰納的学習 2.1.2 帰納的学習の例題 ―株価の予想― 2.1.3 帰納学習による株価予想プログラム 2.2 強化学習 2.2.1 強化学習とは 2.2.2 Q学習 強化学習の具体的方法 2.2.3 強化学習の例題設定 迷路抜け知識の学習 2.2.4 強化学習のプログラムによる実現 第3章 群知能と進化的手法 3.1 群知能 3.1.1 粒子群最適化法 3.1.2 蟻コロニー最適化法 3.1.3 蟻コロニー最適化法の実際 3.2 進化的手法 3.2.1 進化的手法とは 3.2.2 遺伝的アルゴリズムによる知識獲得 第4章 ニューラルネット 4.1 ニューラルネットワークの基礎 4.1.1 人工ニューロンのモデル 4.1.2 ニューラルネットと学習 4.1.3 ニューラルネットの種類 4.1.4 人工ニューロンの計算方法 4.1.5 ニューラルネットの計算方法 4.2 .バックプロパゲーションによるニューラルネットの学習 4.2.1 パーセプトロンの学習手続き 4.2.2 バックプロパゲーションの処理手続き 4.2.3 バックプロパゲーションの実際 第5章 深層学習 5.1 深層学習とは 5.1.1 従来のニューラルネットの限界と深層学習のアイデア 5.1.2 畳み込みニューラルネット 5.1.3 自己符号化器を用いる学習手法 5.2 深層学習の実際 5.2.1 畳み込み演算の実現 5.2.2 畳み込みニューラルネットの実現 5.2.3 自己符号化器の実現 付 録 A 荷物の重量と価値を生成するプログラム kpdatagen.py B ナップサック問題を全数探索で解くプログラム direct.py 参考文献 索  引
  • 機械学習をめぐる冒険
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習のしくみをイラストや図解でやさしく学ぼう! 本書は、機械学習に関するさまざまなトピックスを概説する書籍です。人工知能における機械学習の位置づけを説明したのち、機械学習内の分野をマップ化し、マップ内の街(=機械学習内の分野)を旅する形でやさしく解説していきます。 数式や複雑な処理手順は扱わずに、「どんなしくみで、どこで使われていて、どう役に立つのか」という要点をわかりやすく示します。大枠や要点を掴むことを主眼としているため、短時間・効率的に学ぶことができます。機械学習について関心をもっているものの、専門書はハードルが高いと感じている学生やビジネスパーソンにおすすめです。 構成は、はじめに人工知能における機械学習の位置づけや手法の分類を示したうえで、機械学習の個々のトピック……すなわち、k近傍法や決定木などによる分類、進化的計算や群知能による最適化、強化学習、ニューラルネット、深層学習などを説明していきます。 まえがき 目次 はじまり-機械学習の国へ行こう- 第一章 いりぐち-機械学習ってなんだろう?- 機械学習ってなんだろう? AIにできること いきものとコンピューター、それぞれの学びかた コンピューターの学習 機械学習はなにができるの? 「言葉」を認識する 「画像」を認識する  COLUMN 強いAIと弱いAI 第二章 観光案内所-機械学習の種類と仕組み- 機械学習には種類がある 先生に正解を教えてもらおう-教師あり学習- 教師データとラベル  教師あり学習の仕組み 自力で学習を進めよう-教師なし学習- 試行錯誤の経験から学習しよう-強化学習- コラム いろんな機械学習 学習した知識を役立てよう-汎化・タスク・アルゴリズム- 学習のしすぎに注意!-過学習- COLUMN オッカムの剃刀とノーフリーランチ定理 第三章 分類の街-k近傍法と決定木- 並べかたで分類しよう-k近傍法-  一刀両断、スパッと分類!-サポートベクターマシン- ○と×で分類しよう-決定木- 決定木の作りかた たくさんの決定木の森-ランダムフォレスト- COLUMN みにくいアヒルの子定理 第四章 最適化の街-進化的計算と群知能- 最適化ってなんだろう? 進化を模倣してよりよい情報を残そう-進化的計算- いきものの進化の仕組み 進化的計算ってなんだろう? 進化的計算の代表選手、遺伝的アルゴリズム 遺伝的アルゴリズムの仕組み もっと複雑なことをするには-遺伝的プログラミング- 生物の群れの行動から学習しよう-群知能- 蟻みたいに近道を見つけよう -蟻コロニー最適化法- 大勢で答えを探そう-粒子群最適化法- 魚みたいに餌を探そう-AFSA- 第五章 試行錯誤の街-強化学習- 強化学習ってなんだろう? とにかく試行回数を重ねよう-モンテカルロ法- より効率的に試行するには?-Q学習- Q学習で迷路を脱出しよう 第六章 神経回路の街①-ニューラルネット- 神経細胞と神経ネットワーク 神経細胞の模倣-人工ニューロン- 神経ネットワークの模倣-人工ニューラルネットワーク- ニューラルネットの学びかた 視覚のシミュレーション-パーセプトロン- ハイスピードで学ぼう!-バックプロパゲーション- ニューラルネットワークの種類 ①階層型 ニューラルネットワークの種類 ②全結合型と再帰型 「何か」を見つける-認識- 「何か」を動かす-制御- 「何か」を考える-判断- 必ず「何か」を返してくる。……それでいいのかな? 第七章 神経回路の街②-ディープラーニング- ディープラーニングってなんだろう? 人間の「視覚」を真似したニューラルネット これはイヌ? それともネコ?-畳み込みニューラルネットの画像認識- CNNはどうして高性能なんだろう? 時間で変わるデータを分析しよう-リカレントニューラルネットとLSTM- 本物そっくりのニセモノをつくる-敵対的生成ネットワーク- ディープラーニングを自動翻訳に役立てよう 経験から学ぶ深層学習-深層強化学習- 第八章 でぐち-機械学習をはじめよう- 機械学習に使われる言葉-プログラミング言語Python- 機械学習に使われるソフトウェア①-TensorFlowとKeras- 機械学習に使われるソフトウェア②-Caffe、PyTorch、Chainer- おわりに-AIについて学べる参考図書たち-  索引
  • 基本を学ぶ  コンピュータ概論 (改訂2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 基本事項をコンパクトにまとめ,親切・丁寧に解説したコンピュータの基礎の教科書!現場のニーズに応じて,さらに内容をブラッシュアップしました.  基本事項をコンパクトにまとめ,親切・丁寧に解説したコンピュータの基礎の教科書です。今回の改訂で現場のニーズに応じて,さらに内容をブラッシュアップしました.  大学1,2年生向けの教科書として適切な内容として,ハードウェア,ソフトウェアの両面からコンピュータやネットワークの内部構成や動作原理について,基礎的かつ重要な事項に的をしぼって解説しています. 1章 コンピュータシステム  1 コンピュータの歴史  2 コンピュータの基本構成と動作原理  3 現代社会におけるさまざまなコンピュータ  練習問題 2章 情報の表現  1 2進符号  2 2進数による数の表記法  3 数値データの表現  4 文字データの表現  5 音声・画像データの表現  練習問題 3章 論理回路とCPU  1 ブール代数と論理回路  2 論理回路と中央演算処理装置(CPU)  3 CPUの動作  練習問題 4章 記憶装置と周辺機器  1 記憶装置  2 インタフェースとバス  3 入出力装置  練習問題 5章 プログラムとアルゴリズム  1 プログラムとプログラミング言語  2 アルゴリズム  3 プログラミング言語と言語処理プログラム  練習問題 6章 OSとアプリケーション  1 OS  2 制御プログラムの役割  3 アプリケーションとミドルウェア  4 仮想化ソフトウェア  練習問題 7章 ネットワーク  1 コンピュータネットワーク  2 インターネットとTCP/IP  3 インターネットサービス  4 コンピュータシステムの構成と信頼性  練習問題 8章 セキュリティ  1 セキュリティ技術  2 暗号化技術  練習問題 練習問題解説・解答 索 引
