データサイエンス教本 Pythonで学ぶ統計分析・パターン認識・深層学習・信号処理・時系列データ分析

データサイエンス教本 Pythonで学ぶ統計分析・パターン認識・深層学習・信号処理・時系列データ分析

作者名 :
通常価格 3,960円 (3,600円+税)
獲得ポイント

19pt

    【対応端末】
  • Lideo
  • Win PC
  • iOS
  • Android
  • ブラウザ
    【縦読み対応端末】
  • iOS
  • Android
  • ブラウザ

※縦読み機能のご利用については、ご利用ガイドをご確認ください

毎日引ける!!!クーポンガチャで最大50%OFFクーポンをGET!

作品内容

※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。

※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。

Pythonでデータサイエンスの理論と実践を学ぶ
 データサイエンスは、「データを科学的に扱う」学問分野であり、近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。
 本書は、データサイエンスの意味から金融データの分析、動的システムの分析などの工学応用までを、Pythonを使って実際に分析しながら学ぶものです.データの取り扱い、確率・統計の基礎といった基本的なところから、回帰分析、パターン認識、深層学習といった統計・機械学習手法、金融データなど時々刻々と変化する時系列データの分析、センサデータなどに含まれるノイズや外乱を見極めるスペクトル分析、さらにこのノイズや外乱を除去するためのディジタルフィルタ、そして最後に画像データの分析として画像処理の解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。
 Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。

1章 はじめに
2章 データの扱いと可視化
3章 確率の基礎
4章 統計の基礎
5章 回帰分析
6章 パターン認識
7章 深層学習(ディープラーニング)
8章 時系列データ分析
9章 スペクトル分析
10章 ディジタルフィルタ
11章 画像処理
おわりに
参考文献

カテゴリ
ビジネス・実用
ジャンル
IT・コンピュータ / 情報科学
出版社
オーム社
ページ数
344ページ
電子版発売日
2019年01月18日
紙の本の発売
2018年12月
コンテンツ形式
EPUB
サイズ(目安)
123MB

データサイエンス教本 Pythonで学ぶ統計分析・パターン認識・深層学習・信号処理・時系列データ分析 のユーザーレビュー

    Posted by ブクログ 2020年01月19日

    第3章まで読んだ。第4章からは、数学の素養が乏しい人にとっては難しいと感じる。統計やパターン認識を一から学ぶのには適していないと思う。

    このレビューは参考になりましたか?

この本をチェックした人は、こんな本もチェックしています