情報科学 - IT・コンピュータ一覧

  • パーフェクト Excel VBA
    -
    VBAに関して、世にある情報の多くは「使い方」にフォーカスしすぎており、「構造」や「体系」、「作法」に触れていない場合も多く、そのためか他の言語にくらべ、メンテナンス性や再利用性の低いコードや運用しづらいマクロがまん延している状況にあるともいえます。こうした状況を打破するためには、本質的には、最初から言語の体系や構造を理解し、作法が身につくように学ぶことが最善の策といえます。本書は、Excel VBAで本格的なアプリ開発などを目指す人のためのバイブル的1冊として、基礎から応用までを、体系的に詳しく学べる解説書です。
  • これ1冊で丸わかり 完全図解 セキュリティー対策
    NEW
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 不正アクセスやランサムウエアなどサーバー攻撃による企業の被害が急激に増えています。国内でも過半数の企業が1年以内に被害に遭ったという調査もあり、企業活動において大きなリスクとなっています。 本書では、「すべてのアクセスを信用しない」という原則で作る「ゼロトラストネットワーク」の構築や基本となる認証や暗号化など、企業のセキュリティーを向上させる方法を様々な角度から紹介しています。図解を中心としており、これまでセキュリティー分野について詳しくなかった人でも理解しやすいようになっています。用語解説も豊富に盛り込んでいます。 第1部 ゼロトラストネットワークで守る 第2部 セキュリティー機器やツールの使い方を学ぶ 第3部 セキュリティー事故に対処する 第4部 セキュリティー技術を学ぶ 第5部 暗号や認証を学ぶ 第6部 セキュリティー用語を理解する
  • AI事典 第3版
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIはいまや,さまざまな研究の根幹をなしており,関わる分野も多岐にわたる。本書は,人工知能(AI)研究を牽引する代表的な研究者が編・著を務め,各研究カテゴリーの最前線で活躍する100余名の気鋭の研究者が執筆を手掛けた事典である。  コンセプトは「執筆者の主観を軸に,読者が興味を持って面白く読める内容にすること」。従来の主要テーマのほか,ディープラーニング,AIにおける論争,汎用人工知能など,いま外せないトピックスを幅広く解説する。  AI研究者はもちろん,工学,理学,脳科学,医学,薬学,農学,社会学,哲学など,すべての分野の学生・研究者の未来に影響を与える,ターニングポイントとなる書!!
  • 試して学ぶ スマートコントラクト開発
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、スマートコントラクトアプリケーションを事例として、パブリックなブロックチェーンを用いたスマートコントラクト開発の手法を紹介する書籍です。 スマートコントラクトプラットフォームのデファクトであるEthereumと、スマートコントラクトを開発するためのプログラミング言語Solidityを中心に取り上げ、実際にアプリケーションを開発するためのプロセスを体験することができます。 スマートコントラクトのコーディングやテスト手法はもちろん、フロントエンドやミドルウェアを含めたアプリケーション提供のための包括的な手順を説明しています。さらに、ブロックチェーンの特徴を活かすサービスデザインの取り組みも紹介します。
  • よくわかるデータリテラシー データサイエンスの基本
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 データサイエンスの重要性が叫ばれるなか、その教育への期待が産官学で高まっている。高校ではすでに統計学が必修となり、大学においても文・理を問わず全学生にデータサイエンス教育を課すことが決まった。 本書では、データサイエンスの要であるデータリテラシー(データを正しく読み取り情報を正確に提示できる能力)の総合的解説を試みており、初学者が一から理解できるよう豊富な例題・演習・解答が盛り込んである。 これからデータリテラシーを教えるにあたって適切な教材を探している教師の方々、データサイエンスを身につけるための足がかりを欲している学生の方々、どちらの要望にも応える充実の教科書となっている。
  • Rによるやさしいテキストマイニング 機械学習編
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習で捗るテキストマイニング! 機械学習を用いた本格的なテキストマイニングをやさしく解説! 本書は、フリーの分析ツールであるRを用いて、機械学習による大規模なテキストデータ解析の手法などをわかりやすく解説した書籍です。 (1) ウェブからのテキストデータの自動収集、(2) 生の「きたない」データを分析しやすい「きれいな」データにするための前処理、(3) 大規模データを解析するための機械学習の手法、(4) 分析結果を顧客や上司に分かりやすく伝えるための可視化の手法を丁寧に解説しています。 解説は、数式が苦手な読者もすんなりと読めるように、手法の原理を直感的に理解できるイラスト・図面を多用した構成としています。 主要目次 Part I テキストマイニング 第1章 自然言語処理 第2章 テキスト処理 第3章 スクレイピング Part II 機械学習 第4章 データハンドリング 第5章 教師あり学習―回帰 第6章 教師あり学習―分類 第7章 教師なし学習
  • スモールデータ解析と機械学習
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 スモールなデータの解析手法・ノウハウが身につく! Webデータや画像データに代表されるようなビッグデータが注目される一方で、機械の故障データのように発生自体がまれであったり、患者さんの検査データのように倫理的な問題からデータを集めることに制約があったり、あるいはデータの判読が専門家以外では困難で機械学習に利用しにくいデータは、どうしても忘れられがちです。ビッグデータの時代において、収集が難しいために私たちが忘れかけているデータのことをスモールデータとよびます。 スモールデータでは、測定されている変数の数に比べて学習に必要なサンプルが不足していたり、それぞれのクラスのサンプル数が極端に偏っていたりするため、深層学習のようなビッグデータの方法をそのまま適用するのは適当ではなく、異なるアプローチが必要になります。 本書は、スモールデータとはどのようなデータであるのかを具体的に紹介して、スモールデータ解析の基本となる次元削減と回帰分析を説明します。特に部分的最小二乗法(PLS)はスモールデータ解析の大きな武器となるでしょう。そして、機械学習においてモデルの性能向上のために必要な変数(特徴)選択を紹介し、特にクラスタリングに基づいた新しい変数選択手法を説明します。つづいて、不均衡なデータの解析手法と異常検知を紹介して、最後にスモールデータ解析についての筆者の経験に基づいたポイント・考え方を述べました。本書ではPythonプログラムとスモールデータ解析の例題を通じて、読者がスモールデータを有効に解析できるようになるよう工夫しています。 ビッグデータの世界は、もはやデータ量と資本力が支配するレッドオーシャンとなっています。しかし、スモールデータの世界は、まだまだ現場の創意工夫次第でデータから新たな価値を引き出すことのできるブルーオーシャンなのです。みなさんも、この未知の世界に飛び込んでみませんか? 第1章 スモールデータとは 第2章 相関関係と主成分分析 第3章 回帰分析と最小二乗法 第4章 線形回帰モデルにおける入力変数選択 第5章 分類問題と不均衡データ問題 第6章 異常検知問題 第7章 データ収集や解析の心構え
  • システム設計の先導者 ITアーキテクトの教科書 改訂版
    -
    ITアーキテクトを目指すエンジニア必携の一冊 マイクロサービスやDevOpsにも対応! エンタープライズの情報システム開発において、ITアーキテクトの重要性がますます高まっています。スマートフォンやタブレットを生かした新たなシステムの構築や、クラウドサービスを利用したスモールスタートのシステム開発など、システムアーキテクチャーをゼロから考えなければならない場面が増えているからです。 しかしITアーキテクトを名乗るエンジニアの数はまだまだ少なく、またITアーキテクトのタスクや役割についても曖昧なのが実情です。本書では、そんなITアーキテクトがすべきことや求められるスキルを、システム開発の工程に沿って体系的にまとめました。ITアーキテクトが各工程で実施するタスクを、その成果物とともに解説しています。この一冊で、ITアーキテクトがシステム開発プロジェクトの中で何を考え、何をしているのかが見えてきます。 改訂版では、掲載内容を最新の情報にアップデートするとともに、注目の最新技術である「マイクロサービス」や「DevOps」に対応するパートを追加しました。 企業システムのデジタルシフトに伴って、システム開発では想定外の機能要件の追加や変更にも柔軟に対応し、その変更の影響範囲を極小化できるアーキテクチャーが求められます。改訂版で追加した第7章には、こうしたニーズに対応する際に取り得るアーキテクチャー戦略をまとめています。 ITアーキテクトは、アーキテクチャー設計というタスクを通じて、企業のビジネスおける様々な課題をITの力で解決します。本書はその問題解決力を磨くために必携の一冊です。
  • 東京大学のデータサイエンティスト育成講座
    4.2
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 東大 松尾研究室が提供するあの人気講座が待望の書籍化! 本書は、2017年と2018年に東京大学で実施された講座で使われた教材がベースになっています。約400名ほどの受講枠(2年間)に、のべ1,800人以上の応募があった人気の講義です。この本のベースとなるコンテンツをさらに精査、ブラッシュアップし、読みやすく整えたものが本書になります。 本書には、データサイエンティストになるための基礎をつめこんでいます。データサイエンティストは、Pythonや確率・統計、機械学習など、幅広くさまざまな分野の知識を必要とします。 この本は主にPython 3を使って、基本的なプログラムの書き方、データの取得、読み込み、そのデータ操作からはじまり、さまざまなPythonのライブラリの使い方、確率統計の手法、機械学習(教師あり学習、教師なし学習とチューニング)の使い方についても学びます。取り扱っているデータは、マーケティングに関するデータやログデータ、金融時系列データなどさまざまで、モデリングの前にそれらを加工する手法も紹介しています。データサイエンティストになるには、どれも必要なスキルです。 本書には、さらに以下の3つの特徴があります。 ・実際のデータを使って手を動かしながら、データサイエンスのスキルを身に付けることができる ・データ分析の現場で使える実践的な内容(データ前処理など)が含まれている ・練習問題や総合問題演習など実際に頭を使って考える内容がたくさんある ◆目次 Chapter 1 本書の概要とPythonの基礎 Chapter 2 科学計算、データ加工、グラフ描画ライブラリの使い方の基礎 Chapter 3 記述統計と単回帰分析 Chapter 4 確率と統計の基礎 Chapter 5 Pythonによる科学計算(NumpyとScipy) Chapter 6 Pandasを使ったデータ加工処理 Chapter 7 Matplotlibを使ったデータ可視化 Chapter 8 機械学習の基礎(教師あり学習) Chapter 9 機械学習の基礎(教師なし学習) Chapter 10 モデルの検証方法とチューニング方法 Chapter 11 総合演習問題 Appendix 本書の環境構築について/練習問題解答/参考文献・参考URL
  • イメージでつかむ機械学習入門 ~豊富なグラフ,シンプルな数学,Rで理解する~
    -
    機械学習は,人工知能の実装を支える基盤技術として注目されています。人工知能の基盤と聞くと,難解な数学に対する素養が必要だと感じるかもしれませんが,その基礎は高校数学と大学初学年級の一部の数学が理解できていれば十分にマスターできます。本書は,理系出身ではない方,プログラムは多少作れるけれども数学はちょっと…という方を対象に,豊富なグラフとシンプルな数学により各手法のイメージをつかみながら機械学習の基礎を学んでいくことができます。ソフトはRを使っています。
  • Pythonではじめる数理最適化 ―ケーススタディでモデリングのスキルを身につけよう―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Pythonで実務に使える数理最適化のスキルを身につけよう!  本書は、Pythonを用いた数理最適化の入門書です。さまざまな課題をPythonを使って実際に解いてみることで、数理モデルを実務で使いこなす力を身につけます。  第1章と第2章はチュートリアルです。中学校で習う連立一次方程式や、高校で習う線形計画法を題材として、数理最適化の流れや考えかたを説明します。シンプルな課題設定なので、数学的な難しさを感じることなくPythonに集中して基礎を学習することができます。  第3章~第7章では、実際に起こりうるさまざまな課題を数理最適化によって解いていきます。学校のクラス編成やサークル活動における車のグループ分けなどの学生にとっても身近な課題や、配布クーポンの効果最大化や効率のよい配送計画の立案などのビジネスにおいてたびたびぶつかる課題などを解いていくことで、手順や注意点、効率のよい方法などが学べます。 はじめに/目次 第Ⅰ部 数理最適化チュートリアル  第1章 数理モデルとは   1.1 数理モデルの最も簡単な例   1.2 モデル   1.3 数理モデル   1.4 数理最適化モデル   第1章のまとめ  第2章 Python数理最適化チュートリアル   2.1 連立一次方程式をPythonの数理最適化ライブラリで解く   2.2 線形計画問題をPythonの数理最適化ライブラリで解く   2.3 規模の大きな数理最適化問題をPythonの数理最適化ライブラリで解く   第2章のまとめ 第Ⅱ部 数理最適化のケーススタディ  第3章 学校のクラス編成   3.1 導入   3.2 課題整理   3.3 数理モデリングと実装   3.4 数理モデルの検証   第3章のまとめ  第4章 割引クーポンキャンペーンの効果最大化   4.1 導入   4.2 課題整理   4.3 データ理解   4.4 数理モデリングと実装   4.5 結果の評価   第4章のまとめ  第5章 最小コストで行う輸送車両の配送計画   5.1 導入   5.2 課題整理   5.3 数理モデリング   5.4 実装と数値実験   第5章のまとめ  第6章 数理最適化APIとWebアプリケーションの開発   6.1 導入   6.2 数理モデリングと実装   6.3 最適化 API を作る   6.4 Webアプリケーションを作る   第6章のまとめ  第7章 商品推薦のため興味のスコアリング   7.1 導入   7.2 課題整理   7.3 データ分析   7.4 数理モデリングと実装   7.5 数理モデルの検証   7.6 まとめ  Appendix メソッド・関数早見表  索引
  • 入門 情報処理 ―データサイエンス、AIを学ぶための基礎―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 データサイエンス・AIを学ぶ前に読んでおきたい教科書 前版発行後のソフトウェア周りの進展にあわせて内容を見直すとともに今後重要度が増していくであろうデータサイエンス、AI寄りのテクニカルな内容を増強して改訂するものです。情報科学を扱ううえでの基本的なリテラシーやコンピュータサイエンスの基礎、Word、PowerPoint、Excelの操作の基本、Excelによる統計処理の基礎などを文理問わず学部学部生にわかりやすく解説する教科書です。 1章 情報社会とビジネス  1.1 情報社会とは  1.2 プライバシーと個人情報  1.3 ユビキタス社会  1.4 IoT  1.5 Web2.0  1.6 人工知能  1.7 人工知能の応用 2章 コンピュータネットワーク  2.1 コンピュータネットワークとは  2.2 ネットワークの形態  2.3 ネットワークの構成  2.4 インターネット  2.5 有線接続手段  2.6 無線接続手段  2.7 プロトコル  2.8 ネットワークセキュリティ  2.9 パーソナルセキュリティ  2.10 暗号化 3章 コンピュータシステム(ハードウェア)  3.1 コンピュータの歴史  3.2 コンピュータの種類  3.3 コンピュータの機能  3.4 コンピュータの構成要素  3.5 パソコンの内部構成  3.6 記憶装置  3.7 演算装置 4章 コンピュータの動作原理  4.1 演算処理の原理  4.2 論理素子の歴史  4.3 論理素子の動作原理  4.4 論理回路  4.5 基 数  4.6 2進数と10進数の変換  4.7 桁数の多い足し算  4.8 引き算  4.9 掛け算・割り算  4.10 数学関数 5章 情報量  5.1 ディジタルとアナログ  5.2 情報量  5.3 情報量の単位  5.4 英文字の情報量  5.5 日本語の情報量  5.6 文字コード  5.7 音声の情報量  5.8 静止画像の情報量  5.9 動画像の情報量  5.10 通信の情報量  5.11 情報圧縮  5.12 誤り検出・訂正 6章 ソフトウェア  6.1 オペレーティングシステム(OS)   6.1.1 オペレーティングシステムとは   6.1.2 OSの種類   6.1.3 OSの機能  6.2 プログラム   6.2.1 プログラミング言語とは   6.2.2 プログラムの内部動作   6.2.3 高級言語の基本処理  6.3 データベース   6.3.1 データベース理論   6.3.2 データベースの表現法   6.3.3 関係的表現のデータ操作 7章 人工知能のアルゴリズム  7.1 学 習  7.2 教師あり学習の代表的な手法  7.3 教師なし学習の代表的な手法  7.4 深層学習  7.5 手法の評価 8章 メディアリテラシー  8.1 メディアの定義  8.2 メディアリテラシーの必要性  8.3 メール  8.4 Twitter  8.5 Facebook  8.6 LINE  8.7 Instagram 9章 ビジネス文書の基礎(Word)  9.1 画面構成  9.2 文書全体の設定  9.3 文章の編集と保存/印刷  9.4 表の作成  9.5 オブジェクトの配置 10章 ビジネスプレゼンの基礎(Power Point)  10.1 画面構成  10.2 スライドのデザイン  10.3 画面切り替え効果  10.4 アニメーション  10.5 リハーサル  10.6 スライドショーの実行 11章 データ処理の実践  11.1 Excel操作の基本  11.2 グラフ作成   11.2.1 折れ線グラフ   11.2.2 複合グラフ  11.3 数式の計算   11.3.1 複利計算   11.3.2 損益分岐点   11.3.3 共有地の悲劇  11.4 帳票の作成   11.4.1 見積書   11.4.2 確定申告書  11.5 データ集計   11.5.1 データの分類   11.5.2 フィルター   11.5.3 検索表   11.5.4 データベース関数   11.5.5 クロス集計  11.6 統計処理   11.6.1 ヒストグラム   11.6.2 偏差値   11.6.3 相関分析   11.6.4 t検定   11.6.5 カイ2乗検定 索   引
  • DXがわかる本 動き出す金融・流通・公共、大変革の時代へ
    NEW
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ポストコロナ時代、企業はどうあるべきか?生き残りにはDXによる変革が一段と重要に――。 ポストコロナ時代、企業の在り方が問われる時代になった。本書では、単なる概論にとどまらず、金融、公共、流通といった業界を中心にDXの最新動向を追いかける。さらにデジタル庁のトップ、日本を代表する大手金融機関トップのインタビューを含め、ほかでは読めない独自コンテンツを満載した1冊。 ■総合解説 ポストコロナ、DXはこう進む ■金融DX最新動向 地銀の反転攻勢 東京海上、正攻法のDX インタビュー 東京海上ホールディングス社長 小宮暁氏 勘定系の新常態 インタビュー SBIホールディングス社長 北尾吉孝氏 「eKYC」急拡大/岐路の全銀システム/CAFISの葛藤 求められる競争原理 迷走、給与デジタル払い 賛否拮抗で解禁見えず ほか ■公共DX最新動向 激変する行政システム/デジタル庁 その理想と課題 役所・銀行・薬局 マイナカード利用に挑む/デジタル庁の試金石 ワクチン接種DX 政府テレワークの今 拒むのは技術にあらず ほか ■流通DX最新動向 クルマも化粧品も 「ノールック商売」台頭 デジタル直販「D2C」 最新EC誰でも手軽に 物流、再発明 ほか ■DXコラム システムの保守運用体制が瓦解 他人事ではない、みずほの惨事 量子コンピューターとメタバース IT産業と社会を変える技術はこれ 2022年に日本のDXの真価を問う 「地獄の沙汰」が意味するもの 日本のDXを阻む規制を見直す デジタル臨調への期待と不安 公取委がIT業界の暗部を調査 ESGで「見ぬふり」は許されず 岸田新政権
  • 図解即戦力 Amazon Web Servicesのしくみと技術がこれ1冊でしっかりわかる教科書
    3.9
    Amazon Web Services(AWS)のしくみや関連技術についてわかりやすく解説する図解本です。エンジニア1年生、IT業界などへの転職・就職を目指す人が、AWS関連の用語、しくみ、クラウドとネットワークの基礎技術などを一通り学ぶことのできる、1冊目の入門書としてふさわしい内容を目指します。本書では、クラウドやネットワークの基礎から解説し、AWSのサーバーサービス、ストレージサービス、ネットワークサービス、データベースサービスについて具体的なサービス名を挙げながら初心者向けにわかりやすく紹介します。今までのAWS解説書では用語がわからず難しかったという人も本書なら安心して学ぶことができます。