  • ゲームAIと深層学習 ニューロ進化と人間性
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ゲームAI手法を技術開発に必要な基礎的な内容から解説! 本書は、最近のゲームAI手法をさまざまな実例で解説するとともに、実際にゲームAIを構築できるような技法の習得を目指します。さらに、人工知能の最新の話題として、人間らしいゲームAIや深層学習、機械学習、強化学習についても解説しています。 第1章 パズルとゲームのAI今昔物語 第2章 パズルを解くAI 第3章 制約従属のパズルと非単調な推理 第4章 ゲームを解くAI 第5章 学習・進化とゲームAI 第6章 ゲームAIと人間らしさ 参考文献 索引
  • 行動データの計算論モデリング 強化学習モデルを例として
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人や動物の行動データの背後にある計算過程をモデル化し,行動の理解と予測につなげる。 本書は,主に行動データの計算論モデリングの方法やその理論を初学者に向けて丁寧に解説します。実例として,心理学や神経科学の実験課題として良く用いられる,ギャンブル課題における選択行動データを扱います。本文では自分ではプログラミングをしない読者も想定して,プログラムは用いずに計算論モデリングの概要がイメージできるような解説をこころがけました。実際に計算論モデリングをするためのRコードやStanコードは付録やサポートページで解説しています。 第1章 計算論モデリングとは 第2章 計算論モデリングの基礎 第3章 強化学習モデルを用いたデータ解析の事例 第4章 パラメータ推定の実際 第5章 モデル選択 第6章 計算論モデリングに基づく統計分析 第7章 結果の解釈,モデルの統計的な性質の理解 第8章 強化学習モデルのバリエーション 第9章 計算論モデリングの課題と発展 付録A 数学的な補足 A.1 期待値 A.2 対数と指数関数 A.3 本書で用いる確率分布 A.4 コイントスに関する計算 A.5 WAIC A.6 WBIC A.7 周辺尤度のラプラス近似 A.8 信頼区間 A.9 正規分布モデルの事後分布 A.10 正規分布の周辺化 付録B R コード B.1 Rescorla-Wagner モデルのシミュレーション B.2 Q 学習のシミュレーション B.3 MAP 推定 B.4 ベイズ推定によるQ 学習の推定 B.5 集団モデルのシミュレーション B.6 階層ベイズ B.7 WAIC, WBIC の計算 References 索引
  • CoBRA法入門-「勘」を見える化する見積り手法-
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 習熟者の勘とデータにより正確な見積り計算を行う。  ソフトウェア開発現場の熟練者は、これまでの経験からソフトウェア規模を推定し必要な工数を「勘」を働かせて調整します。例えば、今回のプロジェクトは「開発 期間の制約が厳しい」、「信頼性要求のレベルが高い」、「要件がかなりあいまいだ」、といった状況を念頭において工数を予測します。ただし、勘も完璧ではありません。過去の実績データを使って「勘」の確からしさを評価する必要があります。  CoBRA法は、このベテランの勘と過去の実績データとを相互補完させること で、信頼できる工数見積りモデルを構築する手法です。容易に取り組め、精度が高い特徴があります。ソフトウェア工数見積りの世界のKKDのDを「データ」に置き換え、「勘(K)」、「経験(K)」に科学的アプローチを導入するものです。  また、 ・国立情報学研究所の教育プログラム「トップエスイー」 ・情報処理推進機構SECセミナー にもCoBRA法は取り上げられており、実用的・合理的な見積り手法です。 第1章 本書の読み方 第2章 やってみよう工数見積り -30分で工数見積り- 第3章 CoBRA見積りモデルでできること 第4章 CoBRA法とは 第5章 CoBRA見積りモデルの構築手順詳細 第6章 CoBRA見積りモデルの保守 第7章 構築・活用ベストプラクティス
  • コンピュータ概論 未来をひらく情報技術
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 現代的な「情報リテラシー」と「情報技術」の基本が身に付く。 これまでの「理工系情報学科の入門書」としての基礎知識は踏まえた上で、「Python」の紹介、「人工知能(AI)」「ビッグデータの解析」等の基礎概念を加え、高度情報化社会に求められる人材育成に向けた「コンピュータ概論」の入門書。 コンピュータの原理から、基礎となる理論、「n進数」等の情報数理、ネットワーク技術、AI、ビッグデータ処理の基本までをコンパクトにまとめ、わかりやすく解説(各章末に練習問題掲載)。 1章 コンピュータの原理 2章 情報の基礎理論 3章 ハードウェア構成 4章 ソフトウェア構成 5章 コンピュータシステムと情報セキュリティ 6章 知識情報処理 7章 人工知能 8章 ビッグデータ 9章 マネジメント 練習問題/付録/参考文献/練習問題略解/索引
  • ゴール&ストラテジ入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 <A5判の書籍を固定レイアウトで制作したものです。大きめの端末でご覧ください> GQM+Strategies(目標・質問・メトリクス+戦略)アプローチ  本書で解説するGQM+Strategies(目標・質問・メトリクス+戦略)アプローチは、目標に沿って測ることを決めるという意識的・無意識的に広く用いられているGQM(目標・質問・メトリクス)法を拡張し、残念なITシステムを作らないようにするためのものである。具体的には、測定を通じて目標を定量管理する中で、組織のあらゆる箇所や階層において目標とITシステム化に代表される戦略を整合させ、改善させ続けることを可能とする。  本書執筆にあたっては、ドイツIESE研究所(実験的ソフトウェア工学研究所)ならびに日本国内における豊富な実践適用を経た結果を反映させており、経営者や投資(特にIT投資)を検討する立場の方から、戦略(特にITシステム)の企画立案や運用に携わる方まで、幅広く役立つものとなっている。 ★このような方におすすめ 企業のITシステム開発者 ★目次 第1章 まず理解しておくこと 第1部 GQM+Strategiesアプローチ 第2章 GQM+Strategiesのポイント 第3章 フェーズ0:初期化 第4章 フェーズ1:環境の特性化 第5章 フェーズ2:目標と戦略の設定 第6章 フェーズ3:実行計画の策定 第7章 フェーズ4:計画の実行 第8章 フェーズ5:成果の分析 第9章 フェーズ6:結果のまとめ 第2部 業界への適用と他の手法との関係 第10章 各社の適用例 第11章 他のアプローチとの関係 第12章 まとめと今後に向けた見解 付録A GQM+Strategiesプロセスチェックリスト 付録B GQM+Strategies評価アンケート
  • 深層学習とメタヒューリスティクス ディープ・ニューラルエボリューション
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層学習、進化計算、メタヒューリスティクス...人工知能キーワード!!  本書は、深層学習・ディープラーニング、進化計算、メタヒューリスティクスについて解説します。深層学習は画像処理や自然言語処理などさまざまに応用され、人工知能の重要手法です。またメタヒューリスティクスは生物や物理化学現象をもとにした最適化・AI手法です。  本書ではDeep Neural Evolutionの基礎から応用までをわかりやすく説明します。また、メタヒューリスティクス、進化計算についてデモンストレーションとなるサンプルプログラム(C++、Java等)を提供します。 第1章 AIのための進化論 第2章 深層学習とディープラーニング 第3章 メタヒューリスティクス 第4章 生物らしい計算知能 第5章 ニューロ進化と遺伝子ネットワーク 第6章 ディープ・ニューラルエボリューション
