グラフニューラルネットワーク作品一覧

  • グラフニューラルネットワーク
    値引きあり
    -
    ★この本がないと始まらない★ 本書は、基礎から丁寧に解説しつつ、広範な範囲を取り扱う。 カタログ的な解説ではなく、解明されている理論に基づき、本質を解説する。 より深い洞察と息の長い知識を学べる決定版テキスト! 【主な内容】 第1章 機械学習においてグラフを考える重要性 第2章 準備 第3章 グラフニューラルネットワークの定式化 第4章 さまざまなタスクへの応用 第5章 グラフニューラルネットワークの高速化 第6章 スペクトルグラフ理論 第7章 過平滑化現象とその対策 第8章 グラフニューラルネットワークの表現能力 第9章 おわりに
  • グラフニューラルネットワーク ―PyTorchによる実装―
    4.0
    ※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 ※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 深層学習でネットワークを解析する世界最前線の研究を1冊で学ぶ!  深層学習をグラフ(ネットワーク)で表される構造データに対して適用するための研究が盛んになっています。それが、本書で解説するグラフニューラルネットワークです。グラフ中の頂点やグラフ全体を高精度に分類できれば、高度な画像認識、推薦システム、交通量予測、化合物分類、さらには新型コロナウイルス(COVID-19)への対処のための応用なども期待できる、世界最前線の研究です。  本書では、グラフニューラルネットワークの基本的な知識および研究事例について説明し、PyTorchによる実装について紹介するとともに、今後の学習のための情報源についても解説します。Google Colaboratoryで解説するとともに、サンプルコードもついています。 まえがき 第1章 グラフニューラルネットワークとは  1.1 はじめに  1.2 グラフを対象とした畳み込み  1.3 グラフを対象とした機械学習タスク   1.3.1 ノード分類   1.3.2 グラフ分類   1.3.3 リンク予測   1.3.4 グラフ生成  1.4 グラフニューラルネットワークの応用   1.4.1 画像認識   1.4.2 推薦システム   1.4.3 交通量予測   1.4.4 化合物分類   1.4.5 組み合わせ最適化   1.4.6 COVID-19とグラフニューラルネットワーク  まとめ 第2章 グラフエンベディング  2.1 グラフエンベディング手法の概観  2.2 次元縮約に基づく手法  2.3 グラフ構造に基づく手法   2.3.1 DeepWalk   2.3.2 LINE   2.3.3 node2vec   2.3.4 GraRep  2.4 ニューラルネットワークに基づく手法  まとめ 第3章 グラフにおける畳み込み  3.1 グラフ畳み込みにおけるアプローチ  3.2 Spectral Graph Convolution   3.2.1 フーリエ変換   3.2.2 グラフラプラシアン   3.2.3 ChebNet   3.2.4 GCN  3.3 Spatial Graph Convolution   3.3.1 PATCHY-SAN   3.3.2 DCNN   3.3.3 GraphSAGE  まとめ 第4章 関連トピック  4.1 グラフオートエンコーダ  4.2 GAT  4.3 SGC  4.4 GIN  4.5 敵対的攻撃  4.6 動的グラフのエンベディング  4.7 時空間グラフ畳み込みネットワーク  4.8 説明可能性  まとめ 第5章 実装のための準備  5.1 Python  5.2 NumPy  5.3 SciPy  5.4 pandas  5.5 Matplotlib  5.6 seaborn  5.7 Scikit-learn  5.8 t-SNE  5.9 Jupyter Notebook  5.10 Google Colaboratory  まとめ 第6章 PyTorch Geometricによる実装  6.1 PyTorch   6.1.1 データセット   6.1.2 モデル   6.1.3 損失   6.1.4 最適化  6.2 PyTorch Geometric入門   6.2.1 PyTorh Geometricとは   6.2.2 類似ライブラリとの比較   6.2.3 PyTorch Geometricによるグラフのデータ構造   6.2.4 よく使われるベンチマークデータセット   6.2.5 ミニバッチ   6.2.6 データ変換   6.2.7 グラフの学習手法  6.3 PyTorch Geometricによるノード分類・グラフ分類   6.3.1 PyTorch Geometricによるエンベディング   6.3.2 PyTorch Geometricによるノード分類   6.3.3 PyTorch Geometricによるグラフ分類  まとめ 第7章 今後の学習に向けて  7.1 書籍  7.2 サーベイ論文  7.3 動画  7.4 リンク集など  7.5 Open Graph Benchmark  まとめ おわりに 参考文献 索引

最近チェックした作品からのおすすめ