    試し読み

    フォロー
  • 図解即戦力 要件定義のセオリーと実践方法がこれ1冊でしっかりわかる教科書
    4.4
    システム開発における最初の関門である「要件定義」を、豊富なイラストや表、具体例を用いてわかりやすく解説しています。現場に立つうえでエンジニアが身につけておくべき知識が満載の一冊です。
  • 図解即戦力 機械学習&ディープラーニングのしくみと技術がこれ1冊でしっかりわかる教科書
    4.0
    機械学習・ディープラーニングについて学ぶための、図解形式の解説書です。エンジニア1年生、機械学習関連企業への就職・転職を考えている人が、機械学習・ディープラーニングの基本と関連する技術、しくみ、開発の基礎知識などを一通り学ぶことができます。
  • 機械学習スタートアップシリーズ ベイズ推論による機械学習入門
    5.0
    最短経路で平易に理解できる、今までにない入門書! ベイズ主義機械学習(ベイズ学習)の基本原理にのっとり、「モデルの構築→推論の導出」という一貫した手順でアルゴリズムの作り方を解説。どこまでも分かりやすい!
  • わかりやすいパターン認識(第2版)
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 パターン認識の決定版教科書、待望の改訂2版! 本書は1998年刊行の『わかりやすいパターン認識』の改訂版です。パターン認識を初めて学ぶ読者をおもな対象として、扱うテーマを基本的な項目にしぼり、それらを重点的かつ詳細に解説しました。  改訂にあたっては、具体例・実験例をもっと増やしてほしいという初版に与えられた要望に答え、補足・実験例、演習問題を加えました。演習問題の詳細な解答はオーム社のホームページに掲載されています。初版発行から20年の間に開発・提案された新しい手法の解説ではなく、基本的な内容を充実させ、より使いやすい書籍となるように改訂いたしました。 第1章 パターン認識とは 第2章 学習と識別関数 第3章 誤差評価に基づく学習 第4章 識別部の設計 第5章 特徴の評価とベイズ誤り確率 第6章 特徴空間の変換 第7章 部分空間法 第8章 学習アルゴリズムの一般化 第9章 学習アルゴリズムとベイズ決定則
  • 人工知能とは
    値引きあり
    3.8
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 人工知能って、いったい何ですか? 人工知能学会の歴代会長を含む人工知能研究の権威が答えます! ! 今話題の深層学習(ディープラーニング)で注目されている機械学習など、人工知能分野で最先端の研究を行う研究者13人が、人工知能学会誌に連載したものを大幅に加筆修正した。研究者として自ら「人工知能とは何か」の再定義を行い、それをふまえて、各研究について一般読者に伝わるようにシッカリと解説を行っている。人工知能に興味のある読者はもちろん、知能、認知、脳科学、人間、哲学などに関心のある読者は必読必携である。13人の紙面上でのキャッチボールが示唆に富んでおり、読んでいてとにかく面白い! !大変好評を得ている『深層学習 Deep Learning 』に続く、人工知能学会監修企画!
  • マインドインタラクション AI 学者が考える「ココロ」のエージェント
    値引きあり
    4.3
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 第3次AIブームが起こり、現在はAIの活用に関心が移りつつある。著者らはHAI(ヒューマンエージェントインタラクション)と呼ばれる、擬人化エージェント(ロボットやAI)と人間の相互作用を研究しており、本書ではこのHAI研究を通じてAIにココロを持たせる(持っているように思わせる)デザインとその効果をわかりやすく解説している。  マインドインタラクションは著者の造語で、人と人工物が持つココロの間でやり取りされる情報、と定義されている。1章でマインドインタラクションを概説し、2章と3章では身近な諸問題—生活環境の不満や課題、対人関係のストレスやトラブル—などを、擬人化エージェントを使って改善・効率化する事例を述べている。  社会科学、認知心理学、社会心理学、哲学などの幅広い知識を用いて説明しているものの、平易な本文かつ会話調の脚注を組み合わせて、一般的なビジネス書と同列で読める内容となっている。
  • データ分析の力 因果関係に迫る思考法
    値引きあり
    3.9
    本書では「広告が売り上げに影響したのか?」「ある政策を行ったことが本当に良い影響をもたらしたのか?」といった、因果関係分析に焦点を当てたデータ分析の入門を展開していきます。なぜ因果関係に焦点を当てるかというと、因果関係を見極めることは、ビジネスや政策における様々な現場で非常に重要となるためです。また、この「因果関係の考え方」について、数式を使わず、具体例とビジュアルな描写を用いて解説していきます。
  • データベース初心者のためのPostgreSQL教室
    -
    本書はデータベース初心者およびPostgreSQL初心者向けの入門書です。データベースとは何か?からPostgreSQLのインストール、SQLの実行、トランザクションについて、レプリケーション、バックアップまでを解説しています。