  • 実装 強化学習 Cによるロボットプログラミング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 強化学習の基礎からロボットへの実装までがわかる!!  本書は、強化学習の基礎からロボットへの実装までを解説した実務書です。プログラミングは、C言語でロボットへの実装までが解説された、実践的な内容となっております。ロボットへの実装は、誰でも購入できるライントレースロボットを使った例と、ソフトロボット(柔らかい素材を使ったロボット)を使った例で、具体的な方法を解説しています。 はじめに 第1章 人工知能とロボット 第2章 強化学習 第3章 C 言語による強化学習のプログラム 第4章 実ロボットへの適用 付録 Excel VBA による実装 参考文献 索引
  • 情報科教育法 (改訂3版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「社会と情報」「情報の科学」の指導法に対応!教職課程・情報教育指導のための座右の書! 高校の情報科の教員免許取得には欠かせない、大学教職課程の講義「情報科教育法」の教科書です。前版(改訂2版)は平成20(2008)年度に告示され、平成25(2013)年度から実施されている学習指導要領の内容をふまえて実施に先がけて発行したものでしたが、発行後に一部教科名が変更される(『普通教科「情報」→共通教科「情報」』)、文科省が推奨する教科「情報」の学習の目的区分が変更されるなど、現在の高校の教科「情報」の教育実態に合わせた記述となるよう全体的に見直して、改訂3版として発行するものです。 序章 情報科教育法とは  1.  教育はなぜ必要か  2.  情報教育はなぜ必要か  3.  情報科教育法とその必要性 第1部 情報科とは  1章  情報科の成立   1・1 情報科設立経緯の概観   1・2 情報科の目標   1・3 情報科の学習内容   1・4 他の教科などとの関連   1・5 その他の特記事項  2章  現行学習指導要領における情報教育   2・1 小学校における情報教育   2・2 中学校における情報教育   2・3 高学における情報教育   2・4 現行学習指導要領とPISA 第2部 情報活用の実践力の指導法  第2部の概説  3章  情報活用の実践力の指導法   3・1 「情報活用の実践力」   3・2 「情報活用の実践力」の指導項目   3・3 小中学校における「情報活用の実践力」育成   3・4 高等学校における「情報活用の実践力」育成   3・5 情報フルーエンシーへの昇華 第3部 情報の科学的な理解の指導法  第3部の概説  4章  情報の科学的な理解の指導法   4・1 情報の科学的な理解の指導法   4・2 コンピュータを使わない指導法   4・3 コンピュータを使う指導法  5章  問題解決とモデル化・シミュレーションの指導法   5・1 問題を選定する   5・2 モデル化とシミュレーションを授業で取り上げる   5・3 まとめ  6章  アルゴリズムとプログラミングの指導法   6・1 アルゴリズムとプログラミング学習の必要性   6・2 アルゴリズムとプログラミング指導のポイント   6・3 プログラミングの指導法  7章  情報検索とデータベースの指導法   7・1 情報の整理と検索の必要性   7・2 情報検索と検索エンジン   7・3 データの重要性   7・4 データベースとDBMS   7・5 関係モデルと関係データベース   7・6 データウェアハウスとデータマイニング 第4部 情報社会に参画する態度の指導  第4部の概説  8章  情報モラル・情報倫理の指導法   8・1 情報モラル・情報倫理とは   8・2 指導方法  9章  メディアリテラシーの指導法   9・1 メディアリテラシーの概念   9・2 構成されるメディア   9・3 メディアの変化   9・4 メディアリテラシーの教育   9・5 授業の進め方   9・6 まとめ 10章 情報通信ネットワークとコミュニケーションの指導法   10・1 コミュニケーションとその構造   10・2 コミュニティと情報社会   10・3 情報通信ネットワークの仕組み   10・4 情報通信ネットワークとセキュリティ 11章 情報システムと社会の指導法   11・1 社会における情報システムの役割   11・2 生活の中の情報システム   11・3 情報システムの具体例   11・4 情報システムの社会的な重要性   11・5 授業への展開 第5部 情報科の教員として 12章 「総合的な学習の時間」との協調   12・1 指導要領における「総合学習」の位置づけ   12・2 どのような授業形態が考えられるか   12・3 「総合学習」に臨む教員の姿勢 13章 コラボレーションとプレゼンテーション,および授業システム改善の動き   13・1 コラボレーションプログラムの必要性   13・2 プレゼンテーションプログラムの必要性   13・3 プログラム展開において留意すべき点   13・4 授業システム改善の動き 14章 評価の工夫   14・1 観点別評価と評価の工夫   14・2 評価の計画と学習指導案   14・3 観点別評価の実際   14・4 生徒による自己評価,相互評価 15章 学習指導案の作成   15・1 学習指導案の内容   15・2 作成上の注意点   15・3 学習指導案の例 16章 情報科とプレゼンテーション   16・1 プレゼンテーションとは   16・2 プレゼンテーションの方法   16・3 スライドを用いたプレゼンテーション   16・4 実習としてのプレゼンテーション   16・5 授業におけるプレゼンテーション   16・6 プレゼンテーションのツール 17章 授業形式の実習   17・1 マイクロティーチングと教壇実習   17・2 実習の概要   17・3 ふりかえりの必要性 18章 これからの情報教育   18・1 ドラッカーが主張する21世紀の教育   18・2 知識のストックとフロー   18・3 ブートストラッピング   18・4 身体軸としてのキーボード練習   18・5 入門教育の重要性と熟練の獲得   18・6 プログラミング教育(論理軸) 第6部 情報教育に必要な知識 19章 情報の表現と発信   19・1 情報とデータ,情報量とデータ量   19・2 情報とデザイン   19・3 ユーザーインターフェイスのデザイン   19・4 コンテンツ構成の設計   19・5 Webページの論理構造と物理表現   19・6 情報システムとしてのWWWの設計 20章 ソフトウェア制作から見た情報教育   20・1 専門教科「情報」から見た情報技術教育   20・2 プロジェクトとして見たソフトウェア開発   20・3 見たこともないものを作る難しさ   20・4 お絵かきプログラム開発演習   20・5 ソフトウェア開発の実際   20・6 指導設計(ID) 索  引
  • 情報理論のエッセンス (改訂2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「情報理論」のエッセンスを詰め込んだ教科書 大学学部,情報通信系学科の必修課目「情報理論」のエッセンスを詰め込んだ教科書です. 多くの人が難しく感じるところをできるだけ丁寧に,本質をしっかり押さえて解説しています.補足的な説明やより進んだ説明をコラムとして配し,演習問題には難易度に応じて5段階のレベル分けを付し,学習上の区分けが明確になるよう配慮しています. また、改訂にあたっては,現行の大学・高専のカリキュラムに沿った見直しを行ったほか,読者の声をもとによりわかりやすい解説に改めています. 1.情報理論とは? 2.情報のとらえ方と情報量 3.平均情報量(エントロピー)の性質 4.情報源 5.情報源符号化 6.具体的符号化法 7.通信路と相互情報量 8.通信路符号化 9.誤り検出と訂正 10.線形符号 11.巡回符号
  • 人工知能が俳句を詠む ―AI一茶くんの挑戦―
    3.3
    人工知能が俳句を詠む日はいつ訪れるのか。現在の人工知能はどこまでできて、できないのかを、俳句を詠むAIの開発を通して迫る! 突然ですが、  見送りのうしろや寂し秋の風  病む人のうしろ姿や秋の風 このふたつの俳句が松尾芭蕉と人工知能のどちらの作品かわかるでしょうか。  本書は、現在も精力的に研究の進む人工知能について、俳句の生成という視点から現在の研究・開発動向を解説するものです。コンピュータを用いた俳句の自動生成は1968年のCybernetic Serendipityというコンピュータアートの展覧会に端を発し、近年では小説を生成する「きまぐれ人工知能プロジェクト 作家ですのよ」などとともに、人工知能による文学生成研究のひとつとして進められています。俳句という身近でわかりやすいテーマであるため、TVや新聞などのメディアでも取り上げられるなど、人工知能による俳句生成は現在注目が集まっています。  本書では、実際に俳句を生成する人工知能である「AI一茶くん」を研究・開発している著者らが、現在の人工知能技術の動向から創作分野における人工知能の展開、俳句をどのように人工知能に解釈させ、生成するのかを具体的に解説します。そして「AI一茶くん」の活動の紹介を通して、現在の人工知能がどこまで達成し、なにができていないのかまで見ていきます。  人工知能がどんなことをできるのか気になる方、とくに人工知能の創造性について興味のある方にピッタリの1冊となっています。もちろん人工知能がどんな俳句を生成するのかが気になる俳句好きの方にもわかりやすく、ていねいに解説しています。 第1章 人工知能が俳句を詠む日 第2章 人工知能の歴史と未来 第3章 人工知能を実現する技術 第4章 人工知能と創作 第5章 俳句の人工知能的解釈 第6章 俳句を生成する人工知能、AI一茶くんの仕組み 第7章 AI一茶くんの活動 第8章 人工知能と俳句の未来 付録 AI俳句百句選
  • 人工知能と社会 2025年の未来予想
    4.5
    ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 2025年に人工知能が到達しているであろう地点を現実的に予想! これからの社会に人工知能を活かすための技術を解説! 東京五輪も終わり、超・超高齢社会を迎え大きく様変わりしているであろう「2025年」。人工知能はどこまで発展・進歩し、我々の社会に活用されているのでしょうか。 本書は、2025年に人工知能が到達しているであろう地点、およびクリアできていないであろう問題点について、AIX(電気通信大学人工知能先端研究センター)を代表する研究者が独自の視点で予想します。 1章 2025年が やって来る! 2章 ロボットと人工知能 3章 IoTとは 時間・空間・人―物間をつなげることの効果とインパクト 4章 自然言語処理と人工知能 5章 人工知能における感性 6章 社会に浸透する汎用人工知能 あとがき
  • セルオートマトンによる知能シミュレーション ―天然知能を実装する―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 あの「天然知能」を情報科学として明快に解説! 本書は、セルオートマトンによる知能のシミュレーションについて、基本的な考え方から学ぶものです。 オートマトンの基礎から解説を始め、セルオートマトンに見られる典型的な現象(相転移、カオスの縁)、セルオートマトンと人工知能との対応、非同期調整セルオートマトンと著者らの提唱する「天然知能」との対応、リザバーコンピューティングによる実装の手法までを、順を追って解説します。 「天然知能」は、人工知能(RNN)のように初期情報と因果関係(規則)のみに従って結論を出すものではなく、推論過程で外部の情報に触れることにより結論が変わり得る仕組みであり、現実の思考過程・創造に向かう意識の変化にふさわしい概念として提唱されたものです。 第0章 本書の構成 第1章 はじめに:オートマトンから生命的計算へ 1.1 計算機としてのオートマトン 1.2 セルオートマトンによる世界の模倣 1.3 カオスの縁は本当なのか 1.4 天然知能的理解・天然知能的オートマトンへ 第2章 非同期ライフゲームによる確率的論理ゲート 2.1 ウォーミングアップ:本書におけるオートマトンの使用法 2.2 ライフゲームの規則とグライダー 2.3 非同期ライフゲームと相転移 2.4 非同期ライフゲームにおける計算の可能性 2.5 ゆらぎを利用する確率的論理回路 第3章 1次元セルオートマトン 3.1 初等セルオートマトン(ECA) 3.2 ECAの時空間パターン 3.3 1次元セルオートマトンの四つのクラス 第4章 ランダムさ・複雑性・べき乗則 4.1 ビット列のランダムさとエントロピー 4.2 1次元セルオートマトンのランダムさと複雑さ 4.3 べき乗則 第5章 カオスの縁 5.1 1次元セルオートマトンと「カオスの縁」 5.2 浸透セルオートマトンと相転移 第6章 セルオートマトンの天然知能化 6.1 同型性の発見・解体・転回 6.2 受動・能動の一致を実現する人工知能的描像 6.3 受動/能動のトラウマ構造―1:順序型・非同期時間 6.4 受動/能動のトラウマ構造―2:休止型・非同期時間 6.5 非同期調整オートマトン:脱色されたトラウマ 第7章 非同期調整オートマトンの実装 7.1 1次元セルオートマトンにおける同期と非同期 7.2 非同期調整オートマトンの実装 7.3 非同期調整オートマトンの時空間パターン 第8章 非同期調整オートマトンの臨界性 8.1 カオスの縁を超えて普遍的臨界性へ 8.2 パワースペクトルと1/fゆらぎ 第9章 計算万能性と計算効率のトレードオフ 9.1 万能性と効率は比較可能か 9.2 同期計算における万能性と効率のトレードオフ 9.3 非同期計算における万能性と効率のトレードオフ 9.4 非同期時間が内包する同期時間ルールの多様性 9.5 非同期調整が破るECAのトレードオフ 第10章 リザバー計算への実装 10.1 ニューラルネットとリザバー計算 10.2 ECAを用いたリザバー計算 10.3 非同期調整オートマトンを用いた天然知能的学習システム 第11章 おわりに 参考文献
  • 続・わかりやすい パターン認識 -教師なし学習入門-
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 定番「わかりやすい パターン認識」の続編!ベイズ統計学の基礎から、最新のノンパラメトリックベイズモデルまでやさしく解説した唯一の書籍! 初学者にはとっつきにくいパターン認識の基本を丁寧な図解と数式展開で解説して好評を得てきた、1998年発行「わかりやすい パターン認識」の続編です。前作で取り上げることのできなかった教師なし学習を主に取り上げてわかりやすくまとめました。教師なし学習を理解することで、より広い対象の音声・画像処理技術、ビッグデータなどを扱うことができるようになります。また、ノンパラメトリックベイズモデルについてわかりやすく解説した日本語の書籍は本書のみで、機械学習やパターン認識をこれから志す研究者、学生の方にもおすすめです。 第1章 ベイズ統計学 第2章 事前確率と事後確率 第3章 ベイズ決定則 第4章 パラメータ推定 第5章 教師付き学習と教師なし学習 第6章 EMアルゴリズム 第7章 マルコフモデル 第8章 隠れマルコフモデル 第9章 混合分布のパラメータ推定 第10章 クラスタリング 第11章 ノンパラメトリックベイズモデル 第12章 ディリクレ過程混合モデルによるクラスタリング 第13章 共クラスタリング 付録A 補足事項 (凸計画問題と最適化,イェンゼンの不等式,ベクトルと行列に関する基本公式,KLダイバージェンス,ギブスサンプリング,ウィシャート分布と逆ウィシャート分布,,ベータ・ベルヌーイ過程)