    試し読み

    フォロー
  • AI事典 初版復刻版
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 「AI黎明期」の伝説の事典、待望の復刻!! 本復刻版は、1988年にUPU社から刊行された初版『AI事典』(ISBN13:978-4946432064 ISBN10:494643206X)を底本とする電子書籍である。初版編集委員会より初版復刊の要請を受け、近代科学社の創立60周年記念事業の一つとして発行する。2003年に共立出版から刊行された『AI事典 第2版』、さらに2019年に近代科学社から刊行された『AI事典 第3版』とあわせた3点の『AI事典』を通観することで、AIの誕生から現在に至る研究の推移や各時代における興味・関心の高いテーマをうかがい知ることができる。
  • IoTの全てを網羅した決定版 IoTの教科書
    4.0
    IoTを知らずにこれからのビジネスはできない 「IoT」の全てを網羅した決定版! 日本だけではなく世界が「IoT(Internet of Things、もののインターネット)」の時代に突入しつつあります。IoTの時代には、身の回りのあらゆるものがセンサーや制御装置を介してインターネットにつながり、データを集める。こうして集めたビッグデータを人工知能(AI)を使って分析し、効率や性能を高めます。さらには、新たなサービスを生み出し、これまでにないビジネスモデルを構築する──。IoTは「第4次産業革命」を起こし、既存のビジネスの世界を激変させるとまで言われています。 こうしたIoTの時代には、全てのビジネスパーソンにIoTの基礎的な知識やスキルが必須となります。あらゆるビジネスがIoTをベースに動くため、IoTを知らなければ仕事ができず、時代に取り残される可能性すらあるのです。一方で、IoTという言葉はよく聞くものの、内容が複雑でよく分からないという人が多いというのも現実です。 本書は「IoT」とは何かについて、基礎から体系的に学べる唯一の書です。IoT分野で使われる用語を網羅し、定義はもちろん、図版や事例を多用しつつ分かりやすく解説しました。 第1章から読んで体系的に学ぶことはもちろん、知りたいことがあったときに参照するという使い方もできます。検定試験「IoT検定」の公式本でもあります。 これから本格化するIoT時代を勝ち残りたいビジネスパーソンにとって、決定版となり得る1冊です。
  • IT Text(一般教育シリーズ)  一般情報教育
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 ●AI・データサイエンス時代に対応した、新しい一般情報教育の標準テキスト ●これからのカリキュラムに対応して、情報基礎からデータサイエンスまでを網羅 本書は、情報処理学会一般情報教育委員会で編纂した、これからの一般情報教育に対応した標準テキストです。情報ネットワークや情報機器の基礎知識から、プログラミングの考え方、情報倫理、データサイエンス等、社会生活で不可欠な教養ともいえる知識を幅広く網羅します。 半期2単位の授業で使用することを前提に、内容をコンパクトに、かつわかりやすく構成しています。各大学・高専で一般情報教育の見直しが行われている中で、まさに最適の教科書としてご利用いただけます。 第1部 情報リテラシー 第1章 情報とコミュニケーション 第2章 情報倫理 第3章 社会と情報システム 第4章 情報ネットワーク 第2部 コンピュータとネットワーク 第5章 情報セキュリティ 第6章 情報のデジタル化 第7章 コンピューティングの要素と構成 第8章 アルゴリズムとプログラミング 第3部 データサイエンスの基礎 第9章 データベースとデータモデリング 第10章 モデル化とシミュレーション 第11章 データ科学と人工知能(AI) 参考文献
  • IT Text  情報セキュリティ(改訂2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 長年親しまれてきた『IT Text 情報セキュリティ』が待望の改訂! 情報セキュリティの最新の技術や標準化の動向、情報セキュリティにかかわる社会動向を反映 長年多くの大学・企業で採用されてきた『IT Text 情報セキュリティ』を、内容をアップデートし改訂2版として発行するものです。 初版の発行以降、暗号技術をはじめとして多くの技術が更新され、またセキュリティに対する関心の高まりや法令の整備など社会事情も大きく変化しました。そこで本書では、標準化などの最新動向や、量子コンピュータ、暗号資産、ブロックチェーンなどの最新技術に触れるとともに古い記述を改め、現代の情報セキュリティ技術を幅広く学ぶことのできる構成としました。また、情報倫理に関する記述を全面的に改め、初版発行後の社会動向やハクティビズムなど、情報技術者が身につけるべき知識を盛り込みました。 情報セキュリティの全分野を体系的に学習できる教科書としてお薦めの一冊です。 第1章 情報セキュリティ 第2章 共通鍵暗号 第3章 公開鍵暗号・ディジタル署名の基礎理論 第4章 公開鍵暗号 第5章 ディジタル書名 第6章 だ円曲線記号 第7章 暗号プロトコル 第8章 ゼロ知識証明と社会システムへの応用 第9章 ネットワークセキュリティ 第10章 インターネットセキュリティ 第11章 不正アクセス 第12章 情報ハイディング 第13章 バイオメトリクス 第14章 セキュリティ評価 第15章 情報セキュリティにおける倫理問題
  • ITエンジニアのための体感してわかるデザイン思考
    -
    要求仕様ゼロから価値を生み出す! IT現場の上流工程が変わる! ITを使って新しいサービスやビジネスを生み出したり、既存のビジネスの仕組みを変えたりする、いわゆる「デジタルシフト」のニーズが急速に高まっています。そしてデジタルシフトの実践に当たって、「デザイン思考」を情報システムの開発に活用する動きが広がりつつあります。 デザイン思考は、課題を発見し、それを解決する新しいサービスやビジネスを創り出すための考え方のこと。ユーザー自身がどのようなシステムを開発すべきか分からない、要求仕様が何もないところから開発を始めなければならないようなときに、デザイン思考が役立ちます。 本書は、ITエンジニアがデザイン思考をシステム開発で活用するときに必携の一冊です。デザイン思考を全く知らないというITエンジニアはもちろん、デザイン思考の勉強を始めたが難解で今ひとつピンとこないというITエンジニアにも、理解しやすく説明しています。デザイン思考は何となく理解したが、システム開発でどのように活用すればよいか分からないというITエンジニアにも、現場で役立つ実践的な情報が満載です。 第1章「デザイン思考の基本を学ぶ」では、デザイン思考における一般的なプロセスについて、その基本を解説します。実践的なイメージを想像しやすいように、架空のデザイン思考活用プロジェクトのストーリーを挿入しました。 第2章「現場で使える実践ノウハウ」では、デザイン思考を活用したプロジェクトでつまずきやすいポイントとそれを乗り越えるための処方箋をまとめました。 ITで新たな価値を生み出すために、ぜひ本書をご活用ください。
  • ITエンジニアのためのUXデザイン実践ノウハウ
    4.0
    企業のデジタルトランスフォーメーション(DX)への取り組みが加速する中、システムやサービスにおけるUX(ユーザーエクスペリエンス)の重要性は高まっています。システム開発において、質の高いUXデザインが強く求められるようになっているのです。  しかしシステム開発を手掛けるITエンジニアの中には、UXデザインを見栄えを良くすることだと限定的に捉えている人が少なからずいます。ユーザーにとって価値のある使いやすいシステムをつくるには、見栄え以外にも改善すべき項目がたくさんあります。  またUXデザインに取り組みたくても、その方法がわからないという声も少なくありません。本書は、ITエンジニアがシステム開発の中でより良いUXデザインを実現するための知識やノウハウを、基本と実践の2部構成で解説した一冊です。  基本編となる第1章では、UXデザインのプロセスをシステム開発と同様に上流から「戦略」「要件」「構造」「骨格」「表層」の5 つのフェーズに分け、各フェーズで取り組むことや進め方、よく利用されるメソッドやつまずきポイントなどをわかりやすく解説します。  実践編となる第2章では、基本編で紹介した5つのフェーズの実践に必要な体制や仕組み、実際に取り組んだ事例などを、具体的な勘どころも交えて解説しています。UXデザインに取り組んでいくうえで組織的に準備しておきたいことや、UXデザインの活用方法など、実践を支えるヒントや心構えなどにも触れています。  著者が実際のシステム開発現場で積み重ねた豊富な経験を基に、UXデザインの実践的なノウハウをITエンジニアの目線で整理し、解説しています。ぜひご活用ください。
  • IT Text  情報システムの分析と設計
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 情報システムの開発を担うために必要な実際の知識をわかりやすく解説したテキスト 本書は、これから情報システムの開発を担う方々を対象に、実際に必要となる知識をわかりやすく解説したテキストです。 「情報システムの開発とは何か」から始め、企業情報システムの開発の基礎とその品質の維持と新技術への対応、IE、アジャイル、UML、データフロー図、エンティティリレーションシップ図、ペトリネットによるシステム記述、IDEFといった基本をひととおり学ぶことができます。 ICT分野の学生、若手エンジニアにとって必読の書です。 ※本書は『IT Text ソフトウェア工学演習』の改題改訂書籍です。 第1章 情報システムの開発  1.1 ソフトウェア指向から情報システム指向へ  1.2 情報システムを学ぶ人たちへ  1.3 情報システム  1.4 情報システムの開発  1.5 要求分析と設計  1.6 ソフトウェア工学  1.7 開発過程のモデル 第2章 企業情報システムの開発  2.1 企業情報システムとは  2.2 経営戦略とシステム化計画  2.3 モデリングによる情報システム開発 第3章 企業情報システムの開発(品質と新技術への対応)  3.1 高品質システム開発  3.2 デジタルビジネス 第4章 IE  4.1 IEの基本的な考え方  4.2 モデル構築の基本要素  4.3 教務情報システムの分析  4.4 開発方法論としての補考 第5章 アジャイル開発  5.1 要求の不確実性と仮説検証  5.2 アジャイル要求  5.3 アジャイル開発  5.4 その他の手法、フレームワーク、テクニック 第6章 UMLによるシステム記述  6.1 UMLの概要  6.2 ユースケース図  6.3 クラス図  6.4 オブジェクト図  6.5 シーケンス図  6.6 コミュニケーション図  6.7 状態マシン図  6.8 アクティビティ図  6.9 コンポーネント図  6.10 配置図 第7章 データフロー図、ER図、ペトリネットによるシステム記述  7.1 データフロー図  7.2 ER図  7.3 ペトリネット 第8章 IDEF によるシステム記述  8.1 IDEF0の概要  8.2 IDEF0によるセミナ情報システムの記述例  8.3 IDEF0による医療情報システムの記述例  8.4 IDEF3の概要  8.5 IDEF3によるセミナ情報システムの記述例  8.6 IDEF3による医療情報システムの記述例 参考文献
  • ITの基礎
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はコンピュータを初めて本格的に学ぶ学生を対象にしたものである。学ぶ範囲は「ITパスポート試験」のIT技術の内容とレベルに合わせある。また、上記の特徴に加え、「ITパスポート試験」の過去問題を最後に載せてある。学習内容の確認や資格取得の試験対策にも役立つ。
  • アイデア実現のための Raspberry Piデザインパターン 電子回路からMathematicaによるArduinoコラボまで
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Raspberry Piでアイデアを自由自在に実現するためのデザインパターンを整理。 本書は、Raspberry Piを使ってアイデアを自由自在に実現するための、デザインパターンを整理した書籍です。 Raspberry Piの入門書を読んだだけでは、思いついたアイデアをもとに、実際に動く電子工作を製作することはほぼ不可能です。本書では、アイデア実現に必要なソフトウェア、ハードウェア、部品の集め方、配線などのノウハウを、パターンメイドの方法でわかりやすく紹介しています。 ハードウェアを買い集めて、実際にハードウェアとソフトウェアを組んでみようと思い立った際に、ぜひ一読ください。 ステップ1 とりあえずRaspberry Piを動かしてみる ステップ2 何かをRaspberry Piにつなげるしくみ ステップ3 つなげた何かを動かす準備 ステップ4 手先を動かすことが必要 ステップ5 点灯させて押してみる ステップ6 Arduinoとコラボする ステップ7 動きを計ってみる ステップ8 何かを表示してみる ステップ9 何かを動かしてみる ステップ10 電源は大事 ステップ11 Node.jsとコラボする ステップ12 Mathematicaの使いこなし ステップ13 手順も技術の1つ
  • アウトルック[最強]時短仕事術 ~メール処理をスグに片付けるテクニック
    3.0
    「毎日,メール処理だけで時間が過ぎていく……」 「ファイルの添付忘れで,取引先の信用が……」 「なんとなく,アウトルックは使いにくい……」 毎日のメールのやり取りで,こんな悩みはありませんか? 本書では,アウトルックを使った「効率良い&ミスしないメール処理」のテクニックをわかりやすく解説。メール仕事の基本はもちろん,署名の扱い・フォルダ分け・定型文自動入力・ファイル添付・連絡先・メール検索まで,アウトルックを使ってスマートで快適なメール処理のテクニックが身につきます。さらに,アウトルックのスケジュールやカレンダー機能やDropboxなどの他サービスと連携テクニックも紹介。これ1冊で,アウトルックの“最強時短仕事術”をマスターしましょう。
  • 浅田稔のAI研究道 人工知能はココロを持てるか
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ビッグデータやIoTなども巻き込んで発展し続ける人工知能研究は今後、社会にどう受け入れられていくか? その鍵について著者は、社会システムを構成する人工物に「心的機能」が備わることと説き、それを「ココロの創成課題」と呼ぶ。 本書は、その課題の実現を目指して研究を行ってきた著者の人工知能研究の足跡(動画像処理・強化学習・身体性・情動・共感)をたどりながら、ロボカップ研究(認知発達ロボティクス)から導き出された認知の問題意識などの重要性と成果、そして課題を解説する。各分野のキーパーソンとの対話やその知見なども紹介。
  • アジャイルイントロダクション Agile開発の光と影
    値引きあり
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 アジャイル導入のメリット最大化へ!  ソフトウェア工学分野の“大御所”バートランド・メイヤー博士の手による、アジャイル入門書にして具体的な開発手法にまで言及した一冊。アジャイルのプラス面だけでなく、マイナス面にも切り込んで紹介している点が本書の特徴である。  アジャイルができること・できないこと、世間一般のアジャイルへの誤解などを明らかにすることで、アジャイル導入のメリットの最大化を目指す。各章ともコンパクトにまとめられており、初学者でも無理なく読み進められる一方、開発現場で頻出する諸問題にも詳しいため、現場レベルでも役立つ。
  • あたらしい脳科学と人工知能の教科書
    3.5
    シンギュラリティ前夜! 脳科学と人工知能の接点がわかる! 【本書の概要】 本書はUdemyで大人気の講座、 『脳科学と人工知能:シンギュラリティ前夜における、人間と機械の接点』 をもとにした書籍です。 脳と人工知能のそれぞれの概要から始まり、 脳の各部位と機能を解説した上で、 人工知能の様々なアルゴリズムとの接点をわかりやすく解説。 脳と人工知能の、類似点と相違点を学ぶことができます。 後半の章では「意識の謎」についても解説します。 【シンギュラリティ】 また近年、人工知能の分野では「シンギュラリティ」という概念が注目されています。 シンギュラリティとは指数関数的に高度化する技術や人工知能が未来に人間の知能を凌駕するという概念ですが、 本書を読むことでそうしたシンギュラリティへの洞察力も養うことができます。 【対象読者】 ・人工知能に強い関心があり、人工知能の背景にある天然の「知能」の仕組みについて知りたい方 ・人工知能に関して、技術面以外の知識、特に生物学的側面を知りたいエンジニア ・人工知能の未来と、自身のキャリアを関連付けて考えたいビジネスマン ・素朴に、「ヒトって何?」という疑問のある方 ・知性の本質をアルゴリズムで探究したい方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。 人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • Amazon Web Services 定番業務システム14パターン 設計ガイド
    -
    AWSのサービスはこう組み合わせる! 大事な業務システムの作り方 “定番”ともいえる14パターンの業務システムについて、Amazon Web Servicesのサービスの選び方、組み合わせ方を解説します。業務システムのように複雑な仕組みを構築するには、AWSの特性を十分理解してインフラを設計する必要があります。そうしたAWSを使った業務システム設計の勘所を、パターン別に分かりやすく説明します。 本書はWebシステム、ストレージシステム、データ分析システムといったテーマごとに、AWSのサービスを組み合わせて、特定の要求を満たすシステムを作るための「設計パターン」を解説します。2016年6月発行の「Amazon Web Services 定番業務システム12 パターン設計ガイド」を基に、「マイクロサービスの運用基盤」「AIとIoT」の2パターンを追加し、全体を通して加筆・修正・再構成しました。AWSの最新サービスに対応しています。 基本的なパターンから入り、徐々に応用的なパターンへと深く説明していきます。例えばWebシステムでは、仮想サーバー1台の単純な構成のWebサイトの設計方法から、性能や可用性の要件が厳しい場合の設計パターンまで紹介します。 後半では、仮想サーバーを使わない“クラウドネイティブ”なシステム、AWSをフル活用してアプリケーションの高速開発、オンプレミス環境と連携動作させる“ハイブリッドクラウド”など応用的な設計パターンも解説します。 クラウド初心者からベテランまで、AWSを使ったインフラ設計のあらゆる局面に役立つ一冊です。
  • アルゴリズムイントロダクション 第3版 総合版:世界標準MIT教科書
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 世界標準 MIT 教科書!! 原著は,計算機科学の基礎分野で世界的に著名な4人の専門家がMITでの教育用に著した計算機アルゴリズム論の包括的テキストであり,その第3版.前版までで既にアルゴリズムとデータ構造に関する世界標準教科書としての地位を確立しているが,より良い教科書を目指して再び全面的な記述の見直しがなされ,それを基に新たな章や節の追加なども含めて,大幅な改訂がなされている. 単にアルゴリズムをわかりやすく解説するだけでなく,最終的なアルゴリズム設計に至るまでに,どのような概念が必要で,それがどのように解析に裏打ちされているのかを科学的に詳述している. さらに各節末には練習問題(全957題)が,また章末にも多様なレベルの問題が多数配置されており(全158題),学部や大学院の講義用教科書として,また技術系専門家のハンドブックあるいはアルゴリズム大事典としても活用できる. 本書は,原著の第1~35章,および付録A~Dまでの完訳総合版である.また巻末の索引も圧巻で,和(英)‐英(和)という構成により,「数理用語辞典」としてもまことに有用である.
  • アルゴリズムの基礎とデータ構造:数理とCプログラム
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 アルゴリズムの基礎をしっかり理解!! 基本となる必須のアルゴリズムとデータ構造のみに焦点をあて,丁寧に数理を理解しながら習得できるよう解説.初学者が直感的に把握できるよう,手作業で確認するように工夫してある. すべてのアルゴリズムにC言語によるプログラムを掲載.また,豊富な演習課題と詳細な解答を掲載し,自学自習ができる. しっかりアルゴリズムとデータ構造を理解しようとする読者には必携の書である.
  • ある日突然AIがあなたの会社に
    -
    AIがビジネスの現場を変える! 急激な人工知能(AI)の発展によって、私たちが毎日行っている仕事を、ある日突然AIが行うようになったら。 そのとき、私たちに残される仕事とはどんな仕事なのか、どんな覚悟を持ってこの新しい時代に臨むべきなのか。 誰もがそんなことを考えざるを得ない時が、いよいよやってきたようです。 この本では、そうしたAIと共に暮らし、仕事をせざるを得ない世の中を生きることになった私たちが、どのような知識や意識を持って生きていくべきなのかを解説します。
  • 暗号技術の教科書
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 現代社会で必要不可欠な「暗号」についてやさしく、わかりやすく解説!! 暗号は、情報の秘匿のみならず保護や認証といった目的のための現代生活に欠くことのできないキーテクノロジーです。 今後も応用分野が広がる電子暗号技術はデジタル技術と数学的処理により成り立っていますが、その仕組みを理解するのは難しいものがあります。 本書は、エピソードを交えながら、古典的暗号から電子暗号まで、暗号が現代生活にどのように利用されているか、 意外なところで活躍している暗号や、その仕組みを分かりやすく紹介します。 第1部「黎明期の暗号とその分類」では暗号とは、そして過去の暗号法を分類して紹介。 第2部「近代暗号と暗号機械の誕生」では試行錯誤から生まれた様々な暗号機械の登場と戦後までを振り返ってみた。 また、ここでは過去に利用された多項式暗号の実際の解読方法の例を紹介する。 第3部「エレクトロニクスと暗号技術」ではエレクトロニクスと暗号のかかわりを紹介。 第4部「サイバー時代の暗号技術」では今、主流となっている暗号のアルゴリズムやそれを取り囲む話題などを紹介。 仮想通貨のブロックチェーンやそのベースのひとつハッシュ値、いまや暗号存続の脅威となっている量子コンピュータについてもその仕組みを解説する。
  • 暗号と量子コンピュータ ―耐量子計算機暗号入門―
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 来る量子コンピュータ時代の暗号を徹底解説! 暗号技術は、われわれの生活のさまざまな場面で利用されており、情報化社会の安全基盤として重要性を増しています。たとえば、暗号技術がなければネットショッピングも安心してできませんし、ブロックチェーンを用いた仮想通貨も生まれることはありませんでした。  ですが、現在これらのサービスに用いられている暗号技術は従来型のコンピュータによる計算を前提として開発されています。そのため、近年注目されている量子コンピュータによる異なったアルゴリズムで計算を行うと、現在の暗号は高速に解かれてしまうのではないか、という懸念があります。具体的には、素因数分解を前提としたRSA暗号などは危殆化する状況にあります。  本書は、量子コンピュータが暗号技術に与える影響について多角的な切り口から考察し、読者に、来る量子コンピュータ時代における暗号技術の基礎知識を提供します。読者は、量子コンピュータが与える情報化社会へのインパクトを知るとともに、自身のかかわる情報セキュリティにおいて、今後知っておくべき、対策する必要がある必須の情報を得ることができます。  情報セキュリティに携わる技術者・エキスパートのみならず、暗号や量子コンピュータに興味をもつ一般の方にも向けて、やさしくていねいに解説しています。 1章 社会で利用される暗号技術 2章 暗号の危殆(きたい)化リスク 3章 量子コンピュータについて 4章 量子コンピュータによる暗号解読 5章 ブロックチェーンなど暗号応用技術に対する量子コンピュータの影響 6章 暗号のディレンマ - 設計者と攻撃者の攻防 7章 耐量子計算機暗号とは 8章 耐量子計算機暗号の標準化活動 9章 今後の課題 参考図書 索引
  • アンサンブル法による機械学習:基礎とアルゴリズム
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 機械学習の精度をはるかに高める! アンサンブル学習法は,深層学習に続く次のトレンドとして注目されている。ブースティングやバギングなどの代表的な方法で複数の学習器を訓練し,それらを組み合わせて利用するという,最先端の機械学習法である。単一の学習法に比べてはるかに精度の高いことが知られており,実際に多くの場面で成功を収めている。 本書は,機械学習の分野で世界をリードしているZhi-Hua Zhou著の邦訳である。1章はアンサンブル法の背景となる知識をあつかう。2章から5章は,アンサンブル法の核となる知識をあつかう。5章では最近の情報理論多様性と多様性生成について議論する。6章からは,高度なアンサンブル法について述べる。人工知能,機械学習にたずさわる,研究者,技術者,学生には,必読必携の書である。
  • Rで学ぶデータサイエンス データマイニングの基礎から深層学習まで
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 主要なデータマイニング手法の理論の基礎を学べる!!  データマイニングとは,玉石混淆であるたくさんのデータから必要な情報を読み出す作業です。データマイニングの手法として理解しておく必要があるものには,比較的基本的な知識である回帰分析、主成分分析、判別分析等からクラスタリング、サポートベクターマシン(SVM)、ベイズ推定、ニューラルネットワークなどがあります。最近ではこれらの応用として、深層学習等についても解説します。 第I部 多変量解析 第1章 データマイニング 第2章 回帰分析 第3章 主成分分析 第4章 判別分析 第5章 クラスタリング 第II部 機械学習 第6章 機械学習 第7章 サポートベクターマシン 第8章 ベイジアンネットワーク 第9章 ニューラルネットワーク 第10章 自己組織化マップ 第11章 深層学習 参考文献
  • Rによる多変量解析入門 データ分析の実践と理論
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 多変量解析手法の理論と実践をバランスよく習得できる!  様々な媒体、経路を通じて大規模データが、驚くほど低コストで入手できるようになった現在、多変量解析手法に習熟したデータサイエンティストに対する学術界、ビジネス界からのニーズは非常に高まっており、これに対して大学や企業では、高いデータ解析力を持った人材の育成に注力し始めています。しかし、多くの多変量解析についての学習書は、理論的な説明に終始し、実務場面でどのように利用されているかについて、殆ど配慮がないのが現状です。  そこで本書は、多変量解析手法の理論と実践をバランスよく解説することで、統計が得意ではない大学生や実務者にも利用しやすい構成とし、本書1冊で多変量解析手法を実務に応用できるまで習得できる内容となっています。 第I部 多変量解析の基礎 第1章 多変量解析の基礎を学びたい―R による多変量データの基本的な統計処理 第2章 R によるデータハンドリングを学びたい ―アンケートデータと ID-POS データのハンドリング 第II部 量的変数の説明・予測 第3章 現象を説明・予測する統計モデルを作りたい (1) ―重回帰分析 第4章 現象を説明・予測する統計モデルを作りたい (2) ―階層的重回帰分析 第5章 さまざまな集団から得られたデータを分析したい―マルチレベルモデル 第6章 複雑な仮説を統計モデルとして表したい (1)―パス解析 第III部 心理尺度の分析 第7章 心理尺度を開発したい (1) ―探索的因子分析 第8章 心理尺度を開発したい (2) ―確認的因子分析 第9章 複雑な仮説を統計モデルとして表したい (2) ―潜在変数を伴うパス解析 第IV部 質的変数の説明・予測 第10章 クロス集計表をもっとていねいに分析したい―対数線形モデル 第11章 カテゴリに所属する確率を説明・予測したい―ロジスティック回帰分析 第V部 個体と変数の分類 第12章 似たもの同士にグループ分けしたい―クラスター分析 第13章 質的変数間の連関を視覚化したい―コレスポンデンス分析 第VI部 多変量解析を使いこなす 第14章 データが持つ情報を視覚化したい―パッケージggplot2による描画 第15章 多変量解析を実践で生かしたい―手法の組み合わせ
  • Rによるデータマイニング入門
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、大量データを解析するデータマイニングについて、理論の基礎から解析手法まで、Rを使ったアルゴリズムの例題を交えてていねいに解説します。主な構成は、第1部でRを使ったデータマイニングの簡単な分析と探索的データ解析およびデータの可視化について解説、第2部でデータマイニングの一連の流れについて解説、第3部でRを使った、データマイニング手法をサンプルデータでコードを示して解説、現実のデータマイニング事例を紹介という流れで解説します。
  • Rによるやさしいテキストマイニング [活用事例編]
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 Rによるテキストマイニングを豊富な事例で解説!  本書は、テキストマイニングの初心者に向けて活用事例を解説した入門書です。実務ですぐに応用したい人や、すでにほかの分析ツールを使っている方が参考にできる活用事例も豊富に掲載しています。  また、実際のレポートや、データの収集からテキスト整形などの前処理、分析対象とする単語や品詞の頻度集計、分析対象に合わせた統計手法の選定、分析結果の可視化まで、分析プロジェクトにおける一連の流れを省略せずに解説しました。  読者が実際にRによるテキストマイニングの分析ができるように最大限配慮しています。 はじめに Part I Rによるテキストマイニング 第1章 テキストマイニングの活用 第2章 Rの活用 Part II 日本語テキストマイニングの活用事例 第3章 授業評価アンケートの分析 第4章 オンラインレビューを用いたクチコミ分析 第5章 スクレイピングによる特徴語抽出 第6章 Twitterにおける話題と感情の抽出 第7章 警察白書のトピック分析 第8章 文学作品の著者推定 Part III 英語テキストマイニングの活用事例 第9章 政治演説の言語分析 第10章 文学テキストの類型化 おわりに
  • 一般教養としての人工知能入門
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AIが体系的に学べる。数式なしで! 人工知能(AI)の第3次ブームが来ていると言われて久しいが,ディープラーニングを中心とした機械学習による本格的な社会実装が始まっているのが大きな特徴でもある.2021年度より文・理の区別なく大学初学年からAIに関する教育が実施されることが文科省で決まり,AI技術は本格的な過渡期に突入しようとしている.そこで本書では,文系学生を含めた様々な分野の読者に必須の教科書とするべく,AIの基礎から応用までを体系的に,ほぼ数式なしで解説した.AIと社会とのつながりやAIの限界などについても,これまでの研究の歴史を踏まえて紹介している。
  • Event-B:リファインメント・モデリングに基づく形式手法
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 論理的なバクを発生させない形式手法!!Event-Bは、パリ地下鉄、ニューヨーク地下鉄、バルセロナ地下鉄、ドゴール空港のシャトルの無人運転を成功に導いた、J.R.アブリエル氏が考案した新しい形式仕様言語である。Event-Bは、仕様記述の単位をイベントとし、基礎となる集合論などはBメソッドの考え方を継承する。本書は、Event-Bの入門書である。また実際に利用するための仕様構築統合環境として、RODINプラットホームの利用方法を解説する。具体的に学べるよう図書館の事例や、組込みとして自動車のドアロック・システムを紹介している。形式手法や、形式仕様言語を学ぶ技術者や研究者には最適の書である。
  • 医療AIとディープラーニングシリーズ 2021-2022年版 標準 医用画像のためのディープラーニング-実践編-
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 医用画像におけるディープラーニング(Deep Learning)をまとめた本格的なシリーズ  初版(2019年7月発行)以降の変更点を取り込んだ最新版!  医用画像に人工知能を本格的に導入するためのわかりやすい解説書。 ・TensorFlow+Kerasで行う ・Anaconda上で環境構築する ・データはだれでも入手できるデータを使う を基本的な方針としてまとめました。  少しでもプログラミングができれば、だれでも読み込める内容になっています。 Chapter 1 環境構築 Chapter 2 データの準備/前処理 Chapter 3 Shallow network の利用 Chapter 4 畳み込みニューラルネットワークの利用 Chapter 5 画像の領域分割( U-Net) Chapter 6 動画像のシーン分割と分類 Chapter 7 画像のノイズ除去 Chapter 8 画像の超解像 Chapter 9 画像の特徴抽出 Chapter 10 画像の変換や生成 Chapter 11 評価方法
  • 医療AIの知識と技術がわかる本 事例・法律から画像処理・データセットまで
    4.0
    AI活用がもたらす医療技術の変革! AI技術は病理学や医用工学、解剖学、神経科学、細胞生物学、 脳神経外科や内科学、眼科学、放射線医学、手術医学など、 基礎医学から臨床医学まで幅広い領域に浸透し始めています。 しかし、データの量や用途に応じて技術のラインナップの中から 適切な武器を選ぶ必要があるため、正しく活用するのは一苦労です。 さらにAIを医療機器としてリリースするためには、 資金調達、人材戦略、知財戦略などに抜かりがあってはいけません。 本書では、最新の事例、技術、法律と行政の取組みについて解説しており、 国内において医療AIをより活用できる1冊となっています。 【本書の概要】 ・AIと医療に関わる昨今の社会状況やAIの医療応用に関する法律を解説 ・AIが医療にどのように貢献しているかを、実際に事業化されている事例を中心に紹介 ・医療関連の画像を扱う技術や、電子カルテなど医療関連の自然言語や数値などの系列データを扱う技術など、 開発に必要な技術を紹介 ・医療AIの開発に使われる有名な公開データと提供元をリストアップし、データを扱う心構え、 標準的な開発の流れまで踏み込む ・医師かつ起業家の視点から、医療AIの事業化において役立つ情報が満載 ・韓国の医療AIベンチャーであるVUNO社とのインタビューと、日本が学ぶべき事柄を考察 【本書の読者層】 ・医療AIの開発に携わるエンジニア ・基礎知識として医療AIの基本事項を押さえておきたいエンジニア ・医療AIハード・ソフトウエアメーカやベンダーの企画、営業担当 ・医師 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • 医療従事者のための情報リテラシー第2版
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 電子カルテの普及など、情報技術を活用した今後の望ましい医療の実現に向け、医療従事者を取り巻く環境は大きく変化しており、「情報」にかかわらずにいることはできなくなっています。看護・福祉などの医療従事者にとって、情報リテラシーは仕事を始めてからでも必要な重要な能力です。 本書は、医療系に特化した情報リテラシーのテキストで、医療を題材にした例題や演習を取り入れ、医療従事者に必要とされるICTスキルを身につけることができます。第2版では、2015年1月発行の初版をベースに、教育現場の半期15コマの授業に合わせた15Lesson構成に変更しました。また、初版ではOffice 2013/2010対応でしたが、第2版ではOffice 2016/2013対応になっています。
  • Webセキュリティ担当者のための脆弱性診断スタートガイド 上野宣が教える情報漏えいを防ぐ技術
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書はWebアプリケーションの脆弱性をチェックするための解説書です。Webアプリケーションはユーザーの個人情報や商品情報など重要な情報を扱っています。Webアプリケーションの開発者がセキュリティに自信がある場合でも、開発者のちょっとした打ち間違いや、勘違いがあることでWebアプリケーションに進入・改ざんなどが行われこれらの個人情報が悪用される恐れがあります。 本書ではWebアプリケーションの開発後にセキュリティを確認するための脆弱性診断についてまとめています。脆弱性診断を行う際のスタンダードツールとなっているOWASP ZAPとBurp Suiteを使用することで、開発者やセキュリティ担当者がセキュリティに問題がないかを検査することができます。 本書の前半では、Webアプリケーションがどのような仕組みで通信をし、どのようにして脆弱性が起こるのかといった診断に必要なネットワークの知識を学んでいきます。後半では、実際に問題があるBAD STOREというWebアプリケーションデータを使用し、仮想マシン上で実際に手を動かしながら脆弱性診断の手法を学んでいきます。診断の仕方はOWASP ZAPを使用して通信経路などを診断する方法と、手動で検索窓などにパラメータを挿入し診断する方法など様々な手法を解説しています。 著者の上野宣はOWASP ZAPの日本リーダーであり、脆弱性診断の第一人者です。脆弱性診断の手法を身に付けることで、セキュリティを客観的に判断することができますので、Webアプリケーションの開発者だけでなく、経営者の方にもおすすめの1冊です。 ※電子書籍版にはチェックシートは付属していません。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • UPPAALによる性能モデル検証
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 UPPAALは,モデル検査ツールとしては比較的利用が容易ではあるが,実際の開発には多くのハードルがある.本書では,そのようなハードルを乗り越えるために必要な,UPPAALツール,時間オートマトン,検証したい性質を記述するための時間時相論理に関する知識,および実際の開発で検証の対象となるUML設計仕様のUPPAALによるモデル化方法など,具体的事例も交えてノウハウを解説している.
  • 裏側から視るAI 脅威・歴史・倫理
    値引きあり
    3.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 第3次AIブームが到来し、AIが浸透した社会における深刻な課題や問題が取りざたされてきている。中でも2017年にオックスフォード大学から公表された「近未来では人間の仕事の半数がAIで代替される」という話題の影響は強く、AIに仕事を奪われることに警鐘を鳴らす書籍が数多く出版されている。反面、ビジネス面以外の「AIによる不都合な現実」にスポットを当てた類書はまだ少ない。  本書は著者が所属する理研・革新知能総合研究センター 社会における人工知能研究グループの成果をもとに、AIの負の側面の紹介とAI設計・運用における倫理指針を示す構成となっている。第1章ではシンギュラリティ—AIが人間を超える可能性、第2章ではAIに奪われる仕事の範囲、第3章ではAIの発展の歴史、第4章では現状の「弱いAI」がもたらす数々の問題、第5章ではAI倫理を主軸とした社会制度の対応策について解説している。  AIの技術そのものに関する記述は少なく、人間社会におけるAIの影響という観点から執筆されているため、社会学や社会工学分野の読者にも興味を持たれる内容となっている。
  • 『エクサスケールの衝撃』抜粋版 プレ・シンギュラリティ 人工知能とスパコンによる社会的特異点が迫る
    3.8
    2014年末に『エクサスケールの衝撃』を上梓させていただいたとき、世の中では「人工知能・AI」という言葉も「シンギュラリティ」という言葉も、まだそれほどメディアで目にすることはなく、新しい世界と社会の到来に対する感覚は希薄なものでありました。しかし今、まさに時代が大きく変わりつつあり、「エクサスケールの衝撃」に向けて速度を速めて世界が進みつつある状況を鑑みましたときに、これまで以上に多くの方々にその内容を知っていただき、迫る「プレ・シンギュラリティ(前特異点)」の意味や本質を理解していただき、それに対する準備を進めていただきたいと考えるに至りました。本書は、『エクサスケールの衝撃』の内容を約半分に凝縮した抜粋版でありますが、原書の重要箇所を余すところなく盛り込んでおります。ですから、その要点以上の内容を十分にご理解いただけるであろうことをお約束することができます。(「まえがき」より抜粋)