  • Chainer v2による実践深層学習
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Chainerのバージョン2でディープラーニングのプログラムを作る 本書はChainer を使ってディープラーニングのプログラムの作り方を示すものです。ディープラーニングは複雑なネットワークで表現された関数の回帰の問題と見なせます。そしてこのような問題は勾配法で解きます。この観点から Chainer によるプログラムの作成法を示しました。Chainerが2にバージョンアップしたため、2に対応し発行するものです。畳み込みニューラルネットワークについても解説しています。 主要目次 はじめに 第0章 Chainer とは 第1章 NumPy で最低限知っておくこと 第2章 ニューラルネットのおさらい 第3章 Chainer の使い方 第4章 Chainer の利用例 第5章 Trainer 第6章 Denoising AutoEncoder 第7章 Convolution Neural Network 第8章 word2vec 第9 章Recurrent Neural Network 第10章 翻訳モデル 第11章 Caffe のモデルの利用 第12章 GPU の利用 参考文献 ソースプログラム
  • テキストマイニング入門 ExcelとKH Coderでわかるデータ分析
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 テキストマイニングの手法がよくわかる!! 本書はテキストマイニングの基礎と事例について、フリーの計量テキスト分析ソフトKH Coderを利用したテキストの解析と、Excelによるその分析手法を通して解説する入門書です。  テキストマイニングをいかに業務に活かしていくか、つまづきがちなポイントをマンガやイラスト、図解を用いてわかりやすく解説します。 はじめに 登場人物 プロローグ 第1部 テキストマイニング 基礎編  第1章 テキストマイニングとは  第2章 テキストマイニングで実現できること  第3章 気軽に始めるテキストマイニング  第4章 テキストデータを準備する  第5章 KH Coderで伝える!分析アウトプット5選  第6章 分析の精度を高める!データクレンジング 第2部 テキストマイニング 実践編  第7章 アンケートのテキストマイニング 付録 A.1 Jaccard係数の計算方法 A.2 先輩おすすめの参考書籍 索引
  • データサイエンス教本 Pythonで学ぶ統計分析・パターン認識・深層学習・信号処理・時系列データ分析
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonでデータサイエンスの理論と実践を学ぶ  データサイエンスは、「データを科学的に扱う」学問分野であり、近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。  本書は、データサイエンスの意味から金融データの分析、動的システムの分析などの工学応用までを、Pythonを使って実際に分析しながら学ぶものです.データの取り扱い、確率・統計の基礎といった基本的なところから、回帰分析、パターン認識、深層学習といった統計・機械学習手法、金融データなど時々刻々と変化する時系列データの分析、センサデータなどに含まれるノイズや外乱を見極めるスペクトル分析、さらにこのノイズや外乱を除去するためのディジタルフィルタ、そして最後に画像データの分析として画像処理の解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。  Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。 1章 はじめに 2章 データの扱いと可視化 3章 確率の基礎 4章 統計の基礎 5章 回帰分析 6章 パターン認識 7章 深層学習(ディープラーニング) 8章 時系列データ分析 9章 スペクトル分析 10章 ディジタルフィルタ 11章 画像処理 おわりに 参考文献
  • データサイエンスの考え方 ―社会に役立つAI×データ活用のために―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」準拠テキスト データ活用社会を生きる学生・社会人に必須の【データ分析・解析の基本的な考え方と手法】をわかりやすく解説! データサイエンスは、さまざまなデータを分析・解析し、そこから新しい知見や価値を生み出していく技術・手法です。統計学などの数学を基礎とし、必要に応じコンピュータを活用して、さまざまな分野の専門知識と融合しながら、データから新しい価値を生み出していくデータサイエンスは、いまや大学生・社会人にとって必須の教養といえます。 本書は、政府の「AI戦略2019」での議論を経て策定・公表された「数理・データサイエンス・AI(応用基礎レベル)モデルカリキュラム」に準拠した内容です。具体的な事例と分析手法を扱いながら、社会のさまざまな場面で必要とされるデータサイエンスの考え方を、関連する数学とともに丁寧に解説します。また、大学におけるリテラシーレベルの授業に続く、半期の授業に対応した構成としました。 【著者一覧】 第1章  小澤誠一 神戸大学数理・データサイエンスセンター 第2章  大川剛直 神戸大学大学院システム情報学研究科情報科学専攻 第3章  藤井信忠 神戸大学大学院システム情報学研究科システム科学専攻 第4章  青木 敏 神戸大学大学院理学研究科数学専攻 第5章  光明 新 神戸大学数理・データサイエンスセンター 第6章  為井智也 神戸大学数理・データサイエンスセンター 第7章  大森敏明 神戸大学大学院工学研究科電気電子工学専攻 第8章  為井智也 神戸大学数理・データサイエンスセンター 第9章  寺田 努 神戸大学大学院工学研究科電気電子工学専攻 第10章 熊本悦子 神戸大学情報基盤センター 第11章 高島遼一 神戸大学都市安全研究センター 第12章 村尾 元 神戸大学大学院国際文化学研究科 第13章 白石善明 神戸大学大学院工学研究科電気電子工学専攻 第14章 小澤誠一 神戸大学数理・データサイエンスセンター 第15章 羽森茂之 神戸大学大学院経済学研究科 第1章 データサイエンスの考え方 1.1 データサイエンスとは 1.2 データサイエンスを学ぶ理由 1.3 データから価値を生み出すプロセス 第2章 アルゴリズムとデータ構造 2.1 はじめに 2.2 データサイエンスにおけるアルゴリズムとデータ構造 2.3 アルゴリズムの基礎 2.4 基本的なデータ構造 2.5 探索 2.6 ソーティング 第3章 システム最適化 3.1 最適化問題とは 3.2 線形計画問題 3.3 非線形計画問題 3.4 整数計画問題 第4章 統計的データ解析の考え方 4.1 標本調査 4.2 信頼区間と仮説検定 4.3 分布の近似と標準誤差 4.4 線形回帰モデル 4.5 非線形回帰モデル 第5章 教師なし学習 5.1 クラスタリング 5.2 高次元データの次元削減と可視化 第6章 教師あり学習 6.1 教師あり学習とは 6.2 学習モデルとトレーニング(パラメータ最適化) 6.3 データのセットの分割とテスト(モデルの評価) 6.4 実データへの適用例(回帰) 第7章 確率モデル・確率推論 7.1 はじめに 7.2 確率モデルとベイズの定理 7.3 確率推論 7.4 確率推論の応用 第8章 強化学習 8.1 強化学習とは 8.2 