    試し読み

    フォロー
  • Excelで学ぶ進化計算―ExcelによるGAシミュレーション―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 Excelで進化計算が学べる!! 進化論的手法は、生物の進化のメカニズムをまねてデータ構造を変形、合成、選択する工学的手法です。この方法により、最適化問題の解法、人工知能の学習、推論、プログラムの自動合成などに広く応用されるものです。 本書ではGA やGP の基本原理からExcelを用いた実践(Excel のシミュレータ)について解説します。 ExcelシミュレーションはExcel2013/2016対応。 主要目次 まえがき 第I部 進化計算入門 第1章 進化計算の基本的な考え方 第2章 関数の最適化をしてみよう 第3章 GAを使ってみよう 第4章 GAをより複雑な問題に適用しよう 第II部 進化計算の実際的な応用例 第5章 進化計算で巡回セールスマン問題を解いてみよう 第6章 進化計算でスケジューリングしてみよう 第7章 進化計算をデザインに応用しよう 第III部 進化計算の発展 第8章 GAからGPへ 第9章 今後の展望 関連図書 索 引
  • Excelでわかる機械学習 超入門 ―AIのモデルとアルゴリズムがわかる
    3.0
    機械学習とは,コンピュータに学習させる技術を指します。AIの発展とともに,さまざまな手法が登場してきました。このAIのモデルとそのアルゴリズムは種類が多く,AIに関心のある人が学習を始めたとき,困惑する原因となっています。本書では,それらを整理し,わかりやすく解説します。具体例にはExcelを利用するため,難しい前提知識なしで,機械学習のさまざまな手法を体験することができます。どのような手法でAIが実現しているのか知りたい人に最適です。
  • Excelでわかるディープラーニング超入門
    4.3
    本書は,AIに関心はあるがあまり数学が得意でない,多くの社会人や大学生,高校生が持つ「ディープラーニングがどうして動作するの?」という疑問に答える超入門書です。偏微分方程式などの難しい大学レベルの数学抜きに,Excelで見て動かして,ディープラーニングを学べます。図示しやすいパターン認識を題材にし,Excelの確認,数学の復習を織り込みます。数学的に難しいことはExcelに任せるため,計算に自信のない人でも,ディープラーニングを学ぶことができます。本書では,簡単なExcel操作と初等的な数学の知識だけで,ディープラーニングの動作原理を基本から理解できるようになります。
  • Excelでわかるディープラーニング超入門 【RNN・DQN編】
    5.0
    進化発展するディープラーニング。その代表格がRNN(Recurrent Neural Network/再帰型ニューラルネットワーク)とDQN(Deep Q-Network/深層Qネットワーク)です。RNNは自然言語処理の分野で最も注目されるアルゴリズムです。またDQNは強化学習の手法で目覚ましい精度を挙げています。これらはいずれもAI応用の入り口となります。本書は,これらを万人のツールであるExcelを用いて,難しい数学やプログラミングの知識抜きに,動かしながら,目で見てしくみを理解できる画期的な入門書です。難解といわれるRNNとDQNの「最適化」などの難しい計算部分をExcelにまかせ,その動作原理をわかりやすく知ることができます。本書がAI学習のハードルを一気に下げてくれます。
  • Excel VBAで本当に大切なアイデアとテクニックだけ集めました。
    3.0
    「Excel VBAの文法は入門書で学んだ。基礎の知識はひととおりある。でも,実践になると思うようにマクロが書けない……」。Excel VBAは生産性アップや時短を後押ししてくれる強力なツールですが,こんな“困った”を持つ人が少なくありません。「なぜ書けないのか」を知り尽くす著者の大村あつしさんは,知識とアイデアは別のものと指摘します。「いま持っている知識にアイデアとテクニックを加えればマクロを書くスキルは目に見えて上がる。そして,必ず知っておきたいアイデアの数は厳選できる」と。本書は,自動化,高速化から,データベース,ユーザーフォーム,外部ファイルの操作まで,お持ちの知識を活性化して上級者への確かな足がかりを築くことをお助けします。
  • Excel VBA 文法はわかるのにプログラムが書けない人が読む本
    -
    「FOR文やIF文といったステートメントは理解しているし,フォームの作り方,呼び出しなどもわかっている」しかし,「目の前にある業務を効率化するプログラムをどう作ればいいかわからない」。こんな悩みを抱える方を対象に,「プログラム化するためのロジックを考える力を養う」「システム化するためのスキルを習得する」ことを目的とする本です。 コーディングの定石から,汎用化・省力化でよりよいプログラムを作る方法,ユーザに合わせてUIやエラーケースを考慮しながら業務システムとして仕上げる方法まで,数多くの例題を用意し,少しずつレベルを上げながら詳しく解説していきます。