強化学習の理論 8.3 強化学習アルゴリズム 8.4 探索と利用のトレードオフと意思決定モデル 第9章 情報センシング 9.1 情報センシングとは 9.2 センサデータ処理 9.3 センシング応用 第10章 画像解析・深層学習 10.1 画像解析 10.2 デジタル画像の特徴とフィルタ処理 10.3 深層学習 第11章 時系列データ解析・音声解析 11.1 時系列データ解析 11.2 音声解析 第12章 テキスト解析 12.1 はじめに 12.2 テキストデータの収集 12.3 テキストクレンジング 12.4 トークン化 12.5 ベクトル化 12.6 探索的データ分析 12.7 テキスト分析 第13章 情報セキュリティ 13.1 情報資産と情報セキュリティ 13.2 情報セキュリティの基本:アクセス制御 13.3 情報セキュリティのCIA 第14章 プライバシー保護技術 14.1 データが価値を生む仕組みと提供リスク 14.2 匿名化によるプライバシー保護 14.3 差分プライバシーによるプライバシー保護 14.4 準同型暗号によるプライバシー保護 14.5 協調学習によるプライバシー保護 第15章 意思決定論 15.1 意思決定の基本的枠組み 15.2 相関関係と因果関係 参考文献 索引
  • 7つの言語 7つの世界
    4.6
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 複数のプログラミング言語とパラダイムを使いこなせれば、プログラマとしての幅が広がります。本書は、1週間で1つの新しい言語を学ぶ“Seven Languages in Seven Weeks”を、Rubyの作者まつもとゆきひろ氏の監訳で発行するものです。言語の特徴を映画の登場人物になぞらえて、Ruby、Io、Prolog、Scala、Erlang、Clojure、Haskellという個性的な7つの言語を紹介。各言語の特性とそこにあるプログラミングパラダイムを、体験を通してものにしましょう。 母に捧ぐ 謝辞 序文 第1章 はじめに 第2章 Ruby 第3章 Io 第4章 Prolog 第5章 Scala 第6章 Erlang 第7章 Clojure 第8章 Haskell 第9章 全体のまとめ 付録A 参考資料 監訳者あとがき 索引 著者・監訳者・訳者について
  • 入門 データベース
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データベース入門の決定版! データベースを学びたい初学者に向けて、平易な言葉で基礎を解説した入門書です。  大規模な情報を効率よく処理するために、いまやデータベースは欠かせないコンピュータの基盤技術となっています。  本書は、データベース技術に関する、大学・高専の標準的な教科書として、また社会人の方の入門書として、データベース技術のポイントを選んで、それぞれの基本的な考え方,内容をていねいにわかりやすく説明しています。 1章 データベースとは 2章 関係表とは 3章 データベースの代数 4章 関係表の正規化 5章 基底表と視野表 6章 やわらかい内部スキーマ 7章 安全なデータベース
  • Pythonで学ぶ統計的機械学習
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで機械学習に必要な統計解析を学べる!! 機械学習を使いこなすには、確率・統計に根ざしたデータ解析の基礎理論の理解が不可欠です。そこで本書は、Pythonの簡単な使い方から確率・統計の基礎、統計モデルによる機械学習を解説します。 第I部 Pythonによる計算  第1章 Pythonの初歩  第2章 確率の計算 第II部 統計解析の基礎  第3章 機械学習の問題設定  第4章 統計的精度の評価  第5章 データの整理と特徴抽出  第6章 統計モデルによる学習  第7章 仮説検定 第III部 機械学習の方法  第8章 回帰分析の基礎  第9章 クラスタリング  第10章 サポートベクトルマシン  第11章 スパース学習  第12章 決定木とアンサンブル学習  第13章 ガウス過程モデル  第14章 密度比推定 付録A ベンチマークデータ  A.1 UCI Machine Learning Repository  A.2 mlbench  A.3 datasets 参考文献 Python索引 用語索引
  • Pythonと実例で学ぶ機械学習 識別・予測・異常検知
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習による異常検知と系列データ解析を実例をもとに学ぶ  本書は、現在産業界で注目されている、機械学習による ・機器の振動データに対する異常検知 ・系列データ(例として睡眠系列データ)に対する解析 を解説したものです。  業務や研究開発に必要だが機械学習については素人という方でも実践できるように、本書前半では、基本的な識別器・予測器のPythonによる実装例・使い方を解説しています。後半では、実問題への適用例を著者の研究経験をもとに解説しています。 第1章 機械学習とは何か 第2章 基本的な識別器・予測器 第3章 機器の振動データに対する異常検知 第4章 系列データの解析
  • Pythonによる機械学習入門
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。検索やハイライト等の機能が使用できません。 初心者でもPythonを用いて機械学習が実装できる!   本書は、今後ますますの発展が予想される人工知能の技術のうち機械学習について、入門的知識から実践まで、できるだけ平易に解説する書籍です。「解説だけ読んでもいまひとつピンとこない」人に向け、プログラミングが容易なPythonにより実際に自分でシステムを作成することで、そのエッセンスを実践的に身につけていきます。 また、読者が段階的に理解できるよう、「導入編」「基礎編」「実践編」の三部構成となっており、特に「実践編」ではシステム計画研究所が展示会「Deep Learning実践」で実際に展示した「手形状判別」を実装します。 詳細目次 第1部 導入編  第1章 はじめに  1.1 機械学習とは  1.2 Python と機械学習  1.3 インストール&セットアップ  1.4 Python 早分かり ― NumPy とmatplotlib  1.5 クイックツアー   小話 深層学習って何だ?  第2 章 機械学習の様々な側面 33  2.1 機械学習をとりまく環境.. 33  2.2 関連分野. 34  2.3 学習法による分類. 35  2.4 手法や課題設定による分類. 36  2.5 応用例. 37 第2部 基礎編  第3章 分類問題  3.1 分類問題とは  3.2 最初の分類器  3.3 学習データとテストデータ   ミニ知識 色々な用語 ―学習・訓練・教師 vs テスト・評価・バリデート・検証   ミニ知識 k- 分割交差検証  3.4 分類器の性能を評価しよう   ミニ知識 正答率(Accuracy)と適合率(Precision)   ミニ知識 色々な平均.調和平均・算術平均・幾何平均  3.5 色々な分類器  3.6 まとめ  第4章 回帰問題  4.1 回帰問題とその分類  4.2 最初の回帰 ― 最小二乗法と評価方法  4.3 機械学習における鬼門 ― 過学習  4.4 過学習への対応 ― 罰則付き回帰  4.5 様々な回帰モデル  4.6 まとめ  第5章 クラスタリング  5.1 iris データセット   ミニ知識 フィッシャーのあやめ  5.2 代表的なクラスタリング手法 ― k-means  5.3 その他のクラスタリング手法  5.4 まとめ 第3部 実戦編  第6章 画像による手形状分類  6.1 課題の設定  6.2 最初の学習  6.3 汎化性能を求めて ― 人を増やしてみる  6.4 さらに人数を増やしてみる   ミニ知識 学習データに含める人数について  6.5 データの精査と洗浄 ― データクレンジング  6.6 特徴量の導入  6.7 パラメータチューニング  6.8 まとめ  第7章 センサデータによる回帰問題  7.1 はじめに  7.2 準備  7.3 センサデータの概要  7.4 データの読み込み  7.5 高松の気温データと四国電力の消費量  7.6 もっと色々、そしてまとめ  7.7 終わりに 第4部 付録  付録A Python で作る機械学習  A.1 この付録の目的  A.2 最小二乗法  A.3 行列計算による解析解の導出  A.4 反復法  A.5 コードを書く前に  A.6 実装例  付録B 線形代数のおさらいと代表的な非線形モデル  B.1 この付録の目的  B.2 そもそも「線形」とは  B.3 線形変換とアフィン変換  B.4 ノルムと罰則項  B.5 線形回帰の最小二乗解を考える  B.6 機械学習における「非線形」