    試し読み

    フォロー
  • エンジニアリング組織論への招待 ~不確実性に向き合う思考と組織のリファクタリング
    4.6
    「コミュニケーションにおける不確実性を減らすには?」「技術的負債を解消する方法とは?」「経営陣とエンジニア間の認識のずれを解消するには?」 エンジニアリングにおける課題を解決する思考の整理方法やメンタリング手法を,さまざまな企業の技術組織アドバイザリーを務めている著者が解説。 若手を戦力として育て上げ,成長する組織を設計・運営するためにおすすめの1冊です。
  • AIアルゴリズムマーケティング 自動化のための機械学習/経済モデル、ベストプラクティス、アーキテクチャ
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 マーケティング自動化の予測モデル、ベストプラクティス、アーキテクチャをまとめた大著! 1・2章では、アルゴリズムマーケティングの概念、ケーススタディ、理論基盤となる機械学習/経済モデルを説明します。3~6章では、「プロモーションと宣伝」「検索」「レコメンデーション」「価格設定と品揃え」といった領域を取り上げ、「顧客と商品のマッチング」「顧客に適した商品の特定」「商品特性の最適化」を考察します。本書は、どのような理論を基に各領域のシステムが実現されるか、総合的に理解できる稀有な一冊です。(本書は『Introduction to Algorithmic Marketing: Artificial Intelligence for Marketing Operations』の翻訳書です。統計学や微積分学などの数学的知識を前提としています)。原著への読者の声―「市場原理を理解して実装しようとする者にとってきわめて有益」「小売業に関わるデータサイエンティストは必読」。推薦の言葉―「本書はマーケティング分野でのデジタル変革を鮮やかに映し出しており、データサイエンスがいかにしてあらゆるマーケティング活動に不可欠な部分になるのかを示している。データ駆動型アプローチとスマートなアルゴリズムによって、従来の労働集約型のマーケティングタスクにディープな自動化がどのようにしてもたらされるのかを詳しく解説している。意思決定は改善されるだけでなく、はるかに高速になる。このことは、加速する一方の競争環境において決定的に重要である。データサイエンティストとマーケティング責任者の必読書である」(Andrey Sebrant, Director of Strategic Marketing, Yandex)。
  • AI後進国 ニッポンが危ない!
    3.7
    AIの開発・活用において日本はもはや“後進国” 巻き返しのカギは若きAIチャレンジャー 「日本のディープラーニング・ビジネスは、米国はもとより 中国の台頭ぶりを見れば、世界で勝てる感じがしない、敗戦に近い。 ただし、人材の育成に取り組み、若い優秀な人材に権限委譲すれば、 様々な産業領域で世界一になれる可能性はある」 ――東京大学大学院特任准教授 松尾豊氏 米国企業はもとよりアリババ集団やテンセントなどの中国企業に比べても、 日本企業がAI活用のビジネスで大きく出遅れているのは紛れもない事実だ。 海外で開催されているAI関連の国際学会への論文採択数などでも、 米国や中国に比べて日本は極端に少ない。 まさにAI後進国ニッポンだが、 それでもAIを駆使して世界を切り拓く挑戦者たちがいる。 「脱出のカギはディープラーニング人材の育成」にあると見込む 松尾特任准教授は、日本ディープラーニング協会を設立し理事長に就任。 教育検定資格を通じて人材育成に乗り出した。 本書では、いま、日本で起こっているAI、中でもディープラーニングを活用した ビジネスの動向をダイナミックに描き、コマツ大橋徹二社長(兼)CEO、 リクルートホールディングス峰岸真澄代表社長兼CEO、経営共創基盤(IGPI) 冨山和彦代表CEOら、優れた経営者へのインタビューから 日本企業が進むべき道を示す。
  • AIジャーナル 未来派知性の総合誌 No.1
    完結
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 日本版AIを標榜しつつ登場した未来派知識の総合誌。その第1号。その内容はこれからも探索していく。ビジネスで急速に加速したAIで何が純粋で何が不純かは判然としない。原石集めから有効な純度と有効な不純物濃度を持たせていくプロセスが開始されるのだろう。AIのイメージは不動でなく、数学者・工学者・ビジネスマンそれぞれのAI認識を見据え、純粋物・異物をも取り込むことによって新たな構造と機能を誕生させる……  今はもうなくなったUPUから1985年から1987年まで隔月で刊行された“幻の雑誌”がデジタルで復活!  AI(Artificial Intelligence =人工知能)を科学と技術との両面から捉える“未来派知性の総合誌”。その第1号(1985年12月発行)。 表紙 目次 AIJ Radical Review  1 アバウトだらけのAI語法  2 人工知能はポルノクラフィーの夢を見るか  3 AIDSとAIとミネルバの梟  4 徐福はどこにいるのか Ahaの瞬間1――箱詰めポールの中を電子が走る……西澤潤一 特集/’85AI総決算 何ができてどんな解題が残ったか  座談会/技術者たちのAI……棟上昭男、森健一、竹内郁雄  アーキテクチャ――逐次処理からどこへいくのか   実機を製作することか基本に……相磯秀夫   データフローマシンの狙い……雨宮真人  画像・音声――シンボル〈言語〉を発見せよ   画像認識の“平均点”を上ける知識工学……木戸出正継   何をさしてAI的というのか……鳥脇順一郎   研究者間の相互交流か重要である……溝口理一郎   本流から目をそらしているのか現状……辻三郎  自然言語理解――意味の理解と場の理解   アリストテレスを祖とする状況意味論……石本新   コンピュータの自然言語は、不自然言語である……岩田誠   '85年は意味処理元年である……田中穂積   籠なみのものを乗用車なみに高める……横井俊夫  ソフトウェア――言語の抽象化と世界のモデル化   人間世界の並列性を表現したい……米澤明憲   Prolog-KABAの背景には……桜川貴司   計算機は人間以外にシンボル操作ができる唯一のもの……中島秀之   ソフトウェア自動生成は、遠い夢ではない……大野豊  ロボティクス――人間の知的行為の実験場   作業の非決定性をいかにカバーするか……吉川弘之   自然環境へ対応するロボット……広瀬茂男   ロボットは自らの存在理由を知らねばならない……佐藤晟  知識表現――頭脳の記述への挑戦   工学分野を超えた知識の解明を……安西祐一郎  数理モデル――いま数理に何が可能か   「情報幾何学」の提案……甘利俊一   問題は科学理論の実存性に溯る……佐藤文隆   計算機科学には計量化の理論か必要……野崎昭弘   ティスプレイに立ち現われる天才の頭脳内イメージ……宇敷重広  生物モデル――現象がモデルを刺激し、モデルが現象を見せる   分子モデリングの研究でガンの発生を捉える。……神沼二真   教師なし学習、自己組織化の生体モテル。……大森隆司   脳の全体的な構造研究の進展を期待。……伊藤正男  エキスパートシステム――市場に出そろった構築用ツール  ワークステーション――本格化するAI用WS市場 ネットワーク化に標準   開発環境重視のDEC戦略……村上憲郎  機械翻訳システム――課題を残しつつも実用化へ   AI技術を取り込んで、新世代のシステムをめざす。……山本武彦  実用エキスパートシステム――集積された専門知識が、組織を変える   製鉄プラントの運営効率化システム 日本鋼管   建設工事災害予知情報システム 大成建設   “ホロン的”AI開発を指向 フジタ工業   金融自由化に向けてのAI戦略 三洋証券   溶接ロボットへの応用を検討 日立造船   感性の復活をめざすAI 大林組  AIビジネスの周辺――フロンティアをめざすAIのニューカマーたち   9週間で580万円――KE養成講座を開設……成井弦   カーネギー・グループ社の開発プロジェクト ほか
  • AI・データ分析モデルのレシピ
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 マーケティングプロジェクトを成功に導く分析プロセスがサクッと学べる!  ビジネスの現場では多くのデータやAIの活用に関する取り組みが行われています。このようなプロジェクトが増える一方で、思うような結果が得られずにプロジェクトを中止せざるを得なかったとの声も聞こえてきます。  そこで本書では、正しく的確にAIを活用したデータ分析を導入できるよう、具体的な活用シーンに示しながら、「要件定義」「分析マスターデータ作成」「基礎集計・可視化」「モデリング」「評価・実装」の分析プロセスにおける知識やテクニックを丁寧に解説します。 Part 1 プロセスの一般論 Part 2 顧客データ × クラスタリング分析モデル Part 3 広告効果データ × 重回帰分析モデル Part 4 キャンペーンデータ × ロジスティック回帰分析モデル Part 5 調査データ × コレスポンデンス分析モデル Part 6 Eコマースデータ × 協調フィルタリング分析モデル Appendix AI開発の成功パターン(EDA)と失敗パターン(LISA)
  • AIの未来をつくる ビヨンド・ビッグデータ利活用術
    4.0
    ビッグデータ。言葉だけが先行し、その活用はなかなか広がっていない。データを使ってしっかりとした効果や成果を出せるまでには至っていない。  この分野での経験豊富なAgoop社長の著者は、ビッグデータを利活用できているのは、民間ではデータ分析の実績がある比較的大きな企業であり、公的には国や政令指定都市のような予算規模が大きく人材の豊富な自治体に限られていると分析する。  ビッグデータという概念やその活用は、けっして末端まで浸透しているとはいえず、ビッグデータが社会実装されて継続的・永続的に活用されている事例は、まだそれほど多くない。  なぜ、ビッグデータを活用できなかったのか。うまく利活用するにはどうすればいいのか。著者はビッグデータを、ビッグデータを超えるビヨンド・ビッグデータとして考え直し、新たな概念としてとらえることを提案する。豊富な事例をもとに解き明かされるビヨンド・ビッグデータの世界を理解できる好著。
  • AIリテラシーの教科書
    5.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AI(人工知能)の知識を正しく理解し、適切に使いこなす能力を伸ばすことを目的とした教科書。「AIの全体像の把握」「基本原理の理解」「活用方法の習得」の3ステップで構成。大学の半期で学べる全14章。文・理を問わず学習できるよう「AI関連用語解説集」も収録。
  • 音楽・動画・ゲームに活用! ソフトシンセ 音作り大全
    4.0
    DTMアプリ(DAW)で使用する音源「ソフトシンセ」。今やソフトシンセは,音楽の音源としてだけでなく,ゲームやムービーの効果音にも利用されており,すべてのメディア制作の現場でなくてはならない存在になっています。本書は,すべてのクリエーターに向けたソフトシンセの使いこなしガイドブックです。前半でソフトシンセの基本概念と使用方法を解説し,後半ではプリセットでは飽き足らない上級者に向けて,必要なサウンドを手にするための音色エディットのテクニックを目的別に解説しています。この1冊を読めば,多種多様なソフトシンセを自在に操れるようになります!
  • オープンソースで作る!RPAシステム開発入門 設計・開発から構築・運用まで
    3.0
    【背景】 近年、RPAをビジネスの現場で積極的に利用しようとする動きが活発です。 RPAとはロボティック・プロセス・オートメーションの略語で、 日常の定型業務をソフトウェアに代行させ、自動化を図ることです。 RPAが注目される理由としては、 ・慢性的な人員不足 ・システムの乱立とつなぎ業務の多さ ・製造業の成功 が背景にあります。 【書籍の概要】 本書は、長年自動化システムについて業務開発を行ってきた著者が、 オープンソースのRPAソフトウェアを組み合わせて、 RPAシステムを構築する手法を解説した書籍です。 RPAシステムで利用するソフトウェアはオープンソース「Sikulix」を利用します。 第1部ではRPAシステム開発の基本について簡単なシステム構築を元に解説します。 第2部では需要の高いRPAモデルケースを元に開発の勘所を中心に解説します。 【対象読者】 システムエンジニア 【Sikulix(シクリ)について】 OpenCV(インテル社が開発・公開したオープンソースの画像解析ライブラリ)を利用した GUIオートメーションツールです。 【著者】 小佐井 宏之(こさい・ひろゆき) 福岡県出身。京都工芸繊維大学同大学院修士課程修了。 まだPCが珍しかった中学の頃、プログラムを独習。 みんなが自由で豊かに暮らす未来を確信していた。あれから30年。 逆に多くの人がPCに時間を奪われている現状はナンセンスだと感じる。 業務完全自動化の恩恵を多くの人に届け、無意味なPC作業から解放し 日本を元気にしたい。株式会社完全自動化研究所 代表取締役社長。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • OpenCVとPythonによる機械学習プログラミング
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 機械学習の知識を深めスキルを強化したい方に ・OpenCV+scikit-learnで機械学習プログラミングを実践マスター ・統計的学習の本質的概念、決定木、サポートベクタマシン、ベイジアンネットワークなど様々なアルゴリズムとOpenCVを組み合わせて使う方法をわかりやすく解説! 1章「機械学習を味見してみよう」 機械学習の分野に属する問題をいくつかのカテゴリに分類し簡単に紹介。Anaconda Pythonの環境を対象として、OpenCVやその他の重要なツールをインストールする方法について説明します。 2章「OpenCVとPythonでデータを操作する」 典型的な機械学習システムにおける処理の流れがどういったものか、データはどこで利用されるのかを説明。学習データと評価データの違いについて説明し、OpenCVとPythonを利用したデータの読込、保存、操作・視覚化の方法についても説明します。 3章「教師あり学習の初歩」 分類や回帰といった中核的な概念を見直すことで、教師あり学習を説明。OpenCVでの単純な機械学習アルゴリズムの実装方法、データの予測方法、モデルの評価方法について学びます。 4章「データ表現と特徴量エンジニアリング」 よく知られている機械学習用データセットがどういったものか、また興味のある情報を生データから抽出する方法について説明します。 5章「医療診断をするための決定木の使用」 OpenCVで決定木を構築する方法について説明し、分類や回帰問題に適用します。 6章「サポートベクタマシンによる歩行者の検出」 サポートベクタマシンをOpenCVで構築し、画像中の歩行者を検出するために適用する方法を説明します。 7章「ベイジアン学習による迷惑メールフィルタの実装」 確率論を紹介し、ベイズ推定を使用して電子メールをスパムかどうか分類する方法を紹介します。 8章「教師なし学習で隠れた構造を発見する」 k-meansクラスタリングや期待値最大化などの教師なし学習アルゴリズムについて説明し、単純なラベルなしデータセットに隠れた構造を抽出する方法を示します。 9章「深層学習を用いた手書き数字分類」 いまホットな深層学習の世界にお連れします。パーセプトロンから始めて多層パーセプトロンに展開し、広大なMNISTデータベースの手書き数字を分類するための深いニューラルネットワーク(Deep Neural Networks; DNN)の構築方法について説明します。 10章「異なるアルゴリズムを組み合わせてアンサンブルを作成する」 個々の学習器の弱点を克服するために、複数のアルゴリズムを効果的に組み合わせてアンサンブルを作成することで、より正確で信頼性の高い予測を実現する方法について説明します。 11章「ハイパーパラメータチューニングと適切なモデルの選択」 さまざまな機械学習アルゴリズムとそのパラメータの組み合わせを比較して、タスクに適したものを選ぶためのモデル選択について紹介します。 12章「仕上げ」 今後の機械学習の問題に対処する方法や、より高度なトピックに関する情報を見つけるための有用なヒントをお伝えします。
  • 【改訂新版】情報倫理 ネット時代のソーシャル・リテラシー
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 イラストや図表が随所に入った、「やさしくわかりやすい、情報倫理の教科書」が新しくなりました。 新版では、これからの時代の課題となる「ビッグデータとAIの倫理」の章を新設。さらに「メディア・リテラシー」「ネット時代のコミュニケーション」「企業と情報倫理」などの既存章もアップデートし、 ネットトラブルに巻き込まれたときの対処法など、ネットを活用する誰もが知っておくべき情報を盛り込みました。 幅広い観点から、情報に関するモラルやルールを学ぶことができる1冊です。
  • 賀茂川コミュニケーション塾――ビブリオバトルから人工知能まで
    4.7
    ビブリオバトルって何?コミュニケーションするロボットは創れる?ビブリオバトルの考案者にして人工知能の研究者が、既存の学問枠組みにとらわれずに、コミュニケーションの新しい視点を伝授。教授と高校生の対話によるライトノベル形式の入門書。
  • 観光情報学入門
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 情報で観光を実学する! 我が国は今日、観光を産業資源として外国人の来訪を積極的に進めようとしている。このような状況の中、観光を情報の切り口から体系的に学び、実学に結びつけるのは急務である。本書はこのような視点から、観光情報学という新たな領域を具体的な事例を数多く例示しながら解説している。観光情報に関心のある読者はもとより観光資源をいかに活用しようかと考えている読者にも最適の書である。
  • 機械学習エンジニアになりたい人のための本 AIを天職にする
    4.0