  • Pythonによる深層強化学習入門 ChainerとOpenAI Gymではじめる強化学習
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層強化学習の入門から実装まで、この一冊でわかる! アルファ碁などのゲームAIやロボットアームの制御、自動運転などで注目されている深層強化学習の基礎と、Pythonによる実装について解説した入門書です。 強化学習に適したライブラリであるChainer(ChainerRL)と、AIシミュレーション環境であるOpenAI gymを用いて解説しています。 ソフトウェアシミュレーションだけでなくRaspberryPiとArduinoを用いた実環境への応用も解説しているので、ソフト・ハード問わず自身の課題に深層強化学習を応用することができるようになっています。 1章 はじめに 2章 深層学習 3章 強化学習 4章 深層強化学習 5章 実環境への応用 付録 付録1 VirtualBoxのインストール 付録2 RaspberryPiの設定 付録3 Arduinoのインストール 付録4 Graphical Processing Unit(GPU)の利用 付録5 Intel Math Kernel Libraryを用いたNumPyのインストール
  • Pythonによる数値計算とシミュレーション
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『C による数値計算とシミュレーション』のPython版登場!!  本書は、シミュレーションプログラミングの基礎と、それを支える数値計算の技術について解説します。数値計算の技術から、先端的なマルチエージェントシミュレーションの基礎までをPythonのプログラムを示しながら具体的に解説します。  アルゴリズムの原理を丁寧に説明するとともに、Pythonの便利な機能を応用する方法も随所で示すものです。 まえがき 第1章 Pythonにおける数値計算 1.1 Pythonによる数値計算プログラムの構成 1.1.1 Pythonによる数値計算プログラム 1.1.2 Pythonモジュールの活用 1.2 数値計算と誤差 1.2.1 数値計算における誤差 1.2.2 数値計算における誤差の実際 1.2.3 Pythonモジュールの活用 章末問題 第2章 常微分方程式に基づく物理シミュレーション 2.1 質点の1次元運動シミュレーション 2.1.1 自由落下のシミュレーション 2.1.2 着陸船のシミュレーション 2.2  ポテンシャルに基づく2次元運動シミュレーション 2.2.1 ポテンシャルに基づく2次元運動 2.2.2 2次元運動シミュレーション 2.3 Pythonモジュールの活用 章末問題 第3章 偏微分方程式に基づく物理シミュレーション 3.1 偏微分方程式の境界値問題 3.1.1 ラプラスの方程式 3.1.2 ラプラスの方程式の境界値問題 3.1.3 境界値問題の数値解法 3.1.4 ガウスの消去法による境界値問題の計算 3.1.5 逐次近似による境界値問題の計算 3.1.6 その他の二階偏微分方程式 3.2 ラプラスの方程式による場のシミュレーション 3.2.1 ラプラスの方程式の反復解法プログラム 3.2.2 より複雑な形状の領域の場合 3.3 Pythonモジュールの活用 章末問題 第4章 セルオートマトンを使ったシミュレーション 4.1 セルオートマトンの原理 4.1.1 セルオートマトンとは 4.1.2 セルオートマトンの計算プログラム 4.2 ライフゲーム 4.2.1 ライフゲームとは 4.2.2 ライフゲームのプログラム 4.3 交通流シミュレーション 4.3.1 1次元セルオートマトンによる交通流のシミュレーション 4.3.2 交通流シミュレーションのプログラム 章末問題 第5章 乱数を使った確率的シミュレーション 5.1 擬似乱数 5.1.1 乱数と擬似乱数 5.1.2 乱数生成アルゴリズム 5.1.3 Pythonの乱数生成モジュール 5.2 乱数と数値計算 5.2.1 数値積分と乱数 5.2.2 乱数と最適化 5.3 乱数を使ったシミュレーション 5.3.1 ランダムウォーク 5.3.2 ランダムウォークシミュレーション 5.4 Pythonモジュールの活用 章末問題 第6章 エージェントベースのシミュレーション 6.1 エージェントとは 6.1.1 エージェントの考え方 6.1.2 Pythonによるエージェントシミュレーションの実現 6.1.3 マルチエージェントへの拡張 6.1.4 相互作用するマルチエージェント 6.2 マルチエージェントによる相互作用のシミュレーション 6.2.1 マルチエージェントによるシミュレーション 6.2.2 マルチエージェントシミュレーションプログラム 章末問題 付録 A.1 4次のルンゲ=クッタ法の公式 A.2 ラプラスの方程式が周囲4点の差分で近似できることの説明 A.3 ナップサック問題の解法プログラムrkp30.py A.4 シンプソンの公式 章末問題略解 参考文献 索  引
  • Pythonによるテキストマイニング入門
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Python 3を使ったテキストマイニングの入門書! 本書は、Pythonを使ったテキストマイニングの入門書です。Pythonのインストールから基本文法、ライブラリパッケージの使用方法などについてもていねいに解説していますので、Pythonに触れたことがない方でも問題なく使用できます。また、テキストマイニングも、概要から実例に至るまで一から解説していますので、Python・テキストマイニング両方の知識が全くない方にとって最適な入門書となっています。 目次 第1章 テキストマイニングの概要 1.1 テキストマイニングとは 1.2 応用の例 第2章 テキストデータの構造 2.1 テキストの構成要素 2.2 統計分析・データマイニングの基本的な手法 2.3 テキストマイニング固有の考え方 第3章 Pythonの概要と実験の準備 3.1 Pythonとは 3.2 プログラムを作って動かす環境 3.3 Pyrhonの書き方ルール 3.4 テキストマイニングに役立つライブラリパッケージ 3.5 データの準備 第4章 出現頻度の統計の実際 4.1 文字単位の出現頻度の分析 4.2 単語の出現頻度の分析 第5章 テキストマイニングの様々な処理例 5.1 連なり・N-gramの分析と利用 5.2 共起(コロケーション)の分析と利用 5.3 語の重要性とTF-IDF分析 5.4 KWICによる検索 5.5 単語のプロパティを使ったネガポジ分析 5.6 WordNetによる類語検索 5.7 構文解析と係り受け解析の実際 5.8 潜在的意味論に基づく意味の分析とword2vec 付録 Python, Jupyter notebook のインストール