    機械学習エンジニアになりたい人に 機械学習エンジニアを志望する人が増えています。 採用数も増えており、さまざまな就職・転職サイトで「機械学習エンジニア」の募集がされており、この数は今後さらに増えることが予想できます。 しかし、採用側の話を聞くと、志望する人の大半は求める能力に達していないというミスマッチが発生しています。 これは、「機械学習エンジニア」という仕事が誕生して間もないため、 どのような能力を必要とするのかをエンジニア側が理解していないことに原因があります。 【本書の構成】 本書は「仕事編」と「実務編」の2部構成です。 「仕事編」では、機械学習エンジニアになりたい人向けに、 その仕事内容や必要な知識レベル、なるための勉強法、採用されるための履歴書の書き方などを解説します。 「実務編」では、身の周りのAI技術や実務ノウハウ、各国の機械学習エンジニア事情について解説します。 また、実際に機械学習エンジニアとして働く人やゼロから機械学習の知識を身につけた方々のインタビューも掲載しています。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
  • 機械学習エンジニアのための知財&契約ガイド
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習エンジニアが知らないでは済まされない知財と契約の基礎知識をコンパクトに、わかりやすく整理 本書は、エンジニア・研究者、学生を対象に、知らないでは済まされない機械学習にかかわる知財と契約の基礎知識をコンパクトに、わかりやすくまとめた書籍です。 GoogleやAppleの創業者がエンジニアであり、スタートアップ企業から始まっているように、いまや、そして特に機械学習に関連する分野では、エンジニア自身が知財活動や法務活動に積極的にかかわることが必要不可欠です。いいかえれば、何かことが起こればエンジニア自身が矢面に立たされたり、少なくとも責任の一端をとらされたりすることは避けられません。 本書は、このような背景を踏まえて、機械学習の研究開発に関連してエンジニアが知っておくべき法律的な考え方や知識を、主に実務的な観点を交えつつ、一から丁寧に解説しています。 第1章 AI・データと法的な保護 第2章 契約-当事者のインセンティブのデザイン 第3章 AI・データと特許 第4章 専門家とのコラボレーション 第5章 OSSと知的財産権
  • 機械学習ガイドブック RとPythonを使いこなす
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習を理解し実践するために必要な要素を選抜して解説した、実践的ガイドブック!  本書は、機械学習の入門者から中級者までをおもな対象として、機械学習を理解し実践するために必要なさまざまな要素を選抜して解説した、機械学習のガイドブックです。  機械学習の概要から解説をはじめ、機械学習の歴史と主要なアルゴリズム、機械学習を実践するためのプログラミング言語であるRとPythonそれぞれの説明と連携、機械学習を正しく使いこなすためのさまざまな注意点、Kerasを活用したディープラーニングの実践、そして強化学習の例としてアルファゼロを取り上げています。付録には機械学習の理論的裏付けとなる数学の概要も取り上げています。  入門者の方はまず本書の第1章「機械学習とは何か、どんな働きをするのか」を読み、第5章「さあ機械学習の本質を体験してみよう」の実践を繰り返してみてください。だんだんと機械学習に関する多くのことが見えるようになってきて、中級者への道が開けるでしょう。  中級者の方には前半はやや簡単かもしれませんが、第8章「Kerasを使ったディープラーニングの実践」、第9章「さまざまなゲームの攻略法をゼロから学習するアルファゼロ」の内容が十分に理解できたのであれば、かなりのレベルに達したのだと思います。簡単かもしれない前半部分にも、参考になるさまざまな要素を仕込みました。  機械学習の入門から中級者への道をガイドする1冊となっています。 はじめに 第1章 機械学習とは何か、どんな働きをするのか 第2章 機械学習小史:機械学習ブームの基盤を作った主人公たち 第3章 ぜひ使ってみたい役に立つアルゴリズム 第4章 RとPython 第5章 さあ機械学習の本質を体験してみよう 第6章 機械学習を上手に使いこなすコツ 第7章 RとPythonの連携 第8章 Kerasを使ったディープラーニングの実践 第9章 さまざまなゲームの攻略法をゼロから学習するアルファゼロ 付録A 機械学習の基盤となる数学の概要 A.1 機械学習の数学的基盤となるベクトル空間 A.2 ベクトル空間、ノルム空間、内積空間、ユークリッド空間とその関係 A.3 ドット積、行列、行列積 A.4 さまざまな行列の性質とその演算 A.5 行列と線形写像、固有値、テンソル、カーネル関数と射影 A.6 確率空間、確率変数、確率分布 A.7 統計的推定 A.8 最適化の手法 付録B RとPythonのデータ分析に関連する基本的コマンドの比較 B.1 基本的機能 B.2 ベクトル、行列などの作成と操作および数値計算(NumPy機能の対応) B.3 データフレームの作成・操作など(Pandas機能の対応) おわりに 参考文献とそのガイド
  • 機械学習スタートアップシリーズ これならわかる深層学習入門
    4.5
    機械学習の予備知識がない読者を、研究の最前線までしっかり連れて行く、ひとりでも学べる入門書! 深層学習の理論を初めて学ぶ人はもちろん、今度こそ理解したい人のために。 【甘利俊一先生推薦】 「世の中に人工知能の解説書は多いが、基礎から始め、その仕組みを理論的に明快に説明したのは本書が初めてといってよい」
  • 機械学習と深層学習 Pythonによるシミュレーション
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 『機械学習と深層学習 C言語によるシミュレーション』のPython版登場!!  本書は人工知能研究における機械学習の諸分野をわかりやすく解説し、それらの知識を前提として深層学習とは何かを示します。具体的な処理手続きやプログラム例(Python)を適宜示すことで、これらの技術がどのようなものなのかを理解できるように紹介していきます。 まえがき 第1章 機械学習とは 1.1 機械学習とは 1.1.1 深層学習の成果 1.1.2 学習と機械学習・深層学習 1.1.3 機械学習の分類 1.1.4 深層学習に至る機械学習の歴史 1.2 本書例題プログラムの実行環境について 1.2.1 プログラム実行までの流れ 1.2.2 プログラム実行の実際 第2章 機械学習の基礎 2.1 帰納学習. 2.1.1 演繹的学習と帰納的学習 2.1.2 帰納的学習の例題 ―株価の予想― 2.1.3 帰納学習による株価予想プログラム 2.2 強化学習 2.2.1 強化学習とは 2.2.2 Q学習 強化学習の具体的方法 2.2.3 強化学習の例題設定 迷路抜け知識の学習 2.2.4 強化学習のプログラムによる実現 第3章 群知能と進化的手法 3.1 群知能 3.1.1 粒子群最適化法 3.1.2 蟻コロニー最適化法 3.1.3 蟻コロニー最適化法の実際 3.2 進化的手法 3.2.1 進化的手法とは 3.2.2 遺伝的アルゴリズムによる知識獲得 第4章 ニューラルネット 4.1 ニューラルネットワークの基礎 4.1.1 人工ニューロンのモデル 4.1.2 ニューラルネットと学習 4.1.3 ニューラルネットの種類 4.1.4 人工ニューロンの計算方法 4.1.5 ニューラルネットの計算方法 4.2 .バックプロパゲーションによるニューラルネットの学習 4.2.1 パーセプトロンの学習手続き 4.2.2 バックプロパゲーションの処理手続き 4.2.3 バックプロパゲーションの実際 第5章 深層学習 5.1 深層学習とは 5.1.1 従来のニューラルネットの限界と深層学習のアイデア 5.1.2 畳み込みニューラルネット 5.1.3 自己符号化器を用いる学習手法 5.2 深層学習の実際 5.2.1 畳み込み演算の実現 5.2.2 畳み込みニューラルネットの実現 5.2.3 自己符号化器の実現 付 録 A 荷物の重量と価値を生成するプログラム kpdatagen.py B ナップサック問題を全数探索で解くプログラム direct.py 参考文献 索  引
  • 機械学習をめぐる冒険
    3.8
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 機械学習のしくみをイラストや図解でやさしく学ぼう! 本書は、機械学習に関するさまざまなトピックスを概説する書籍です。人工知能における機械学習の位置づけを説明したのち、機械学習内の分野をマップ化し、マップ内の街(=機械学習内の分野)を旅する形でやさしく解説していきます。 数式や複雑な処理手順は扱わずに、「どんなしくみで、どこで使われていて、どう役に立つのか」という要点をわかりやすく示します。大枠や要点を掴むことを主眼としているため、短時間・効率的に学ぶことができます。機械学習について関心をもっているものの、専門書はハードルが高いと感じている学生やビジネスパーソンにおすすめです。 構成は、はじめに人工知能における機械学習の位置づけや手法の分類を示したうえで、機械学習の個々のトピック……すなわち、k近傍法や決定木などによる分類、進化的計算や群知能による最適化、強化学習、ニューラルネット、深層学習などを説明していきます。 まえがき 目次 はじまり-機械学習の国へ行こう- 第一章 いりぐち-機械学習ってなんだろう?- 機械学習ってなんだろう? AIにできること いきものとコンピューター、それぞれの学びかた コンピューターの学習 機械学習はなにができるの? 「言葉」を認識する 「画像」を認識する  COLUMN 強いAIと弱いAI 第二章 観光案内所-機械学習の種類と仕組み- 機械学習には種類がある 先生に正解を教えてもらおう-教師あり学習- 教師データとラベル  教師あり学習の仕組み 自力で学習を進めよう-教師なし学習- 試行錯誤の経験から学習しよう-強化学習- コラム いろんな機械学習 学習した知識を役立てよう-汎化・タスク・アルゴリズム- 学習のしすぎに注意!-過学習- COLUMN オッカムの剃刀とノーフリーランチ定理 第三章 分類の街-k近傍法と決定木- 並べかたで分類しよう-k近傍法-  一刀両断、スパッと分類!-サポートベクターマシン- ○と×で分類しよう-決定木- 決定木の作りかた たくさんの決定木の森-ランダムフォレスト- COLUMN みにくいアヒルの子定理 第四章 最適化の街-進化的計算と群知能- 最適化ってなんだろう? 進化を模倣してよりよい情報を残そう-進化的計算- いきものの進化の仕組み 進化的計算ってなんだろう? 進化的計算の代表選手、遺伝的アルゴリズム 遺伝的アルゴリズムの仕組み もっと複雑なことをするには-遺伝的プログラミング- 生物の群れの行動から学習しよう-群知能- 蟻みたいに近道を見つけよう -蟻コロニー最適化法- 大勢で答えを探そう-粒子群最適化法- 魚みたいに餌を探そう-AFSA- 第五章 試行錯誤の街-強化学習- 強化学習ってなんだろう? とにかく試行回数を重ねよう-モンテカルロ法- より効率的に試行するには?-Q学習- Q学習で迷路を脱出しよう 第六章 神経回路の街①-ニューラルネット- 神経細胞と神経ネットワーク 神経細胞の模倣-人工ニューロン- 神経ネットワークの模倣-人工ニューラルネットワーク- ニューラルネットの学びかた 視覚のシミュレーション-パーセプトロン- ハイスピードで学ぼう!-バックプロパゲーション- ニューラルネットワークの種類 ①階層型 ニューラルネットワークの種類 ②全結合型と再帰型 「何か」を見つける-認識- 「何か」を動かす-制御- 「何か」を考える-判断- 必ず「何か」を返してくる。……それでいいのかな? 第七章 神経回路の街②-ディープラーニング- ディープラーニングってなんだろう? 人間の「視覚」を真似したニューラルネット これはイヌ? それともネコ?-畳み込みニューラルネットの画像認識- CNNはどうして高性能なんだろう? 時間で変わるデータを分析しよう-リカレントニューラルネットとLSTM- 本物そっくりのニセモノをつくる-敵対的生成ネットワーク- ディープラーニングを自動翻訳に役立てよう 経験から学ぶ深層学習-深層強化学習- 第八章 でぐち-機械学習をはじめよう- 機械学習に使われる言葉-プログラミング言語Python- 機械学習に使われるソフトウェア①-TensorFlowとKeras- 機械学習に使われるソフトウェア②-Caffe、PyTorch、Chainer- おわりに-AIについて学べる参考図書たち-  索引
  • 基礎から学ぶ 人工知能の教科書
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 人工知能の構成技術を網羅的に概観する、やさしい教科書 本書は、人工知能のしくみを一から丁寧に解説する入門書です。 「人工知能とはなにか」という定義からはじまり、機械学習や画像処理といったさまざまな技術のしくみを、できるだけ数式を使わずに平易に説明します。 深層学習が火付け役となった人工知能ブームによって、人工知能は多くの方にとって馴染みのある存在になってきました。しかし、 ・ 機械学習 ・ ニューラルネットワーク ・ 進化的計算 ・ 自然言語処理 ・ 画像認識 などの個別のトピックのみが取り上げられることも多く、人工知能全体の体系はよくわからない、という方も多いのではないでしょうか。 本書では、上述したようなトピックを網羅的に扱い、人工知能を構成する技術の全体像を概観します。できるだけ数式を用いずに、平易に解説するよう心がけました。 業務上AIに関する知識が必要になった社会人や、情報系の学部・学科に所属する大学生はもちろん、人工知能に興味のある高校生にも読んでいただける内容です。 なお、各章の最後には、Pythonを使った演習を設けています。 エンジニアの方や、エンジニアを志す学生の方は、ぜひ演習問題にも取り組んでみてください。 第1章 人工知能とは 第2章 人工知能研究の歴史 第3章 学習 第4章 知識表現と推論 第5章 ニューラルネットワーク 第6章 深層学習 第7章 進化的計算と群知能 第8章 自然言語処理 第9章 画像認識 第10章 エージェントと強化学習 第11章 人工知能とゲーム 第12章 人工知能はどこに向かうのか
  • 基礎からわかる時系列分析―Rで実践するカルマンフィルタ・MCMC・粒子フィルタ―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 時系列データとは気温や株価のように時間順に得られる系列データを指します。時系列データの分析方法にはさまざまありますが、本書では確定的な方法と確率的な方法を解説します。確定的な方法については移動平均法に基づく方法、確率的な方法については、状態空間モデルに基づく方法を取り上げ、これらの解説と合わせてどのようにコードに落とし込むかについても丁寧に解説します。初めて時系列分析を試みる方はもちろん、応用的な手法についても取り上げているのですでに時系列分析に携わっている方にも興味を持っていただける内容になっています。
  • 基礎情報学 : 生命から社会へ
    4.4
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 既存の学問分野をIT利用を前提に並列的につなぐのではなく、情報とメディアを統一的・体系的に考察することで情報から出発する思考の本質的な意義と限界線を探る基礎情報学。
  • 基本を学ぶ  コンピュータ概論 (改訂2版)
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 基本事項をコンパクトにまとめ,親切・丁寧に解説したコンピュータの基礎の教科書!現場のニーズに応じて,さらに内容をブラッシュアップしました.  基本事項をコンパクトにまとめ,親切・丁寧に解説したコンピュータの基礎の教科書です。今回の改訂で現場のニーズに応じて,さらに内容をブラッシュアップしました.  大学1,2年生向けの教科書として適切な内容として,ハードウェア,ソフトウェアの両面からコンピュータやネットワークの内部構成や動作原理について,基礎的かつ重要な事項に的をしぼって解説しています. 1章 コンピュータシステム  1 コンピュータの歴史  2 コンピュータの基本構成と動作原理  3 現代社会におけるさまざまなコンピュータ  練習問題 2章 情報の表現  1 2進符号  2 2進数による数の表記法  3 数値データの表現  4 文字データの表現  5 音声・画像データの表現  練習問題 3章 論理回路とCPU  1 ブール代数と論理回路  2 論理回路と中央演算処理装置(CPU)  3 CPUの動作  練習問題 4章 記憶装置と周辺機器  1 記憶装置  2 インタフェースとバス  3 入出力装置  練習問題 5章 プログラムとアルゴリズム  1 プログラムとプログラミング言語  2 アルゴリズム  3 プログラミング言語と言語処理プログラム  練習問題 6章 OSとアプリケーション  1 OS  2 制御プログラムの役割  3 アプリケーションとミドルウェア  4 仮想化ソフトウェア  練習問題 7章 ネットワーク  1 コンピュータネットワーク  2 インターネットとTCP/IP  3 インターネットサービス  4 コンピュータシステムの構成と信頼性  練習問題 8章 セキュリティ  1 セキュリティ技術  2 暗号化技術  練習問題 練習問題解説・解答 索 引
  • 強化学習と深層学習 C言語によるシミュレーション
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 人工知能研究における諸分野を、C 言語による具体的な処理手続きやプログラム例によりやさしく解説する!!  強化学習は、一連の行動の結果だけから行動知識を学習する手法です。 本書では、この強化学習と深層学習の基礎を紹介した上で、深層強化学習のしくみを具体的に説明します。単に概念を説明するだけでなく、アルゴリズムを実際にC言語のプログラムとして実装することで、実際にプログラムを動かすことで具体的な処理方法の理解を深めます。 主要目次 第1章 強化学習と深層学習 第2章 強化学習の実装 第3章 深層学習の技術 第4章 深層強化学習
  • クラウド・コンピューティング ウェブ2.0の先にくるもの
    3.5
    「ウェッブ2.0は終わった」。グーグルやマイクロソフトはすでにその先を目指している。それは、プログラムもデータも、すべてをネットの「雲(クラウド)」で処理する新しいコンピューティングのかたち。気鋭のITジャーナリストが、ウェブ2.0をも乗り越え、既存メディアやビジネスの前提を覆す「クラウド」のインパクトを活写する。