  • Pythonによるバイオデータ解析入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 バイオのデータもPythonで! 生物学に関わる理解・研究では、コンピュータによるデータ処理が欠かせないものとなってきています。生物学の扱う系はもともと非常に複雑で雑音が多く、統計的な解析が広く使われてきましたが、特に最近のDNA/RNA解析ではいわゆる次世代シーケンサ(NGS)が大量のDNA配列データを生み出してそれを整理しなければならないなど、コンピュータによるデータ処理が必須になっています。  本書は、生物学分野において行われる、さまざまなデータ解析処理について、Pythonを用いて行う方法を解説し、理解することを目的としています。従来、簡単な処理はExcelを使ったり、RやSPSSなどの統計処理を主目的とする言語・ソフトウェアパッケージが用いられてきました。そのなかで本書は、比較的新しく、機械学習やデータ分析に優れたプログラミング言語であるPython を使って、初歩的なデータ処理をどのように行えばよいのかを紹介しています。 第 1 章 バイオデータ処理 第 2 章 プログラムを動作させるための知識 第 3 章 Pythonによる入力・出力データ加工のためのプログラミング 第 4 章 Pythonからバイオデータを扱うライブラリ 第 5 章 可視化のためのライブラリ 第 6 章 統計処理に便利な汎用の統計パッケージ 第 7 章 変異解析・発言解析の流れの例
  • プログラミングなしではじめる人工知能
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 プログラミングなしで人工知能をはじめよう!  本書は,何か人工知能を活用してみたいが,プログラミングを学ぶのはハードルが高い,どんなことができるのかまずは試してみたい,という方をおもな対象として,Azure Machine Learning Studio (classic)を用いたノンプログラミングでの人工知能手法を紹介するものです.  Azure Machine Learning Studio (classic)はMicrosoft社の提供するクラウドサービスで,一般的なブラウザ上でドラッグ&ドロップによるビジュアル操作を用いて,人工知能(機械学習)を実践することができます.機能単位のアイコンとアイコンとを配線することで,さまざまな分析をおこなうことができます.  基本的な人工知能手法の解説に留まらず,「カップの振動」に対する教師あり学習,「扇風機の異常」を教師あり学習で分類する,水位の推定などの数値予測,「地目別平均地価」に対する教師あり学習,「ICTサービスの利用動向」に対するクラスタリング,「扇風機の異常動作」に対するSVMを用いた異常検知などの具体的な例を取り上げて解説することで,実践的な人工知能の手法をお試しできるようになっています. 1. AIとは? 2. Azure Machine Learning Studio (classic)の利用準備 3. データ形式の理解と準備 4. Azure Machine Learning Studio (classic)における処理の全体構造 5. Azure Machine Learning Studio (classic)へのデータ入出力 6. Azure Machine Learning Studio (classic)内における前処理 7. 教師あり学習 8. 数値予測 9. グルーピングと異常検知 10. 学習と推定についての評価 11. 独自処理 12. Webサービス化とAndroidアプリ作成
  • マンガでわかる機械学習
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 学ぶことの多い機械学習をマンガでさっと学習でき、何ができるかも理解できる!!  本書は今後ますますの発展が予想される人工知能分野のひとつである機械学習について、機械学習の基礎知識から機械学習の中のひとつである深層学習の基礎知識をマンガで学ぶものです。  市役所を舞台に展開し、回帰(イベントの実行)、識別1(検診)、評価(機械学習を学んだ結果の確認)、識別2(農産物のサイズ特定など)、教師なし学習(行政サービス)という流れで物語を楽しみながら、機械 学習を一通り学ぶことができます。 序章 機械学習を教えてください! 第1章 回帰ってどうやるの? 第2章 識別ってどうやるの? 第3章 結果の評価 第4章 ディープラーニング 第5章 アンサンブル学習 第6章 教師なし学習 エピローグ 参考文献
  • Release It! 本番用ソフトウェア製品の設計とデプロイのために
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ソフトウェアを本番稼働するときに知っているべきこと 2008年のJolt Award一般書部門で、Manage It!とともにProductivity Winner を受賞した原書を翻訳するもの。動くだけではない製品としてのソフトウェアでは、開発だけでなく運用の面でも設計の時点から知っているべき事柄やノウハウが多々ある。本書ではそれらをパターン/アンチパターンとして解説していく。 第1章 イントロダクション 第1部 安定性 第2章 航空機が飛び立てないのは 第3章 安定性を取り入れる 第4章 安定性のアンチパターン 第5章 安定性のパターン 第6章 安定性についてのまとめ 第2部 許容量 第7章 顧客に踏みにじられる 第8章 許容度を取り入れる 第9章 許容度のアンチパターン 第10章 許容度のパターン 第3部 設計における一般的な問題 第11章 ネットワーキング 第12章 セキュリティ 第13章 可用性 第14章 認証 第15章 設計についてのまとめ 第4部 運用 第16章 宇宙の摂理 第17章 透過性 第18章 適用 付録A 参考文献 索引
  • わかりやすい ディジタル情報理論 (改訂2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 理工系・文系を問わず非常にわかりやすい情報理論、符号理論の教科書 著者の長年の講義経験をもとに練り上げた情報理論・符号理論の教科書です。 大学1年生が読むことを念頭に、難解な内容となることを避け、高卒程度の数学を用いて、情報理論を解説しています。演習問題も数多く掲載しています。 改訂2版では、符号理論に関する解説をより追加、現行の大学・高専のカリキュラムにより即した内容とするほか、現在の視点からみて適切なアップデートをしています。 1章 2進数の基礎 2章 確率論の基礎知識 3章 情報量とエントロピー 4章 情報源と通信路 5章 符号化 6章 暗号による通信と情報セキュリティ
  • わかりやすいパターン認識(第2版)
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 パターン認識の決定版教科書、待望の改訂2版! 本書は1998年刊行の『わかりやすいパターン認識』の改訂版です。パターン認識を初めて学ぶ読者をおもな対象として、扱うテーマを基本的な項目にしぼり、それらを重点的かつ詳細に解説しました。  改訂にあたっては、具体例・実験例をもっと増やしてほしいという初版に与えられた要望に答え、補足・実験例、演習問題を加えました。演習問題の詳細な解答はオーム社のホームページに掲載されています。初版発行から20年の間に開発・提案された新しい手法の解説ではなく、基本的な内容を充実させ、より使いやすい書籍となるように改訂いたしました。 第1章 パターン認識とは 第2章 学習と識別関数 第3章 誤差評価に基づく学習 第4章 識別部の設計 第5章 特徴の評価とベイズ誤り確率 第6章 特徴空間の変換 第7章 部分空間法 第8章 学習アルゴリズムの一般化 第9章 学習アルゴリズムとベイズ決定則

最近チェックした本