    試し読み

    フォロー
  • クラウド・コンピューティング仕事術
    3.1
    データやソフトをパソコンでなくネットに置いて利用するクラウド・コンピューティングは、こんなに便利で簡単! メールやスケジュール確認を効率化し、肝心なメールや必要なファイルが見つからない! そんな無駄な時間を一気に短縮できる。大評判『クラウド・コンピューティング』に続く活用・実践編!

    試し読み

    フォロー
  • クラウドシステム移行・導入 ―アーキテクチャからハイブリッドクラウドまで―
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 従来のシステムをクラウドシステムに移行させるうえでの標準的なプロセスや必須知識を網羅  自社システムをクラウドに移行する,あるいは自社システムにクラウドを導入するうえでの標準的なプロセスや必須知識を網羅した書籍です.AIOps,CI/CD,DevOps,IaaS/PaaS/SaaS/IDaaS/MaaS,Kubernetes,VPCなどのいま1つよくわからない専門用語の1つひとつを,IT技術者向けにていねいに解説しています.  まずクラウドシステムを使ううえでの考え方からスタートして,クラウドシステムに関連した主な技術,考えるべき指針についてわかりやすく解説しています.さらに,各種規制への対応についても述べています.現在のクラウドシステムを支えている技術は高度かつ複雑であり,しかも日進月歩で進化しています.したがって,各社のインフラストラクチャの担当者,アプリケーション開発の担当者,およびシステム運用の担当者として,常にクラウドの個々の技術の詳細を理解しておくのは少し難しいかもしれませんが,クラウドを使用するユーザの立場から最低限の知識とポイントを押さえておく責任があります.  本書を読むことで,クラウドの移行・導入の全体的なイメージをつかむことができ,取り組むべき課題がみえてきます. 第1章 システムのクラウド移行・導入をデザインする 第2章 クラウドのアーキテクチャを正しく理解する 第3章 クラウドにおけるアプリケーションの開発と運用 第4章 クラウドセキュリティの考え方と実践 第5章 ハイパフォーマンスマシン,モビリティのクラウドアーキテクチャ 第6章 情報管理と法制度
  • グラフ・ネットワークアルゴリズムの基礎:数理とCプログラム
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 グラフ・ネットワークアルゴリズムの基礎をしっかり理解!! グラフ・ネットワークアルゴリズムの背後に横たわる数理を,例題と図を多用して,直観的なイメージを抱いて思考を巡らせながら理解できるよう,配慮.また,ほとんどのアルゴリズムにC言語によるプログラムを与え,出力結果を確認できるようにしている.さらに,各章での内容を効果的に復習できるように,章末の演習問題とともに多くの問題でその解答例を付している.また,著者の『アルゴリズムの基礎とデータ構造:数理とC プログラム』の続編でもある.アルゴリズムの基礎を学んだ読者が,より有用性のあるグラフ・ネットワークアルゴリズムを習得するためには必携の良書である.
  • 群像の時代 動きはじめたメディアコンテンツ
    3.0
    21世紀、インターネットの登場で情報流通革命が起きた。 利便性が格段にあがり、既存のビジネスモデルに代替性が提供されてきた。 かつてはプロしか持てなかった機材を世界中の誰でも持てるようになり、消費者だった人間が自分でコンテンツを生産し発信する時代の到来である。 インターネットの流通革命は、いまや表現の革命段階に移行しつつある。 インターネットの世界で無数の表現者たちが生み出す無数のコンテンツ。 この群像の時代にメディアやコンテンツビジネス戦略はどう展開されていくのか。 放送、インターネットの海外動向を調査・分析してきた著者が、ここ数年の世界のメディア戦略の動きをレポートし、メディア・コンテンツの行く末を考えた。【※本作品はブラウザビューアで閲覧すると表組みのレイアウトが崩れて表示されることがあります。予めご了承下さい。】
  • Google Cloud エンタープライズIT基盤設計ガイド
    NEW
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 企業システムに関わる人が知っておくべきGoogle Cloudのサービスを 網羅的にわかりやすく解説 3つのシナリオにおける設計の進め方や注意点も収録 Google Cloudは企業情報システムへの対応を急速に進めており、DX(デジタルトランスフォーメーション)での存在感を高めています。本書は、企業情報システムの担当者やシステム企画部門、サービスを開発・運営する事業部門の担当者などが知っておくべきGoogle Cloudのサービスを網羅的に分かりやすく解説した一冊です。 データベースやセキュリティー、機械学習など11のカテゴリーに分けて重要なサービスを1つひとつ平易に解説しており、Google Cloudの基本的な知識を体系立ててつかむことができます。「ハイブリッドクラウドの構築」「データ分析基盤の構築」「IoT・機械学習システムの構築」という3つのシナリオにおける具体的な開発の進め方、設計例、考慮すべきポイントも収録しました。
  • Google Cloud Platform エンタープライズ設計ガイド
    値引きあり
    4.0
    Googleが提供するクラウドサービス AWSとの違いを軸に徹底解説  「Google Cloud Platform」(GCP)は、Amazon Web Services(AWS)やMicrosoft Azureと同じく、企業向けのクラウドサービスとして提供されている。後発であることは否めないが、後発であるからこその特徴を備えている。  一般的な用途では「マネージドサービス」の充実が特徴と言える。そのほか、今注目の「機械学習」「ビッグデータ」関連のサービスが特に充実しており、AI関連のシステム基盤として要注目であることは間違いない。  本書では、「コンピューティング」「ストレージ」「ネットワーキング」「ビッグデータ」「機械学習」「アカウント管理」「運用監視」という7つのカテゴリーに分類し、GCPの特徴を、AWSとの違いを軸に解説している。  また、GCPのサービスを解説するほか、エンタープライズ用途のユースケースに基づいて、GCPを用いた設計ガイドをまとめている。技術力に定評のあるGoogleのクラウドサービスを検討するのに最適な1冊である。
  • Google Colaboratoryで学ぶ!あたらしい人工知能技術の教科書 機械学習・深層学習・強化学習で学ぶAIの基礎技術
    3.0
    最新のAI開発プラットフォームで 機械学習・深層学習・強化学習の 基礎技術を学ぼう! 【本書の概要】 本書はUdemyで大人気の講座 『AIパーフェクトマスター講座 -Google Colaboratoryで隅々まで学ぶ実用的な人工知能/機械学習-』をもとにした書籍です。 ・機械学習(回帰、k平均法、サポートベクターマシン) ・深層学習(画像識別や画像生成、RNN) ・強化学習(Cart Pole問題、深層強化学習) といった、AI開発でニーズの高い人工知能技術を、深層学習を中心に解説しています。 また本書ではサンプルを用意していますので、サンプルを動かしながら、AI技術の仕組みを理解できます。 開発環境にはGoogle Colaboratoryを使用します。 【Google Colaboratoryとは】 ブラウザ上で利用できる機械学習や深層学習向けの開発環境です。 GPUを無料で利用できるので、コードの実行時間を大幅に短縮できます。 【本書ポイント】 ・機械学習・深層学習・強化学習の基礎知識を一気に学べる ・Pythonでコードを動かしながら機械学習・深層学習・強化学習の理論を学べる 【対象読者】 ・何らかのプログラミング経験のある方 ・機械学習・深層学習・強化学習を学ぶ意欲のある方 ・高校数学以上の数学知識のある方 【著者プロフィール】 我妻幸長(あづま・ゆきなが) SAI-Lab株式会社を起業。「ヒトとAIの共生」がミッション。 人工知能(AI)関連の研究開発、教育、アプリ開発が主な事業。 著者のYouTubeチャンネルでは、無料の講座が多数公開されている。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • 形態素解析の理論と実装
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 言語において意味を成す最小の要素である「形態素」の解析方法について、技術者向けにその理論や実装方法を網羅的、体系的に解説する。実装や高速化等を扱いつつ、辞書やコーパスなどの言語資源の構築・利用についてもカバー。解析ツールを「ブラックボックス」として使っている人も中身を理解したうえで拡張・改良できる道筋ができ、ひいては独自の辞書の作成を目指せるようになる。C++11を使った具体的な実装方法も掲載。 199
  • 言語処理システムをつくる
    値引きあり
    -
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 AI分野で,いま大注目の技術 !! AIを考えるとき,「自然言語処理」は常に中心となるテーマである. 本シリーズは,実践的なアプローチで自然言語処理技術に迫っていく.すなわち,最初に具体的なシステムや応用例を示し,それらに関する理論や技術,実装のノウハウは,後からじっくり解説する.  本書は,著者らが実用化した言語処理システムを最初に提示し,そのシステムをどのように作り上げたかを追体験しながら,設定不良問題などへの具体的な対処方法を紹介している.本書全体をとおして,システム構築に際して,学ぶべき対象と方向性の手かがりが示されている.自然言語処理の開発技術者,研究者,それを志す学生には必携の書である.
  • 現場で使える!TensorFlow開発入門 Kerasによる深層学習モデル構築手法
    4.5
    【本書の特徴】 2015年11月にGoogleがオープンソース化したソフトウェアライブラリ「TensorFlow(テンソルフロー)」は、 多くの開発者に支持され、多企業で採用されています。 本書は、TensorFlowの導入から、高レベルAPIであるKerasを利用した実践的な深層学習モデルまで解説した、 エンジニア向けの入門書です。第1部の基本編では、深層学習とTensorFlow、Kerasの基礎について解説し、 第2部の応用編では画像処理における応用的なモデルのKerasを使った実装方法を解説します。 特に、第2部では、「ノイズ除去」「自動着色」「超解像」「画風変換」「画像生成」を取り上げています。 TensorFlowやKerasの機能面を押さえつつ、現場で使用できるような実践的な深層学習モデルまでフォローしています。 【対象読者】 深層学習に入門したいエンジニア 【目次】 第1部 基本編 第1章 機械学習ライブラリTensorFlowとKeras 第2章 開発環境を構築する 第3章 簡単なサンプルで学ぶTensorFlowの基本 第4章 ニューラルネットワークとKeras 第5章 KerasによるCNNの実装 第6章 学習済みモデルの活用 第7章 よく使うKerasの機能 第2部 応用編 第8章 CAEを使ったノイズ除去 第9章 自動着色 第10章 超解像 第11章 画風変換 第12章 画像生成 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • 現場で使える!NumPyデータ処理入門 機械学習・データサイエンスで役立つ高速処理手法
    -
    機械学習・データサイエンスで役立つ高速処理手法 【本書の概要】 ビッグデータを扱う機械学習の現場では、Pythonの高機能で利用しやすい数学・科学系ライブラリが急速に広まってきています。 本書は、機械学習・データサイエンスの現場でよく利用されているNumPyの基本から始まり、 現場で使える実践的な高速データ処理手法について解説します。 特に、現場でよく扱う配列の処理に力点を置いています。 最終章では機械学習における実践的なデータ処理手法について解説します。 【NumPy(ナンパイ)とは】 NumPyは、機械学習・データサイエンスの現場で扱うことの多い多次元配列(行列やベクトル)を 処理する高水準の数学関数が充実しているライブラリです。 Python単体では遅い処理であっても、C言語なみに高速化できるケースもあり、 機械学習・データサイエンスの分野におけるデータ処理に欠かせないライブラリとなっています。 【対象読者】 機械学習エンジニア、データサイエンティスト 【著者紹介】 吉田拓真(よしだ・たくま) データサイエンス関連のサービスを提供する株式会社Spot 代表取締役社長。 Webメディア『DeepAge』編集長。 尾原 颯(おはら・そう) 東京大学工学部機械工学科所属。 大学ではハードウェア寄りの勉強が多め。 趣味はアカペラとテニス。基本的に運動が好き。最近、ランニングを始める。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • 現場で使える!Python機械学習入門 機械学習アルゴリズムの理論と実践
    -
    【概要】 人工知能関連のプロダクト・サービスの開発において、機械学習は最初の学習領域です。 本書は、機械学習の基本と実践手法について解説した書籍です。 機械学習の開発環境の準備、実際の現場での利用方法、そしてブラックボックス化しがちな理論部分もしっかりフォローしています。 データ集計・整形と組み合わせた機械学習モデルの利用方法も解説しています。 【読者対象】 人工知能関連の開発に携わる開発者、研究者 現在は推薦システムの設計からアルゴリズムのデザインのみならず、インフラ構築を含めたサーバーサイド全般に従事。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • 現場で使える!Python深層学習入門 Pythonの基本から深層学習の実践手法まで
    -
    【概要】 本書は、深層学習の開発環境の準備とPythonの基本、各種深層学習モデルの解説、そして実際の現場での利用方法について解説した書籍です。 ニーズの高い、人気の深層学習モデルを利用した画像処理モデルの構築方法を解説しています。 また最終章では深層学習のモデルをGoogle Cloud Platform(GCP)にデプロイする手法を解説しています。 【読者対象】 人工知能関連の開発に携わる開発者、研究者 【著者】 株式会社アイデミー 木村優志(きむら・まさし) 博士(工学)。ATR-trek、富士通を経て、現在はConvergence Lab.の代表として多数のAI案件を手がける。 アイデミー技術顧問。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー
  • 現場で使える!Python深層強化学習入門 強化学習と深層学習による探索と制御
    4.0
    注目の最新AI技術!深層強化学習の開発手法がわかる! 第一線で活躍する著者陣の書下ろしによる待望の1冊! 【本書の目的】 AlphaGo(アルファ碁)でも利用されている深層強化学習。 AIサービスのみならずロボティクス分野でもその応用が期待されています。 本書は、AI開発に携わる第一線の著者陣が深層強化学習の開発手法について書き下ろした注目の1冊です。 【本書の特徴】 第1部では、まず、深層強化学習の概要について説明します。 次いで、強化学習の基礎(Q学習、方策勾配法、Actor-Critic法)と深層学習の基礎(CNN、RNN、LSTM)を解説します。 さらに、簡単な例題として倒立振子制御を取り上げ、DQNとActor-Critic法による実装例を紹介します。 第2部では、具体的な応用例として3つのアプローチを実装込みで解説します。 1つ目は、連続動作制御です。ヒューマノイドシミュレータの2足歩行制御を試みます。 2つ目は、パズル問題の解法です。巡回セールスマン問題(TSP)やルービックキューブの解探索について説明します。 3つ目は、系列データ生成です。文書生成(SeqGAN)やニューラルネットワークのアーキテクチャ探索(ENAS)を解説します。 全体を通して、行動の制御を担うエージェントのモデル化と、方策ベースの強化学習によるエージェントの学習法について学ぶことができます。 【読者が得られること】 深層強化学習による開発手法を学ぶことができます。 【対象読者】 深層強化学習を学びたい理工学生・エンジニア ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

    試し読み

    フォロー

最近チェックした本